rme32.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
  4. *
  5. * Copyright (c) 2002-2004 Martin Langer <[email protected]>,
  6. * Pilo Chambert <[email protected]>
  7. *
  8. * Thanks to : Anders Torger <[email protected]>,
  9. * Henk Hesselink <[email protected]>
  10. * for writing the digi96-driver
  11. * and RME for all informations.
  12. *
  13. * ****************************************************************************
  14. *
  15. * Note #1 "Sek'd models" ................................... martin 2002-12-07
  16. *
  17. * Identical soundcards by Sek'd were labeled:
  18. * RME Digi 32 = Sek'd Prodif 32
  19. * RME Digi 32 Pro = Sek'd Prodif 96
  20. * RME Digi 32/8 = Sek'd Prodif Gold
  21. *
  22. * ****************************************************************************
  23. *
  24. * Note #2 "full duplex mode" ............................... martin 2002-12-07
  25. *
  26. * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
  27. * in this mode. Rec data and play data are using the same buffer therefore. At
  28. * first you have got the playing bits in the buffer and then (after playing
  29. * them) they were overwitten by the captured sound of the CS8412/14. Both
  30. * modes (play/record) are running harmonically hand in hand in the same buffer
  31. * and you have only one start bit plus one interrupt bit to control this
  32. * paired action.
  33. * This is opposite to the latter rme96 where playing and capturing is totally
  34. * separated and so their full duplex mode is supported by alsa (using two
  35. * start bits and two interrupts for two different buffers).
  36. * But due to the wrong sequence of playing and capturing ALSA shows no solved
  37. * full duplex support for the rme32 at the moment. That's bad, but I'm not
  38. * able to solve it. Are you motivated enough to solve this problem now? Your
  39. * patch would be welcome!
  40. *
  41. * ****************************************************************************
  42. *
  43. * "The story after the long seeking" -- tiwai
  44. *
  45. * Ok, the situation regarding the full duplex is now improved a bit.
  46. * In the fullduplex mode (given by the module parameter), the hardware buffer
  47. * is split to halves for read and write directions at the DMA pointer.
  48. * That is, the half above the current DMA pointer is used for write, and
  49. * the half below is used for read. To mangle this strange behavior, an
  50. * software intermediate buffer is introduced. This is, of course, not good
  51. * from the viewpoint of the data transfer efficiency. However, this allows
  52. * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
  53. *
  54. * ****************************************************************************
  55. */
  56. #include <linux/delay.h>
  57. #include <linux/gfp.h>
  58. #include <linux/init.h>
  59. #include <linux/interrupt.h>
  60. #include <linux/pci.h>
  61. #include <linux/module.h>
  62. #include <linux/io.h>
  63. #include <sound/core.h>
  64. #include <sound/info.h>
  65. #include <sound/control.h>
  66. #include <sound/pcm.h>
  67. #include <sound/pcm_params.h>
  68. #include <sound/pcm-indirect.h>
  69. #include <sound/asoundef.h>
  70. #include <sound/initval.h>
  71. static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
  72. static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
  73. static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
  74. static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
  75. module_param_array(index, int, NULL, 0444);
  76. MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
  77. module_param_array(id, charp, NULL, 0444);
  78. MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
  79. module_param_array(enable, bool, NULL, 0444);
  80. MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
  81. module_param_array(fullduplex, bool, NULL, 0444);
  82. MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
  83. MODULE_AUTHOR("Martin Langer <[email protected]>, Pilo Chambert <[email protected]>");
  84. MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
  85. MODULE_LICENSE("GPL");
  86. /* Defines for RME Digi32 series */
  87. #define RME32_SPDIF_NCHANNELS 2
  88. /* Playback and capture buffer size */
  89. #define RME32_BUFFER_SIZE 0x20000
  90. /* IO area size */
  91. #define RME32_IO_SIZE 0x30000
  92. /* IO area offsets */
  93. #define RME32_IO_DATA_BUFFER 0x0
  94. #define RME32_IO_CONTROL_REGISTER 0x20000
  95. #define RME32_IO_GET_POS 0x20000
  96. #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
  97. #define RME32_IO_RESET_POS 0x20100
  98. /* Write control register bits */
  99. #define RME32_WCR_START (1 << 0) /* startbit */
  100. #define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono
  101. Setting the whole card to mono
  102. doesn't seem to be very useful.
  103. A software-solution can handle
  104. full-duplex with one direction in
  105. stereo and the other way in mono.
  106. So, the hardware should work all
  107. the time in stereo! */
  108. #define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */
  109. #define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */
  110. #define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */
  111. #define RME32_WCR_FREQ_1 (1 << 5)
  112. #define RME32_WCR_INP_0 (1 << 6) /* input switch */
  113. #define RME32_WCR_INP_1 (1 << 7)
  114. #define RME32_WCR_RESET (1 << 8) /* Reset address */
  115. #define RME32_WCR_MUTE (1 << 9) /* digital mute for output */
  116. #define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */
  117. #define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
  118. #define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */
  119. #define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */
  120. #define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */
  121. #define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */
  122. #define RME32_WCR_BITPOS_FREQ_0 4
  123. #define RME32_WCR_BITPOS_FREQ_1 5
  124. #define RME32_WCR_BITPOS_INP_0 6
  125. #define RME32_WCR_BITPOS_INP_1 7
  126. /* Read control register bits */
  127. #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
  128. #define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */
  129. #define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */
  130. #define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */
  131. #define RME32_RCR_FREQ_1 (1 << 28)
  132. #define RME32_RCR_FREQ_2 (1 << 29)
  133. #define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */
  134. #define RME32_RCR_IRQ (1 << 31) /* interrupt */
  135. #define RME32_RCR_BITPOS_F0 27
  136. #define RME32_RCR_BITPOS_F1 28
  137. #define RME32_RCR_BITPOS_F2 29
  138. /* Input types */
  139. #define RME32_INPUT_OPTICAL 0
  140. #define RME32_INPUT_COAXIAL 1
  141. #define RME32_INPUT_INTERNAL 2
  142. #define RME32_INPUT_XLR 3
  143. /* Clock modes */
  144. #define RME32_CLOCKMODE_SLAVE 0
  145. #define RME32_CLOCKMODE_MASTER_32 1
  146. #define RME32_CLOCKMODE_MASTER_44 2
  147. #define RME32_CLOCKMODE_MASTER_48 3
  148. /* Block sizes in bytes */
  149. #define RME32_BLOCK_SIZE 8192
  150. /* Software intermediate buffer (max) size */
  151. #define RME32_MID_BUFFER_SIZE (1024*1024)
  152. /* Hardware revisions */
  153. #define RME32_32_REVISION 192
  154. #define RME32_328_REVISION_OLD 100
  155. #define RME32_328_REVISION_NEW 101
  156. #define RME32_PRO_REVISION_WITH_8412 192
  157. #define RME32_PRO_REVISION_WITH_8414 150
  158. struct rme32 {
  159. spinlock_t lock;
  160. int irq;
  161. unsigned long port;
  162. void __iomem *iobase;
  163. u32 wcreg; /* cached write control register value */
  164. u32 wcreg_spdif; /* S/PDIF setup */
  165. u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
  166. u32 rcreg; /* cached read control register value */
  167. u8 rev; /* card revision number */
  168. struct snd_pcm_substream *playback_substream;
