xonar_dg_mixer.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Mixer controls for the Xonar DG/DGX
  4. *
  5. * Copyright (c) Clemens Ladisch <[email protected]>
  6. * Copyright (c) Roman Volkov <[email protected]>
  7. */
  8. #include <linux/pci.h>
  9. #include <linux/delay.h>
  10. #include <sound/control.h>
  11. #include <sound/core.h>
  12. #include <sound/info.h>
  13. #include <sound/pcm.h>
  14. #include <sound/tlv.h>
  15. #include "oxygen.h"
  16. #include "xonar_dg.h"
  17. #include "cs4245.h"
  18. /* analog output select */
  19. static int output_select_apply(struct oxygen *chip)
  20. {
  21. struct dg *data = chip->model_data;
  22. data->cs4245_shadow[CS4245_SIGNAL_SEL] &= ~CS4245_A_OUT_SEL_MASK;
  23. if (data->output_sel == PLAYBACK_DST_HP) {
  24. /* mute FP (aux output) amplifier, switch rear jack to CS4245 */
  25. oxygen_set_bits8(chip, OXYGEN_GPIO_DATA, GPIO_HP_REAR);
  26. } else if (data->output_sel == PLAYBACK_DST_HP_FP) {
  27. /*
  28. * Unmute FP amplifier, switch rear jack to CS4361;
  29. * I2S channels 2,3,4 should be inactive.
  30. */
  31. oxygen_clear_bits8(chip, OXYGEN_GPIO_DATA, GPIO_HP_REAR);
  32. data->cs4245_shadow[CS4245_SIGNAL_SEL] |= CS4245_A_OUT_SEL_DAC;
  33. } else {
  34. /*
  35. * 2.0, 4.0, 5.1: switch to CS4361, mute FP amp.,
  36. * and change playback routing.
  37. */
  38. oxygen_clear_bits8(chip, OXYGEN_GPIO_DATA, GPIO_HP_REAR);
  39. }
  40. return cs4245_write_spi(chip, CS4245_SIGNAL_SEL);
  41. }
  42. static int output_select_info(struct snd_kcontrol *ctl,
  43. struct snd_ctl_elem_info *info)
  44. {
  45. static const char *const names[3] = {
  46. "Stereo Headphones",
  47. "Stereo Headphones FP",
  48. "Multichannel",
  49. };
  50. return snd_ctl_enum_info(info, 1, 3, names);
  51. }
  52. static int output_select_get(struct snd_kcontrol *ctl,
  53. struct snd_ctl_elem_value *value)
  54. {
  55. struct oxygen *chip = ctl->private_data;
  56. struct dg *data = chip->model_data;
  57. mutex_lock(&chip->mutex);
  58. value->value.enumerated.item[0] = data->output_sel;
  59. mutex_unlock(&chip->mutex);
  60. return 0;
  61. }
  62. static int output_select_put(struct snd_kcontrol *ctl,
  63. struct snd_ctl_elem_value *value)
  64. {
  65. struct oxygen *chip = ctl->private_data;
  66. struct dg *data = chip->model_data;
  67. unsigned int new = value->value.enumerated.item[0];
  68. int changed = 0;
  69. int ret;
  70. mutex_lock(&chip->mutex);
  71. if (data->output_sel != new) {
  72. data->output_sel = new;
  73. ret = output_select_apply(chip);
  74. changed = ret >= 0 ? 1 : ret;
  75. oxygen_update_dac_routing(chip);
  76. }
  77. mutex_unlock(&chip->mutex);
  78. return changed;
  79. }
  80. /* CS4245 Headphone Channels A&B Volume Control */
  81. static int hp_stereo_volume_info(struct snd_kcontrol *ctl,
  82. struct snd_ctl_elem_info *info)
  83. {
  84. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  85. info->count = 2;
  86. info->value.integer.min = 0;
  87. info->value.integer.max = 255;
  88. return 0;
  89. }
  90. static int hp_stereo_volume_get(struct snd_kcontrol *ctl,
  91. struct snd_ctl_elem_value *val)
  92. {
  93. struct oxygen *chip = ctl->private_data;
  94. struct dg *data = chip->model_data;
  95. unsigned int tmp;
  96. mutex_lock(&chip->mutex);
  97. tmp = (~data->cs4245_shadow[CS4245_DAC_A_CTRL]) & 255;
  98. val->value.integer.value[0] = tmp;
  99. tmp = (~data->cs4245_shadow[CS4245_DAC_B_CTRL]) & 255;
  100. val->value.integer.value[1] = tmp;
  101. mutex_unlock(&chip->mutex);
  102. return 0;
  103. }
  104. static int hp_stereo_volume_put(struct snd_kcontrol *ctl,
  105. struct snd_ctl_elem_value *val)
  106. {
  107. struct oxygen *chip = ctl->private_data;
  108. struct dg *data = chip->model_data;
  109. int ret;
  110. int changed = 0;
  111. long new1 = val->value.integer.value[0];
  112. long new2 = val->value.integer.value[1];
  113. if ((new1 > 255) || (new1 < 0) || (new2 > 255) || (new2 < 0))
  114. return -EINVAL;
  115. mutex_lock(&chip->mutex);
  116. if ((data->cs4245_shadow[CS4245_DAC_A_CTRL] != ~new1) ||
  117. (data->cs4245_shadow[CS4245_DAC_B_CTRL] != ~new2)) {
  118. data->cs4245_shadow[CS4245_DAC_A_CTRL] = ~new1;
  119. data->cs4245_shadow[CS4245_DAC_B_CTRL] = ~new2;
  120. ret = cs4245_write_spi(chip, CS4245_DAC_A_CTRL);
  121. if (ret >= 0)
  122. ret = cs4245_write_spi(chip, CS4245_DAC_B_CTRL);
  123. changed = ret >= 0 ? 1 : ret;
  124. }
  125. mutex_unlock(&chip->mutex);
  126. return changed;
  127. }
  128. /* Headphone Mute */
  129. static int hp_mute_get(struct snd_kcontrol *ctl,
  130. struct snd_ctl_elem_value *val)
  131. {
  132. struct oxygen *chip = ctl->private_data;
  133. struct dg *data = chip->model_data;
  134. mutex_lock(&chip->mutex);
  135. val->value.integer.value[0] =
  136. !(data->cs4245_shadow[CS4245_DAC_CTRL_1] & CS4245_MUTE_DAC);
  137. mutex_unlock(&chip->mutex);
  138. return 0;
  139. }
  140. static int hp_mute_put(struct snd_kcontrol *ctl,
  141. struct snd_ctl_elem_value *val)
  142. {
  143. struct oxygen *chip = ctl->private_data;
  144. struct dg *data = chip->model_data;
  145. int ret;
  146. int changed;
  147. if (val->value.integer.value[0] > 1)
  148. return -EINVAL;
  149. mutex_lock(&chip->mutex);
  150. data->cs4245_shadow[CS4245_DAC_CTRL_1] &= ~CS4245_MUTE_DAC;
  151. data->cs4245_shadow[CS4245_DAC_CTRL_1] |=
  152. (~val->value.integer.value[0] << 2) & CS4245_MUTE_DAC;
  153. ret = cs4245_write_spi(chip, CS4245_DAC_CTRL_1);
  154. changed = ret >= 0 ? 1 : ret;
  155. mutex_unlock(&chip->mutex);
  156. return changed;
  157. }
  158. /* capture volume for all sources */
  159. static int input_volume_apply(struct oxygen *chip, char left, char right)
  160. {
  161. struct dg *data = chip->model_data;
  162. int ret;
  163. data->cs4245_shadow[CS4245_PGA_A_CTRL] = left;
  164. data->cs4245_shadow[CS4245_PGA_B_CTRL] = right;
  165. ret = cs4245_write_spi(chip, CS4245_PGA_A_CTRL);
  166. if (ret < 0)
  167. return ret;
  168. return cs4245_write_spi(chip, CS4245_PGA_B_CTRL);
  169. }
  170. static int input_vol_info(struct snd_kcontrol *ctl,
  171. struct snd_ctl_elem_info *info)
  172. {
  173. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  174. info->count = 2;
  175. info->value.integer.min = 2 * -12;
  176. info->value.integer.max = 2 * 12;
  177. return 0;
  178. }
  179. static int input_vol_get(struct snd_kcontrol *ctl,
  180. struct snd_ctl_elem_value *value)
  181. {
  182. struct oxygen *chip = ctl->private_data;
  183. struct dg *data = chip->model_data;
  184. unsigned int idx = ctl->private_value;
  185. mutex_lock(&chip->mutex);
  186. value->value.integer.value[0] = data->input_vol[idx][0];
  187. value->value.integer.value[1] = data->input_vol[idx][1];
  188. mutex_unlock(&chip->mutex);
  189. return 0;
  190. }
  191. static int input_vol_put(struct snd_kcontrol *ctl,
  192. struct snd_ctl_elem_value *value)
  193. {
  194. struct oxygen *chip = ctl->private_data;
  195. struct dg *data = chip->model_data;
  196. unsigned int idx = ctl->private_value;
  197. int changed = 0;
  198. int ret = 0;
  199. if (value->value.integer.value[0] < 2 * -12 ||
  200. value->value.integer.value[0] > 2 * 12 ||
  201. value->value.integer.value[1] < 2 * -12 ||