  169. struct snd_pcm_substream *capture_substream;
  170. int playback_frlog; /* log2 of framesize */
  171. int capture_frlog;
  172. size_t playback_periodsize; /* in bytes, zero if not used */
  173. size_t capture_periodsize; /* in bytes, zero if not used */
  174. unsigned int fullduplex_mode;
  175. int running;
  176. struct snd_pcm_indirect playback_pcm;
  177. struct snd_pcm_indirect capture_pcm;
  178. struct snd_card *card;
  179. struct snd_pcm *spdif_pcm;
  180. struct snd_pcm *adat_pcm;
  181. struct pci_dev *pci;
  182. struct snd_kcontrol *spdif_ctl;
  183. };
  184. static const struct pci_device_id snd_rme32_ids[] = {
  185. {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,},
  186. {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,},
  187. {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,},
  188. {0,}
  189. };
  190. MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
  191. #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
  192. #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
  193. static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
  194. static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
  195. static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
  196. static void snd_rme32_proc_init(struct rme32 * rme32);
  197. static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
  198. static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
  199. {
  200. return (readl(rme32->iobase + RME32_IO_GET_POS)
  201. & RME32_RCR_AUDIO_ADDR_MASK);
  202. }
  203. /* silence callback for halfduplex mode */
  204. static int snd_rme32_playback_silence(struct snd_pcm_substream *substream,
  205. int channel, unsigned long pos,
  206. unsigned long count)
  207. {
  208. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  209. memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
  210. return 0;
  211. }
  212. /* copy callback for halfduplex mode */
  213. static int snd_rme32_playback_copy(struct snd_pcm_substream *substream,
  214. int channel, unsigned long pos,
  215. void __user *src, unsigned long count)
  216. {
  217. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  218. if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
  219. src, count))
  220. return -EFAULT;
  221. return 0;
  222. }
  223. static int snd_rme32_playback_copy_kernel(struct snd_pcm_substream *substream,
  224. int channel, unsigned long pos,
  225. void *src, unsigned long count)
  226. {
  227. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  228. memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, src, count);
  229. return 0;
  230. }
  231. /* copy callback for halfduplex mode */
  232. static int snd_rme32_capture_copy(struct snd_pcm_substream *substream,
  233. int channel, unsigned long pos,
  234. void __user *dst, unsigned long count)
  235. {
  236. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  237. if (copy_to_user_fromio(dst,
  238. rme32->iobase + RME32_IO_DATA_BUFFER + pos,
  239. count))
  240. return -EFAULT;
  241. return 0;
  242. }
  243. static int snd_rme32_capture_copy_kernel(struct snd_pcm_substream *substream,
  244. int channel, unsigned long pos,
  245. void *dst, unsigned long count)
  246. {
  247. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  248. memcpy_fromio(dst, rme32->iobase + RME32_IO_DATA_BUFFER + pos, count);
  249. return 0;
  250. }
  251. /*
  252. * SPDIF I/O capabilities (half-duplex mode)
  253. */
  254. static const struct snd_pcm_hardware snd_rme32_spdif_info = {
  255. .info = (SNDRV_PCM_INFO_MMAP_IOMEM |
  256. SNDRV_PCM_INFO_MMAP_VALID |
  257. SNDRV_PCM_INFO_INTERLEAVED |
  258. SNDRV_PCM_INFO_PAUSE |
  259. SNDRV_PCM_INFO_SYNC_START |
  260. SNDRV_PCM_INFO_SYNC_APPLPTR),
  261. .formats = (SNDRV_PCM_FMTBIT_S16_LE |
  262. SNDRV_PCM_FMTBIT_S32_LE),
  263. .rates = (SNDRV_PCM_RATE_32000 |
  264. SNDRV_PCM_RATE_44100 |
  265. SNDRV_PCM_RATE_48000),
  266. .rate_min = 32000,
  267. .rate_max = 48000,
  268. .channels_min = 2,
  269. .channels_max = 2,
  270. .buffer_bytes_max = RME32_BUFFER_SIZE,
  271. .period_bytes_min = RME32_BLOCK_SIZE,
  272. .period_bytes_max = RME32_BLOCK_SIZE,
  273. .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  274. .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  275. .fifo_size = 0,
  276. };
  277. /*
  278. * ADAT I/O capabilities (half-duplex mode)
  279. */
  280. static const struct snd_pcm_hardware snd_rme32_adat_info =
  281. {
  282. .info = (SNDRV_PCM_INFO_MMAP_IOMEM |
  283. SNDRV_PCM_INFO_MMAP_VALID |
  284. SNDRV_PCM_INFO_INTERLEAVED |
  285. SNDRV_PCM_INFO_PAUSE |
  286. SNDRV_PCM_INFO_SYNC_START |
  287. SNDRV_PCM_INFO_SYNC_APPLPTR),
  288. .formats= SNDRV_PCM_FMTBIT_S16_LE,
  289. .rates = (SNDRV_PCM_RATE_44100 |
  290. SNDRV_PCM_RATE_48000),
  291. .rate_min = 44100,
  292. .rate_max = 48000,
  293. .channels_min = 8,
  294. .channels_max = 8,
  295. .buffer_bytes_max = RME32_BUFFER_SIZE,
  296. .period_bytes_min = RME32_BLOCK_SIZE,
  297. .period_bytes_max = RME32_BLOCK_SIZE,
  298. .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  299. .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  300. .fifo_size = 0,
  301. };
  302. /*
  303. * SPDIF I/O capabilities (full-duplex mode)
  304. */
  305. static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
  306. .info = (SNDRV_PCM_INFO_MMAP |
  307. SNDRV_PCM_INFO_MMAP_VALID |
  308. SNDRV_PCM_INFO_INTERLEAVED |
  309. SNDRV_PCM_INFO_PAUSE |
  310. SNDRV_PCM_INFO_SYNC_START |
  311. SNDRV_PCM_INFO_SYNC_APPLPTR),
  312. .formats = (SNDRV_PCM_FMTBIT_S16_LE |
  313. SNDRV_PCM_FMTBIT_S32_LE),
  314. .rates = (SNDRV_PCM_RATE_32000 |
  315. SNDRV_PCM_RATE_44100 |
  316. SNDRV_PCM_RATE_48000),
  317. .rate_min = 32000,
  318. .rate_max = 48000,
  319. .channels_min = 2,
  320. .channels_max = 2,
  321. .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
  322. .period_bytes_min = RME32_BLOCK_SIZE,
  323. .period_bytes_max = RME32_BLOCK_SIZE,
  324. .periods_min = 2,
  325. .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
  326. .fifo_size = 0,
  327. };
  328. /*
  329. * ADAT I/O capabilities (full-duplex mode)
  330. */
  331. static const struct snd_pcm_hardware snd_rme32_adat_fd_info =
  332. {
  333. .info = (SNDRV_PCM_INFO_MMAP |
  334. SNDRV_PCM_INFO_MMAP_VALID |
  335. SNDRV_PCM_INFO_INTERLEAVED |
  336. SNDRV_PCM_INFO_PAUSE |
  337. SNDRV_PCM_INFO_SYNC_START |
  338. SNDRV_PCM_INFO_SYNC_APPLPTR),
  339. .formats= SNDRV_PCM_FMTBIT_S16_LE,
  340. .rates = (SNDRV_PCM_RATE_44100 |
  341. SNDRV_PCM_RATE_48000),
  342. .rate_min = 44100,
  343. .rate_max = 48000,
  344. .channels_min = 8,
  345. .channels_max = 8,
  346. .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
  347. .period_bytes_min = RME32_BLOCK_SIZE,
  348. .period_bytes_max = RME32_BLOCK_SIZE,
  349. .periods_min = 2,
  350. .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
  351. .fifo_size = 0,
  352. };
  353. static void snd_rme32_reset_dac(struct rme32 *rme32)
  354. {
  355. writel(rme32->wcreg | RME32_WCR_PD,
  356. rme32->iobase + RME32_IO_CONTROL_REGISTER);
  357. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  358. }
  359. static int snd_rme32_playback_getrate(struct rme32 * rme32)
  360. {
  361. int rate;
  362. rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
  363. (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
  364. switch (rate) {
  365. case 1:
  366. rate = 32000;
  367. break;
  368. case 2:
  369. rate = 44100;
  370. break;
  371. case 3:
  372. rate = 48000;
  373. break;
  374. default:
  375. return -1;
  376. }
  377. return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
  378. }
  379. static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
  380. {
  381. int n;
  382. *is_adat = 0;
  383. if (rme32->rcreg & RME32_RCR_LOCK) {
  384. /* ADAT rate */
  385. *is_adat = 1;
  386. }
  387. if (rme32->rcreg & RME32_RCR_ERF) {
  388. return -1;
  389. }
  390. /* S/PDIF rate */