  202. value->value.integer.value[1] > 2 * 12)
  203. return -EINVAL;
  204. mutex_lock(&chip->mutex);
  205. changed = data->input_vol[idx][0] != value->value.integer.value[0] ||
  206. data->input_vol[idx][1] != value->value.integer.value[1];
  207. if (changed) {
  208. data->input_vol[idx][0] = value->value.integer.value[0];
  209. data->input_vol[idx][1] = value->value.integer.value[1];
  210. if (idx == data->input_sel) {
  211. ret = input_volume_apply(chip,
  212. data->input_vol[idx][0],
  213. data->input_vol[idx][1]);
  214. }
  215. changed = ret >= 0 ? 1 : ret;
  216. }
  217. mutex_unlock(&chip->mutex);
  218. return changed;
  219. }
  220. /* Capture Source */
  221. static int input_source_apply(struct oxygen *chip)
  222. {
  223. struct dg *data = chip->model_data;
  224. data->cs4245_shadow[CS4245_ANALOG_IN] &= ~CS4245_SEL_MASK;
  225. if (data->input_sel == CAPTURE_SRC_FP_MIC)
  226. data->cs4245_shadow[CS4245_ANALOG_IN] |= CS4245_SEL_INPUT_2;
  227. else if (data->input_sel == CAPTURE_SRC_LINE)
  228. data->cs4245_shadow[CS4245_ANALOG_IN] |= CS4245_SEL_INPUT_4;
  229. else if (data->input_sel != CAPTURE_SRC_MIC)
  230. data->cs4245_shadow[CS4245_ANALOG_IN] |= CS4245_SEL_INPUT_1;
  231. return cs4245_write_spi(chip, CS4245_ANALOG_IN);
  232. }
  233. static int input_sel_info(struct snd_kcontrol *ctl,
  234. struct snd_ctl_elem_info *info)
  235. {
  236. static const char *const names[4] = {
  237. "Mic", "Front Mic", "Line", "Aux"
  238. };
  239. return snd_ctl_enum_info(info, 1, 4, names);
  240. }
  241. static int input_sel_get(struct snd_kcontrol *ctl,
  242. struct snd_ctl_elem_value *value)
  243. {
  244. struct oxygen *chip = ctl->private_data;
  245. struct dg *data = chip->model_data;
  246. mutex_lock(&chip->mutex);
  247. value->value.enumerated.item[0] = data->input_sel;
  248. mutex_unlock(&chip->mutex);
  249. return 0;
  250. }
  251. static int input_sel_put(struct snd_kcontrol *ctl,
  252. struct snd_ctl_elem_value *value)
  253. {
  254. struct oxygen *chip = ctl->private_data;
  255. struct dg *data = chip->model_data;
  256. int changed;
  257. int ret;
  258. if (value->value.enumerated.item[0] > 3)
  259. return -EINVAL;
  260. mutex_lock(&chip->mutex);
  261. changed = value->value.enumerated.item[0] != data->input_sel;
  262. if (changed) {
  263. data->input_sel = value->value.enumerated.item[0];
  264. ret = input_source_apply(chip);
  265. if (ret >= 0)
  266. ret = input_volume_apply(chip,
  267. data->input_vol[data->input_sel][0],
  268. data->input_vol[data->input_sel][1]);
  269. changed = ret >= 0 ? 1 : ret;
  270. }
  271. mutex_unlock(&chip->mutex);
  272. return changed;
  273. }
  274. /* ADC high-pass filter */
  275. static int hpf_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  276. {
  277. static const char *const names[2] = { "Active", "Frozen" };
  278. return snd_ctl_enum_info(info, 1, 2, names);
  279. }
  280. static int hpf_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  281. {
  282. struct oxygen *chip = ctl->private_data;
  283. struct dg *data = chip->model_data;
  284. value->value.enumerated.item[0] =
  285. !!(data->cs4245_shadow[CS4245_ADC_CTRL] & CS4245_HPF_FREEZE);
  286. return 0;
  287. }
  288. static int hpf_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  289. {
  290. struct oxygen *chip = ctl->private_data;
  291. struct dg *data = chip->model_data;
  292. u8 reg;
  293. int changed;
  294. mutex_lock(&chip->mutex);
  295. reg = data->cs4245_shadow[CS4245_ADC_CTRL] & ~CS4245_HPF_FREEZE;
  296. if (value->value.enumerated.item[0])
  297. reg |= CS4245_HPF_FREEZE;