  391. n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
  392. (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
  393. (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
  394. if (RME32_PRO_WITH_8414(rme32))
  395. switch (n) { /* supporting the CS8414 */
  396. case 0:
  397. case 1:
  398. case 2:
  399. return -1;
  400. case 3:
  401. return 96000;
  402. case 4:
  403. return 88200;
  404. case 5:
  405. return 48000;
  406. case 6:
  407. return 44100;
  408. case 7:
  409. return 32000;
  410. default:
  411. return -1;
  412. }
  413. else
  414. switch (n) { /* supporting the CS8412 */
  415. case 0:
  416. return -1;
  417. case 1:
  418. return 48000;
  419. case 2:
  420. return 44100;
  421. case 3:
  422. return 32000;
  423. case 4:
  424. return 48000;
  425. case 5:
  426. return 44100;
  427. case 6:
  428. return 44056;
  429. case 7:
  430. return 32000;
  431. default:
  432. break;
  433. }
  434. return -1;
  435. }
  436. static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
  437. {
  438. int ds;
  439. ds = rme32->wcreg & RME32_WCR_DS_BM;
  440. switch (rate) {
  441. case 32000:
  442. rme32->wcreg &= ~RME32_WCR_DS_BM;
  443. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  444. ~RME32_WCR_FREQ_1;
  445. break;
  446. case 44100:
  447. rme32->wcreg &= ~RME32_WCR_DS_BM;
  448. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
  449. ~RME32_WCR_FREQ_0;
  450. break;
  451. case 48000:
  452. rme32->wcreg &= ~RME32_WCR_DS_BM;
  453. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  454. RME32_WCR_FREQ_1;
  455. break;
  456. case 64000:
  457. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  458. return -EINVAL;
  459. rme32->wcreg |= RME32_WCR_DS_BM;
  460. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  461. ~RME32_WCR_FREQ_1;
  462. break;
  463. case 88200:
  464. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  465. return -EINVAL;
  466. rme32->wcreg |= RME32_WCR_DS_BM;
  467. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
  468. ~RME32_WCR_FREQ_0;
  469. break;
  470. case 96000:
  471. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  472. return -EINVAL;
  473. rme32->wcreg |= RME32_WCR_DS_BM;
  474. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  475. RME32_WCR_FREQ_1;
  476. break;
  477. default:
  478. return -EINVAL;
  479. }
  480. if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
  481. (ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
  482. {
  483. /* change to/from double-speed: reset the DAC (if available) */
  484. snd_rme32_reset_dac(rme32);
  485. } else {
  486. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  487. }
  488. return 0;
  489. }
  490. static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
  491. {
  492. switch (mode) {
  493. case RME32_CLOCKMODE_SLAVE:
  494. /* AutoSync */
  495. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
  496. ~RME32_WCR_FREQ_1;
  497. break;
  498. case RME32_CLOCKMODE_MASTER_32:
  499. /* Internal 32.0kHz */
  500. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  501. ~RME32_WCR_FREQ_1;
  502. break;
  503. case RME32_CLOCKMODE_MASTER_44:
  504. /* Internal 44.1kHz */
  505. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
  506. RME32_WCR_FREQ_1;
  507. break;
  508. case RME32_CLOCKMODE_MASTER_48:
  509. /* Internal 48.0kHz */
  510. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  511. RME32_WCR_FREQ_1;
  512. break;
  513. default:
  514. return -EINVAL;
  515. }
  516. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  517. return 0;
  518. }
  519. static int snd_rme32_getclockmode(struct rme32 * rme32)
  520. {
  521. return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
  522. (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
  523. }
  524. static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
  525. {
  526. switch (type) {
  527. case RME32_INPUT_OPTICAL:
  528. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
  529. ~RME32_WCR_INP_1;
  530. break;
  531. case RME32_INPUT_COAXIAL:
  532. rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
  533. ~RME32_WCR_INP_1;
  534. break;
  535. case RME32_INPUT_INTERNAL:
  536. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
  537. RME32_WCR_INP_1;
  538. break;
  539. case RME32_INPUT_XLR:
  540. rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
  541. RME32_WCR_INP_1;
  542. break;
  543. default:
  544. return -EINVAL;
  545. }
  546. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  547. return 0;
  548. }
  549. static int snd_rme32_getinputtype(struct rme32 * rme32)
  550. {
  551. return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
  552. (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
  553. }
  554. static void
  555. snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
  556. {
  557. int frlog;
  558. if (n_channels == 2) {
  559. frlog = 1;
  560. } else {
  561. /* assume 8 channels */
  562. frlog = 3;
  563. }
  564. if (is_playback) {
  565. frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
  566. rme32->playback_frlog = frlog;
  567. } else {
  568. frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
  569. rme32->capture_frlog = frlog;
  570. }
  571. }
  572. static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format)
  573. {
  574. switch (format) {
  575. case SNDRV_PCM_FORMAT_S16_LE:
  576. rme32->wcreg &= ~RME32_WCR_MODE24;
  577. break;
  578. case SNDRV_PCM_FORMAT_S32_LE:
  579. rme32->wcreg |= RME32_WCR_MODE24;
  580. break;
  581. default:
  582. return -EINVAL;
  583. }
  584. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  585. return 0;
  586. }
  587. static int
  588. snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
  589. struct snd_pcm_hw_params *params)
  590. {
  591. int err, rate, dummy;
  592. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  593. struct snd_pcm_runtime *runtime = substream->runtime;
  594. if (!rme32->fullduplex_mode) {
  595. runtime->dma_area = (void __force *)(rme32->iobase +
  596. RME32_IO_DATA_BUFFER);
  597. runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
  598. runtime->dma_bytes = RME32_BUFFER_SIZE;
  599. }
  600. spin_lock_irq(&rme32->lock);
  601. rate = 0;
  602. if (rme32->rcreg & RME32_RCR_KMODE)
  603. rate = snd_rme32_capture_getrate(rme32, &dummy);
  604. if (rate > 0) {
  605. /* AutoSync */
  606. if ((int)params_rate(params) != rate) {
  607. spin_unlock_irq(&rme32->lock);
  608. return -EIO;
  609. }
  610. } else {
  611. err = snd_rme32_playback_setrate(rme32, params_rate(params));
  612. if (err < 0) {
  613. spin_unlock_irq(&rme32->lock);
  614. return err;
  615. }
  616. }
  617. err = snd_rme32_setformat(rme32, params_format(params));
  618. if (err < 0) {
  619. spin_unlock_irq(&rme32->lock);
  620. return err;
  621. }
  622. snd_rme32_setframelog(rme32, params_channels(params), 1);
  623. if (rme32->capture_periodsize != 0) {
  624. if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
  625. spin_unlock_irq(&rme32->lock);
  626. return -EBUSY;
  627. }
  628. }
  629. rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
  630. /* S/PDIF setup */
  631. if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
  632. rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
  633. rme32->wcreg |= rme32->wcreg_spdif_stream;
  634. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  635. }
  636. spin_unlock_irq(&rme32->lock);
  637. return 0;
  638. }
  639. static int
  640. snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
  641. struct snd_pcm_hw_params *params)
  642. {
  643. int err, isadat, rate;
  644. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  645. struct snd_pcm_runtime *runtime = substream->runtime;
  646. if (!rme32->fullduplex_mode) {
  647. runtime->dma_area = (void __force *)rme32->iobase +
  648. RME32_IO_DATA_BUFFER;
  649. runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
  650. runtime->dma_bytes = RME32_BUFFER_SIZE;
  651. }
  652. spin_lock_irq(&rme32->lock);
  653. /* enable AutoSync for record-preparing */
  654. rme32->wcreg |= RME32_WCR_AUTOSYNC;
  655. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  656. err = snd_rme32_setformat(rme32, params_format(params));
  657. if (err < 0) {
  658. spin_unlock_irq(&rme32->lock);
  659. return err;
  660. }
  661. err = snd_rme32_playback_setrate(rme32, params_rate(params));
  662. if (err < 0) {
  663. spin_unlock_irq(&rme32->lock);
  664. return err;
  665. }
  666. rate = snd_rme32_capture_getrate(rme32, &isadat);
  667. if (rate > 0) {
  668. if ((int)params_rate(params) != rate) {
  669. spin_unlock_irq(&rme32->lock);
  670. return -EIO;
  671. }
  672. if ((isadat && runtime->hw.channels_min == 2) ||
  673. (!isadat && runtime->hw.channels_min == 8)) {
  674. spin_unlock_irq(&rme32->lock);
  675. return -EIO;
  676. }
  677. }
  678. /* AutoSync off for recording */
  679. rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
  680. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  681. snd_rme32_setframelog(rme32, params_channels(params), 0);
  682. if (rme32->playback_periodsize != 0) {
  683. if (params_period_size(params) << rme32->capture_frlog !=
  684. rme32->playback_periodsize) {
  685. spin_unlock_irq(&rme32->lock);
  686. return -EBUSY;
  687. }
  688. }
  689. rme32->capture_periodsize =
  690. params_period_size(params) << rme32->capture_frlog;
  691. spin_unlock_irq(&rme32->lock);
  692. return 0;
  693. }
  694. static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
  695. {
  696. if (!from_pause) {
  697. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  698. }
  699. rme32->wcreg |= RME32_WCR_START;
  700. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  701. }
  702. static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
  703. {
  704. /*
  705. * Check if there is an unconfirmed IRQ, if so confirm it, or else
  706. * the hardware will not stop generating interrupts
  707. */
  708. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  709. if (rme32->rcreg & RME32_RCR_IRQ) {
  710. writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
  711. }
  712. rme32->wcreg &= ~RME32_WCR_START;
  713. if (rme32->wcreg & RME32_WCR_SEL)
  714. rme32->wcreg |= RME32_WCR_MUTE;
  715. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  716. if (! to_pause)
  717. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  718. }
  719. static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
  720. {
  721. struct rme32 *rme32 = (struct rme32 *) dev_id;
  722. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  723. if (!(rme32->rcreg & RME32_RCR_IRQ)) {
  724. return IRQ_NONE;
  725. } else {
  726. if (rme32->capture_substream) {
  727. snd_pcm_period_elapsed(rme32->capture_substream);
  728. }
  729. if (rme32->playback_substream) {
  730. snd_pcm_period_elapsed(rme32->playback_substream);
  731. }
  732. writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
  733. }
  734. return IRQ_HANDLED;
  735. }
  736. static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
  737. static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
  738. .count = ARRAY_SIZE(period_bytes),
  739. .list = period_bytes,
  740. .mask = 0
  741. };
  742. static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
  743. {
  744. if (! rme32->fullduplex_mode) {
  745. snd_pcm_hw_constraint_single(runtime,
  746. SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
  747. RME32_BUFFER_SIZE);
  748. snd_pcm_hw_constraint_list(runtime, 0,
  749. SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
  750. &hw_constraints_period_bytes);
  751. }
  752. }
  753. static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
  754. {
  755. int rate, dummy;
  756. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  757. struct snd_pcm_runtime *runtime = substream->runtime;
  758. snd_pcm_set_sync(substream);
  759. spin_lock_irq(&rme32->lock);
  760. if (rme32->playback_substream != NULL) {
  761. spin_unlock_irq(&rme32->lock);
  762. return -EBUSY;
  763. }
  764. rme32->wcreg &= ~RME32_WCR_ADAT;
  765. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  766. rme32->playback_substream = substream;
  767. spin_unlock_irq(&rme32->lock);
  768. if (rme32->fullduplex_mode)
  769. runtime->hw = snd_rme32_spdif_fd_info;
  770. else
  771. runtime->hw = snd_rme32_spdif_info;
  772. if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
  773. runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
  774. runtime->hw.rate_max = 96000;
  775. }
  776. rate = 0;
  777. if (rme32->rcreg & RME32_RCR_KMODE)
  778. rate = snd_rme32_capture_getrate(rme32, &dummy);
  779. if (rate > 0) {
  780. /* AutoSync */
  781. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  782. runtime->hw.rate_min = rate;
  783. runtime->hw.rate_max = rate;
  784. }
  785. snd_rme32_set_buffer_constraint(rme32, runtime);
  786. rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
  787. rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  788. snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
  789. SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
  790. return 0;
  791. }
  792. static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
  793. {
  794. int isadat, rate;
  795. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  796. struct snd_pcm_runtime *runtime = substream->runtime;
  797. snd_pcm_set_sync(substream);
  798. spin_lock_irq(&rme32->lock);
  799. if (rme32->capture_substream != NULL) {
  800. spin_unlock_irq(&rme32->lock);
  801. return -EBUSY;
  802. }
  803. rme32->capture_substream = substream;
  804. spin_unlock_irq(&rme32->lock);
  805. if (rme32->fullduplex_mode)
  806. runtime->hw = snd_rme32_spdif_fd_info;
  807. else
  808. runtime->hw = snd_rme32_spdif_info;
  809. if (RME32_PRO_WITH_8414(rme32)) {
  810. runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
  811. runtime->hw.rate_max = 96000;
  812. }
  813. rate = snd_rme32_capture_getrate(rme32, &isadat);
  814. if (rate > 0) {
  815. if (isadat) {
  816. return -EIO;
  817. }
  818. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  819. runtime->hw.rate_min = rate;
  820. runtime->hw.rate_max = rate;
  821. }
  822. snd_rme32_set_buffer_constraint(rme32, runtime);
  823. return 0;
  824. }
  825. static int
  826. snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
  827. {
  828. int rate, dummy;
  829. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  830. struct snd_pcm_runtime *runtime = substream->runtime;
  831. snd_pcm_set_sync(substream);
  832. spin_lock_irq(&rme32->lock);
  833. if (rme32->playback_substream != NULL) {
  834. spin_unlock_irq(&rme32->lock);
  835. return -EBUSY;
  836. }
  837. rme32->wcreg |= RME32_WCR_ADAT;
  838. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  839. rme32->playback_substream = substream;
  840. spin_unlock_irq(&rme32->lock);
  841. if (rme32->fullduplex_mode)
  842. runtime->hw = snd_rme32_adat_fd_info;
  843. else
  844. runtime->hw = snd_rme32_adat_info;
  845. rate = 0;
  846. if (rme32->rcreg & RME32_RCR_KMODE)
  847. rate = snd_rme32_capture_getrate(rme32, &dummy);
  848. if (rate > 0) {
  849. /* AutoSync */
  850. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  851. runtime->hw.rate_min = rate;
  852. runtime->hw.rate_max = rate;
  853. }
  854. snd_rme32_set_buffer_constraint(rme32, runtime);
  855. return 0;
  856. }
  857. static int
  858. snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
  859. {
  860. int isadat, rate;
  861. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  862. struct snd_pcm_runtime *runtime = substream->runtime;
  863. if (rme32->fullduplex_mode)
  864. runtime->hw = snd_rme32_adat_fd_info;
  865. else
  866. runtime->hw = snd_rme32_adat_info;
  867. rate = snd_rme32_capture_getrate(rme32, &isadat);
  868. if (rate > 0) {
  869. if (!isadat) {
  870. return -EIO;
  871. }
  872. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  873. runtime->hw.rate_min = rate;
  874. runtime->hw.rate_max = rate;
  875. }
  876. snd_pcm_set_sync(substream);
  877. spin_lock_irq(&rme32->lock);
  878. if (rme32->capture_substream != NULL) {
  879. spin_unlock_irq(&rme32->lock);
  880. return -EBUSY;
  881. }
  882. rme32->capture_substream = substream;
  883. spin_unlock_irq(&rme32->lock);
  884. snd_rme32_set_buffer_constraint(rme32, runtime);
  885. return 0;
  886. }
  887. static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
  888. {
  889. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  890. int spdif = 0;
  891. spin_lock_irq(&rme32->lock);
  892. rme32->playback_substream = NULL;
  893. rme32->playback_periodsize = 0;
  894. spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
  895. spin_unlock_irq(&rme32->lock);
  896. if (spdif) {
  897. rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  898. snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
  899. SNDRV_CTL_EVENT_MASK_INFO,
  900. &rme32->spdif_ctl->id);
  901. }
  902. return 0;
  903. }
  904. static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
  905. {
  906. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  907. spin_lock_irq(&rme32->lock);
  908. rme32->capture_substream = NULL;
  909. rme32->capture_periodsize = 0;
  910. spin_unlock_irq(&rme32->lock);
  911. return 0;
  912. }
  913. static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
  914. {
  915. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  916. spin_lock_irq(&rme32->lock);
  917. if (rme32->fullduplex_mode) {
  918. memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
  919. rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
  920. rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  921. } else {
  922. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  923. }
  924. if (rme32->wcreg & RME32_WCR_SEL)
  925. rme32->wcreg &= ~RME32_WCR_MUTE;
  926. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  927. spin_unlock_irq(&rme32->lock);
  928. return 0;
  929. }
  930. static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
  931. {
  932. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  933. spin_lock_irq(&rme32->lock);
  934. if (rme32->fullduplex_mode) {
  935. memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
  936. rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
  937. rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
  938. rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  939. } else {
  940. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  941. }
  942. spin_unlock_irq(&rme32->lock);
  943. return 0;
  944. }
  945. static int
  946. snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
  947. {
  948. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  949. struct snd_pcm_substream *s;
  950. spin_lock(&rme32->lock);
  951. snd_pcm_group_for_each_entry(s, substream) {
  952. if (s != rme32->playback_substream &&
  953. s != rme32->capture_substream)
  954. continue;
  955. switch (cmd) {
  956. case SNDRV_PCM_TRIGGER_START:
  957. rme32->running |= (1 << s->stream);
  958. if (rme32->fullduplex_mode) {
  959. /* remember the current DMA position */
  960. if (s == rme32->playback_substream) {
  961. rme32->playback_pcm.hw_io =
  962. rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
  963. } else {
  964. rme32->capture_pcm.hw_io =
  965. rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
  966. }
  967. }
  968. break;
  969. case SNDRV_PCM_TRIGGER_STOP:
  970. rme32->running &= ~(1 << s->stream);
  971. break;
  972. }
  973. snd_pcm_trigger_done(s, substream);
  974. }
  975. switch (cmd) {
  976. case SNDRV_PCM_TRIGGER_START:
  977. if (rme32->running && ! RME32_ISWORKING(rme32))
  978. snd_rme32_pcm_start(rme32, 0);
  979. break;
  980. case SNDRV_PCM_TRIGGER_STOP:
  981. if (! rme32->running && RME32_ISWORKING(rme32))
  982. snd_rme32_pcm_stop(rme32, 0);
  983. break;
  984. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  985. if (rme32->running && RME32_ISWORKING(rme32))
  986. snd_rme32_pcm_stop(rme32, 1);
  987. break;
  988. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  989. if (rme32->running && ! RME32_ISWORKING(rme32))
  990. snd_rme32_pcm_start(rme32, 1);
  991. break;
  992. }
  993. spin_unlock(&rme32->lock);
  994. return 0;
  995. }
  996. /* pointer callback for halfduplex mode */
  997. static snd_pcm_uframes_t
  998. snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
  999. {
  1000. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1001. return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
  1002. }
  1003. static snd_pcm_uframes_t
  1004. snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
  1005. {
  1006. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1007. return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
  1008. }
  1009. /* ack and pointer callbacks for fullduplex mode */
  1010. static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
  1011. struct snd_pcm_indirect *rec, size_t bytes)
  1012. {
  1013. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1014. memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
  1015. substream->runtime->dma_area + rec->sw_data, bytes);
  1016. }
  1017. static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
  1018. {
  1019. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1020. struct snd_pcm_indirect *rec, *cprec;
  1021. rec = &rme32->playback_pcm;
  1022. cprec = &rme32->capture_pcm;
  1023. spin_lock(&rme32->lock);
  1024. rec->hw_queue_size = RME32_BUFFER_SIZE;
  1025. if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
  1026. rec->hw_queue_size -= cprec->hw_ready;
  1027. spin_unlock(&rme32->lock);
  1028. return snd_pcm_indirect_playback_transfer(substream, rec,
  1029. snd_rme32_pb_trans_copy);
  1030. }
  1031. static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
  1032. struct snd_pcm_indirect *rec, size_t bytes)
  1033. {
  1034. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1035. memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
  1036. rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
  1037. bytes);
  1038. }
  1039. static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
  1040. {
  1041. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1042. return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
  1043. snd_rme32_cp_trans_copy);
  1044. }
  1045. static snd_pcm_uframes_t
  1046. snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
  1047. {
  1048. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1049. return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
  1050. snd_rme32_pcm_byteptr(rme32));
  1051. }
  1052. static snd_pcm_uframes_t
  1053. snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
  1054. {
  1055. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1056. return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
  1057. snd_rme32_pcm_byteptr(rme32));
  1058. }
  1059. /* for halfduplex mode */
  1060. static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
  1061. .open = snd_rme32_playback_spdif_open,
  1062. .close = snd_rme32_playback_close,
  1063. .hw_params = snd_rme32_playback_hw_params,
  1064. .prepare = snd_rme32_playback_prepare,
  1065. .trigger = snd_rme32_pcm_trigger,
  1066. .pointer = snd_rme32_playback_pointer,
  1067. .copy_user = snd_rme32_playback_copy,
  1068. .copy_kernel = snd_rme32_playback_copy_kernel,
  1069. .fill_silence = snd_rme32_playback_silence,
  1070. .mmap = snd_pcm_lib_mmap_iomem,
  1071. };
  1072. static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
  1073. .open = snd_rme32_capture_spdif_open,
  1074. .close = snd_rme32_capture_close,
  1075. .hw_params = snd_rme32_capture_hw_params,
  1076. .prepare = snd_rme32_capture_prepare,
  1077. .trigger = snd_rme32_pcm_trigger,
  1078. .pointer = snd_rme32_capture_pointer,
  1079. .copy_user = snd_rme32_capture_copy,
  1080. .copy_kernel = snd_rme32_capture_copy_kernel,
  1081. .mmap = snd_pcm_lib_mmap_iomem,
  1082. };
  1083. static const struct snd_pcm_ops snd_rme32_playback_adat_ops = {
  1084. .open = snd_rme32_playback_adat_open,
  1085. .close = snd_rme32_playback_close,
  1086. .hw_params = snd_rme32_playback_hw_params,
  1087. .prepare = snd_rme32_playback_prepare,
  1088. .trigger = snd_rme32_pcm_trigger,
  1089. .pointer = snd_rme32_playback_pointer,
  1090. .copy_user = snd_rme32_playback_copy,
  1091. .copy_kernel = snd_rme32_playback_copy_kernel,
  1092. .fill_silence = snd_rme32_playback_silence,
  1093. .mmap = snd_pcm_lib_mmap_iomem,
  1094. };
  1095. static const struct snd_pcm_ops snd_rme32_capture_adat_ops = {
  1096. .open = snd_rme32_capture_adat_open,
  1097. .close = snd_rme32_capture_close,
  1098. .hw_params = snd_rme32_capture_hw_params,
  1099. .prepare = snd_rme32_capture_prepare,
  1100. .trigger = snd_rme32_pcm_trigger,
  1101. .pointer = snd_rme32_capture_pointer,
  1102. .copy_user = snd_rme32_capture_copy,
  1103. .copy_kernel = snd_rme32_capture_copy_kernel,
  1104. .mmap = snd_pcm_lib_mmap_iomem,
  1105. };
  1106. /* for fullduplex mode */
  1107. static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
  1108. .open = snd_rme32_playback_spdif_open,
  1109. .close = snd_rme32_playback_close,
  1110. .hw_params = snd_rme32_playback_hw_params,
  1111. .prepare = snd_rme32_playback_prepare,
  1112. .trigger = snd_rme32_pcm_trigger,
  1113. .pointer = snd_rme32_playback_fd_pointer,
  1114. .ack = snd_rme32_playback_fd_ack,
  1115. };
  1116. static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
  1117. .open = snd_rme32_capture_spdif_open,
  1118. .close = snd_rme32_capture_close,
  1119. .hw_params = snd_rme32_capture_hw_params,
  1120. .prepare = snd_rme32_capture_prepare,
  1121. .trigger = snd_rme32_pcm_trigger,
  1122. .pointer = snd_rme32_capture_fd_pointer,
  1123. .ack = snd_rme32_capture_fd_ack,
  1124. };
  1125. static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
  1126. .open = snd_rme32_playback_adat_open,
  1127. .close = snd_rme32_playback_close,
  1128. .hw_params = snd_rme32_playback_hw_params,
  1129. .prepare = snd_rme32_playback_prepare,
  1130. .trigger = snd_rme32_pcm_trigger,
  1131. .pointer = snd_rme32_playback_fd_pointer,
  1132. .ack = snd_rme32_playback_fd_ack,
  1133. };
  1134. static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
  1135. .open = snd_rme32_capture_adat_open,
  1136. .close = snd_rme32_capture_close,
  1137. .hw_params = snd_rme32_capture_hw_params,
  1138. .prepare = snd_rme32_capture_prepare,
  1139. .trigger = snd_rme32_pcm_trigger,
  1140. .pointer = snd_rme32_capture_fd_pointer,
  1141. .ack = snd_rme32_capture_fd_ack,
  1142. };
  1143. static void snd_rme32_free(struct rme32 *rme32)
  1144. {
  1145. if (rme32->irq >= 0)
  1146. snd_rme32_pcm_stop(rme32, 0);
  1147. }
  1148. static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
  1149. {
  1150. struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
  1151. rme32->spdif_pcm = NULL;
  1152. }
  1153. static void
  1154. snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
  1155. {
  1156. struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
  1157. rme32->adat_pcm = NULL;
  1158. }
  1159. static int snd_rme32_create(struct rme32 *rme32)
  1160. {
  1161. struct pci_dev *pci = rme32->pci;
  1162. int err;
  1163. rme32->irq = -1;
  1164. spin_lock_init(&rme32->lock);
  1165. err = pcim_enable_device(pci);
  1166. if (err < 0)
  1167. return err;
  1168. err = pci_request_regions(pci, "RME32");
  1169. if (err < 0)
  1170. return err;
  1171. rme32->port = pci_resource_start(rme32->pci, 0);
  1172. rme32->iobase = devm_ioremap(&pci->dev, rme32->port, RME32_IO_SIZE);
  1173. if (!rme32->iobase) {
  1174. dev_err(rme32->card->dev,
  1175. "unable to remap memory region 0x%lx-0x%lx\n",
  1176. rme32->port, rme32->port + RME32_IO_SIZE - 1);
  1177. return -ENOMEM;
  1178. }
  1179. if (devm_request_irq(&pci->dev, pci->irq, snd_rme32_interrupt,
  1180. IRQF_SHARED, KBUILD_MODNAME, rme32)) {
  1181. dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq);
  1182. return -EBUSY;
  1183. }
  1184. rme32->irq = pci->irq;
  1185. rme32->card->sync_irq = rme32->irq;
  1186. /* read the card's revision number */
  1187. pci_read_config_byte(pci, 8, &rme32->rev);
  1188. /* set up ALSA pcm device for S/PDIF */
  1189. err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm);
  1190. if (err < 0)
  1191. return err;
  1192. rme32->spdif_pcm->private_data = rme32;
  1193. rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
  1194. strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
  1195. if (rme32->fullduplex_mode) {
  1196. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1197. &snd_rme32_playback_spdif_fd_ops);
  1198. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1199. &snd_rme32_capture_spdif_fd_ops);
  1200. snd_pcm_set_managed_buffer_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  1201. NULL, 0, RME32_MID_BUFFER_SIZE);
  1202. rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
  1203. } else {
  1204. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1205. &snd_rme32_playback_spdif_ops);
  1206. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1207. &snd_rme32_capture_spdif_ops);
  1208. rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
  1209. }
  1210. /* set up ALSA pcm device for ADAT */
  1211. if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
  1212. (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
  1213. /* ADAT is not available on DIGI32 and DIGI32 Pro */
  1214. rme32->adat_pcm = NULL;
  1215. }
  1216. else {
  1217. err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
  1218. 1, 1, &rme32->adat_pcm);
  1219. if (err < 0)
  1220. return err;
  1221. rme32->adat_pcm->private_data = rme32;
  1222. rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
  1223. strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
  1224. if (rme32->fullduplex_mode) {
  1225. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1226. &snd_rme32_playback_adat_fd_ops);
  1227. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1228. &snd_rme32_capture_adat_fd_ops);
  1229. snd_pcm_set_managed_buffer_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  1230. NULL,
  1231. 0, RME32_MID_BUFFER_SIZE);
  1232. rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
  1233. } else {
  1234. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1235. &snd_rme32_playback_adat_ops);
  1236. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1237. &snd_rme32_capture_adat_ops);
  1238. rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
  1239. }
  1240. }
  1241. rme32->playback_periodsize = 0;
  1242. rme32->capture_periodsize = 0;
  1243. /* make sure playback/capture is stopped, if by some reason active */
  1244. snd_rme32_pcm_stop(rme32, 0);
  1245. /* reset DAC */
  1246. snd_rme32_reset_dac(rme32);
  1247. /* reset buffer pointer */
  1248. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  1249. /* set default values in registers */
  1250. rme32->wcreg = RME32_WCR_SEL | /* normal playback */
  1251. RME32_WCR_INP_0 | /* input select */
  1252. RME32_WCR_MUTE; /* muting on */
  1253. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1254. /* init switch interface */
  1255. err = snd_rme32_create_switches(rme32->card, rme32);
  1256. if (err < 0)
  1257. return err;
  1258. /* init proc interface */
  1259. snd_rme32_proc_init(rme32);
  1260. rme32->capture_substream = NULL;
  1261. rme32->playback_substream = NULL;
  1262. return 0;
  1263. }
  1264. /*
  1265. * proc interface
  1266. */
  1267. static void
  1268. snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
  1269. {
  1270. int n;
  1271. struct rme32 *rme32 = (struct rme32 *) entry->private_data;
  1272. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1273. snd_iprintf(buffer, rme32->card->longname);
  1274. snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
  1275. snd_iprintf(buffer, "\nGeneral settings\n");
  1276. if (rme32->fullduplex_mode)
  1277. snd_iprintf(buffer, " Full-duplex mode\n");
  1278. else
  1279. snd_iprintf(buffer, " Half-duplex mode\n");
  1280. if (RME32_PRO_WITH_8414(rme32)) {
  1281. snd_iprintf(buffer, " receiver: CS8414\n");
  1282. } else {
  1283. snd_iprintf(buffer, " receiver: CS8412\n");
  1284. }
  1285. if (rme32->wcreg & RME32_WCR_MODE24) {
  1286. snd_iprintf(buffer, " format: 24 bit");
  1287. } else {
  1288. snd_iprintf(buffer, " format: 16 bit");
  1289. }
  1290. if (rme32->wcreg & RME32_WCR_MONO) {
  1291. snd_iprintf(buffer, ", Mono\n");
  1292. } else {
  1293. snd_iprintf(buffer, ", Stereo\n");
  1294. }
  1295. snd_iprintf(buffer, "\nInput settings\n");
  1296. switch (snd_rme32_getinputtype(rme32)) {
  1297. case RME32_INPUT_OPTICAL:
  1298. snd_iprintf(buffer, " input: optical");
  1299. break;
  1300. case RME32_INPUT_COAXIAL:
  1301. snd_iprintf(buffer, " input: coaxial");
  1302. break;
  1303. case RME32_INPUT_INTERNAL:
  1304. snd_iprintf(buffer, " input: internal");
  1305. break;
  1306. case RME32_INPUT_XLR:
  1307. snd_iprintf(buffer, " input: XLR");
  1308. break;
  1309. }
  1310. if (snd_rme32_capture_getrate(rme32, &n) < 0) {
  1311. snd_iprintf(buffer, "\n sample rate: no valid signal\n");
  1312. } else {
  1313. if (n) {
  1314. snd_iprintf(buffer, " (8 channels)\n");
  1315. } else {
  1316. snd_iprintf(buffer, " (2 channels)\n");
  1317. }
  1318. snd_iprintf(buffer, " sample rate: %d Hz\n",
  1319. snd_rme32_capture_getrate(rme32, &n));
  1320. }
  1321. snd_iprintf(buffer, "\nOutput settings\n");
  1322. if (rme32->wcreg & RME32_WCR_SEL) {
  1323. snd_iprintf(buffer, " output signal: normal playback");
  1324. } else {
  1325. snd_iprintf(buffer, " output signal: same as input");
  1326. }
  1327. if (rme32->wcreg & RME32_WCR_MUTE) {
  1328. snd_iprintf(buffer, " (muted)\n");
  1329. } else {
  1330. snd_iprintf(buffer, "\n");
  1331. }
  1332. /* master output frequency */
  1333. if (!
  1334. ((!(rme32->wcreg & RME32_WCR_FREQ_0))
  1335. && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
  1336. snd_iprintf(buffer, " sample rate: %d Hz\n",
  1337. snd_rme32_playback_getrate(rme32));
  1338. }
  1339. if (rme32->rcreg & RME32_RCR_KMODE) {
  1340. snd_iprintf(buffer, " sample clock source: AutoSync\n");
  1341. } else {
  1342. snd_iprintf(buffer, " sample clock source: Internal\n");
  1343. }
  1344. if (rme32->wcreg & RME32_WCR_PRO) {
  1345. snd_iprintf(buffer, " format: AES/EBU (professional)\n");
  1346. } else {
  1347. snd_iprintf(buffer, " format: IEC958 (consumer)\n");
  1348. }
  1349. if (rme32->wcreg & RME32_WCR_EMP) {
  1350. snd_iprintf(buffer, " emphasis: on\n");
  1351. } else {
  1352. snd_iprintf(buffer, " emphasis: off\n");
  1353. }
  1354. }
  1355. static void snd_rme32_proc_init(struct rme32 *rme32)
  1356. {
  1357. snd_card_ro_proc_new(rme32->card, "rme32", rme32, snd_rme32_proc_read);
  1358. }
  1359. /*
  1360. * control interface
  1361. */
  1362. #define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info
  1363. static int
  1364. snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
  1365. struct snd_ctl_elem_value *ucontrol)
  1366. {
  1367. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1368. spin_lock_irq(&rme32->lock);
  1369. ucontrol->value.integer.value[0] =
  1370. rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
  1371. spin_unlock_irq(&rme32->lock);
  1372. return 0;
  1373. }
  1374. static int
  1375. snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
  1376. struct snd_ctl_elem_value *ucontrol)
  1377. {
  1378. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1379. unsigned int val;
  1380. int change;
  1381. val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
  1382. spin_lock_irq(&rme32->lock);
  1383. val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
  1384. change = val != rme32->wcreg;
  1385. if (ucontrol->value.integer.value[0])
  1386. val &= ~RME32_WCR_MUTE;
  1387. else
  1388. val |= RME32_WCR_MUTE;
  1389. rme32->wcreg = val;
  1390. writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1391. spin_unlock_irq(&rme32->lock);
  1392. return change;
  1393. }
  1394. static int
  1395. snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
  1396. struct snd_ctl_elem_info *uinfo)
  1397. {
  1398. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1399. static const char * const texts[4] = {
  1400. "Optical", "Coaxial", "Internal", "XLR"
  1401. };
  1402. int num_items;
  1403. switch (rme32->pci->device) {
  1404. case PCI_DEVICE_ID_RME_DIGI32:
  1405. case PCI_DEVICE_ID_RME_DIGI32_8:
  1406. num_items = 3;
  1407. break;
  1408. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1409. num_items = 4;
  1410. break;
  1411. default:
  1412. snd_BUG();
  1413. return -EINVAL;
  1414. }
  1415. return snd_ctl_enum_info(uinfo, 1, num_items, texts);
  1416. }
  1417. static int
  1418. snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
  1419. struct snd_ctl_elem_value *ucontrol)
  1420. {
  1421. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1422. unsigned int items = 3;
  1423. spin_lock_irq(&rme32->lock);
  1424. ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
  1425. switch (rme32->pci->device) {
  1426. case PCI_DEVICE_ID_RME_DIGI32:
  1427. case PCI_DEVICE_ID_RME_DIGI32_8:
  1428. items = 3;
  1429. break;
  1430. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1431. items = 4;
  1432. break;
  1433. default:
  1434. snd_BUG();
  1435. break;
  1436. }
  1437. if (ucontrol->value.enumerated.item[0] >= items) {
  1438. ucontrol->value.enumerated.item[0] = items - 1;
  1439. }
  1440. spin_unlock_irq(&rme32->lock);
  1441. return 0;
  1442. }
  1443. static int
  1444. snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
  1445. struct snd_ctl_elem_value *ucontrol)
  1446. {
  1447. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1448. unsigned int val;
  1449. int change, items = 3;
  1450. switch (rme32->pci->device) {
  1451. case PCI_DEVICE_ID_RME_DIGI32:
  1452. case PCI_DEVICE_ID_RME_DIGI32_8:
  1453. items = 3;
  1454. break;
  1455. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1456. items = 4;
  1457. break;
  1458. default:
  1459. snd_BUG();
  1460. break;
  1461. }
  1462. val = ucontrol->value.enumerated.item[0] % items;
  1463. spin_lock_irq(&rme32->lock);
  1464. change = val != (unsigned int)snd_rme32_getinputtype(rme32);
  1465. snd_rme32_setinputtype(rme32, val);
  1466. spin_unlock_irq(&rme32->lock);
  1467. return change;
  1468. }
  1469. static int
  1470. snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
  1471. struct snd_ctl_elem_info *uinfo)
  1472. {
  1473. static const char * const texts[4] = { "AutoSync",
  1474. "Internal 32.0kHz",
  1475. "Internal 44.1kHz",
  1476. "Internal 48.0kHz" };
  1477. return snd_ctl_enum_info(uinfo, 1, 4, texts);
  1478. }
  1479. static int
  1480. snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
  1481. struct snd_ctl_elem_value *ucontrol)
  1482. {
  1483. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1484. spin_lock_irq(&rme32->lock);
  1485. ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
  1486. spin_unlock_irq(&rme32->lock);
  1487. return 0;
  1488. }
  1489. static int
  1490. snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
  1491. struct snd_ctl_elem_value *ucontrol)
  1492. {
  1493. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1494. unsigned int val;
  1495. int change;
  1496. val = ucontrol->value.enumerated.item[0] % 3;
  1497. spin_lock_irq(&rme32->lock);
  1498. change = val != (unsigned int)snd_rme32_getclockmode(rme32);
  1499. snd_rme32_setclockmode(rme32, val);
  1500. spin_unlock_irq(&rme32->lock);
  1501. return change;
  1502. }
  1503. static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
  1504. {
  1505. u32 val = 0;
  1506. val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
  1507. if (val & RME32_WCR_PRO)
  1508. val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
  1509. else
  1510. val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
  1511. return val;
  1512. }
  1513. static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
  1514. {
  1515. aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
  1516. if (val & RME32_WCR_PRO)
  1517. aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
  1518. else
  1519. aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
  1520. }
  1521. static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
  1522. struct snd_ctl_elem_info *uinfo)
  1523. {
  1524. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1525. uinfo->count = 1;
  1526. return 0;
  1527. }
  1528. static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
  1529. struct snd_ctl_elem_value *ucontrol)
  1530. {
  1531. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1532. snd_rme32_convert_to_aes(&ucontrol->value.iec958,
  1533. rme32->wcreg_spdif);
  1534. return 0;
  1535. }
  1536. static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
  1537. struct snd_ctl_elem_value *ucontrol)
  1538. {
  1539. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1540. int change;
  1541. u32 val;
  1542. val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
  1543. spin_lock_irq(&rme32->lock);
  1544. change = val != rme32->wcreg_spdif;
  1545. rme32->wcreg_spdif = val;
  1546. spin_unlock_irq(&rme32->lock);
  1547. return change;
  1548. }
  1549. static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
  1550. struct snd_ctl_elem_info *uinfo)
  1551. {
  1552. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1553. uinfo->count = 1;
  1554. return 0;
  1555. }
  1556. static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
  1557. struct snd_ctl_elem_value *
  1558. ucontrol)
  1559. {
  1560. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1561. snd_rme32_convert_to_aes(&ucontrol->value.iec958,
  1562. rme32->wcreg_spdif_stream);
  1563. return 0;
  1564. }
  1565. static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
  1566. struct snd_ctl_elem_value *
  1567. ucontrol)
  1568. {
  1569. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1570. int change;
  1571. u32 val;
  1572. val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
  1573. spin_lock_irq(&rme32->lock);
  1574. change = val != rme32->wcreg_spdif_stream;
  1575. rme32->wcreg_spdif_stream = val;
  1576. rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
  1577. rme32->wcreg |= val;
  1578. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1579. spin_unlock_irq(&rme32->lock);
  1580. return change;
  1581. }
  1582. static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
  1583. struct snd_ctl_elem_info *uinfo)
  1584. {
  1585. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1586. uinfo->count = 1;
  1587. return 0;
  1588. }
  1589. static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
  1590. struct snd_ctl_elem_value *
  1591. ucontrol)
  1592. {
  1593. ucontrol->value.iec958.status[0] = kcontrol->private_value;
  1594. return 0;
  1595. }
  1596. static const struct snd_kcontrol_new snd_rme32_controls[] = {
  1597. {
  1598. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1599. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  1600. .info = snd_rme32_control_spdif_info,
  1601. .get = snd_rme32_control_spdif_get,
  1602. .put = snd_rme32_control_spdif_put
  1603. },
  1604. {
  1605. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  1606. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1607. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  1608. .info = snd_rme32_control_spdif_stream_info,
  1609. .get = snd_rme32_control_spdif_stream_get,
  1610. .put = snd_rme32_control_spdif_stream_put
  1611. },
  1612. {
  1613. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1614. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1615. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  1616. .info = snd_rme32_control_spdif_mask_info,
  1617. .get = snd_rme32_control_spdif_mask_get,
  1618. .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
  1619. },
  1620. {
  1621. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1622. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1623. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
  1624. .info = snd_rme32_control_spdif_mask_info,
  1625. .get = snd_rme32_control_spdif_mask_get,
  1626. .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
  1627. },
  1628. {
  1629. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1630. .name = "Input Connector",
  1631. .info = snd_rme32_info_inputtype_control,
  1632. .get = snd_rme32_get_inputtype_control,
  1633. .put = snd_rme32_put_inputtype_control
  1634. },
  1635. {
  1636. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1637. .name = "Loopback Input",
  1638. .info = snd_rme32_info_loopback_control,
  1639. .get = snd_rme32_get_loopback_control,
  1640. .put = snd_rme32_put_loopback_control
  1641. },
  1642. {
  1643. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1644. .name = "Sample Clock Source",
  1645. .info = snd_rme32_info_clockmode_control,
  1646. .get = snd_rme32_get_clockmode_control,
  1647. .put = snd_rme32_put_clockmode_control
  1648. }
  1649. };
  1650. static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
  1651. {
  1652. int idx, err;
  1653. struct snd_kcontrol *kctl;
  1654. for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
  1655. kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32);
  1656. err = snd_ctl_add(card, kctl);
  1657. if (err < 0)
  1658. return err;
  1659. if (idx == 1) /* IEC958 (S/PDIF) Stream */
  1660. rme32->spdif_ctl = kctl;
  1661. }
  1662. return 0;
  1663. }
  1664. /*
  1665. * Card initialisation
  1666. */
  1667. static void snd_rme32_card_free(struct snd_card *card)
  1668. {
  1669. snd_rme32_free(card->private_data);
  1670. }
  1671. static int
  1672. __snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
  1673. {
  1674. static int dev;
  1675. struct rme32 *rme32;
  1676. struct snd_card *card;
  1677. int err;
  1678. if (dev >= SNDRV_CARDS) {
  1679. return -ENODEV;
  1680. }
  1681. if (!enable[dev]) {
  1682. dev++;
  1683. return -ENOENT;
  1684. }
  1685. err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
  1686. sizeof(*rme32), &card);
  1687. if (err < 0)
  1688. return err;
  1689. card->private_free = snd_rme32_card_free;
  1690. rme32 = (struct rme32 *) card->private_data;
  1691. rme32->card = card;
  1692. rme32->pci = pci;
  1693. if (fullduplex[dev])
  1694. rme32->fullduplex_mode = 1;
  1695. err = snd_rme32_create(rme32);
  1696. if (err < 0)
  1697. return err;
  1698. strcpy(card->driver, "Digi32");
  1699. switch (rme32->pci->device) {
  1700. case PCI_DEVICE_ID_RME_DIGI32:
  1701. strcpy(card->shortname, "RME Digi32");
  1702. break;
  1703. case PCI_DEVICE_ID_RME_DIGI32_8:
  1704. strcpy(card->shortname, "RME Digi32/8");
  1705. break;
  1706. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1707. strcpy(card->shortname, "RME Digi32 PRO");
  1708. break;
  1709. }
  1710. sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
  1711. card->shortname, rme32->rev, rme32->port, rme32->irq);
  1712. err = snd_card_register(card);
  1713. if (err < 0)
  1714. return err;
  1715. pci_set_drvdata(pci, card);
  1716. dev++;
  1717. return 0;
  1718. }
  1719. static int
  1720. snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
  1721. {
  1722. return snd_card_free_on_error(&pci->dev, __snd_rme32_probe(pci, pci_id));
  1723. }
  1724. static struct pci_driver rme32_driver = {
  1725. .name = KBUILD_MODNAME,
  1726. .id_table = snd_rme32_ids,
  1727. .probe = snd_rme32_probe,
  1728. };
  1729. module_pci_driver(rme32_driver);