  298. changed = reg != data->cs4245_shadow[CS4245_ADC_CTRL];
  299. if (changed) {
  300. data->cs4245_shadow[CS4245_ADC_CTRL] = reg;
  301. cs4245_write_spi(chip, CS4245_ADC_CTRL);
  302. }
  303. mutex_unlock(&chip->mutex);
  304. return changed;
  305. }
  306. #define INPUT_VOLUME(xname, index) { \
  307. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  308. .name = xname, \
  309. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
  310. SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  311. .info = input_vol_info, \
  312. .get = input_vol_get, \
  313. .put = input_vol_put, \
  314. .tlv = { .p = pga_db_scale }, \
  315. .private_value = index, \
  316. }
  317. static const DECLARE_TLV_DB_MINMAX(hp_db_scale, -12550, 0);
  318. static const DECLARE_TLV_DB_MINMAX(pga_db_scale, -1200, 1200);
  319. static const struct snd_kcontrol_new dg_controls[] = {
  320. {
  321. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  322. .name = "Analog Output Playback Enum",
  323. .info = output_select_info,
  324. .get = output_select_get,
  325. .put = output_select_put,
  326. },
  327. {
  328. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  329. .name = "Headphone Playback Volume",
  330. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  331. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  332. .info = hp_stereo_volume_info,
  333. .get = hp_stereo_volume_get,
  334. .put = hp_stereo_volume_put,
  335. .tlv = { .p = hp_db_scale, },
  336. },
  337. {
  338. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  339. .name = "Headphone Playback Switch",
  340. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  341. .info = snd_ctl_boolean_mono_info,
  342. .get = hp_mute_get,
  343. .put = hp_mute_put,
  344. },
  345. INPUT_VOLUME("Mic Capture Volume", CAPTURE_SRC_MIC),
  346. INPUT_VOLUME("Front Mic Capture Volume", CAPTURE_SRC_FP_MIC),
  347. INPUT_VOLUME("Line Capture Volume", CAPTURE_SRC_LINE),
  348. INPUT_VOLUME("Aux Capture Volume", CAPTURE_SRC_AUX),
  349. {
  350. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  351. .name = "Capture Source",
  352. .info = input_sel_info,
  353. .get = input_sel_get,
  354. .put = input_sel_put,
  355. },
  356. {
  357. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  358. .name = "ADC High-pass Filter Capture Enum",
  359. .info = hpf_info,
  360. .get = hpf_get,
  361. .put = hpf_put,
  362. },
  363. };
  364. static int dg_control_filter(struct snd_kcontrol_new *template)
  365. {
  366. if (!strncmp(template->name, "Master Playback ", 16))
  367. return 1;
  368. return 0;
  369. }
  370. static int dg_mixer_init(struct oxygen *chip)
  371. {
  372. unsigned int i;
  373. int err;
  374. output_select_apply(chip);
  375. input_source_apply(chip);
  376. oxygen_update_dac_routing(chip);
  377. for (i = 0; i < ARRAY_SIZE(dg_controls); ++i) {
  378. err = snd_ctl_add(chip->card,
  379. snd_ctl_new1(&dg_controls[i], chip));
  380. if (err < 0)
  381. return err;
  382. }
  383. return 0;
  384. }
  385. const struct oxygen_model model_xonar_dg = {
  386. .longname = "C-Media Oxygen HD Audio",
  387. .chip = "CMI8786",
  388. .init = dg_init,
  389. .control_filter = dg_control_filter,
  390. .mixer_init = dg_mixer_init,
  391. .cleanup = dg_cleanup,
  392. .suspend = dg_suspend,
  393. .resume = dg_resume,
  394. .set_dac_params = set_cs4245_dac_params,
  395. .set_adc_params = set_cs4245_adc_params,
  396. .adjust_dac_routing = adjust_dg_dac_routing,
  397. .dump_registers = dump_cs4245_registers,
  398. .model_data_size = sizeof(struct dg),
  399. .device_config = PLAYBACK_0_TO_I2S |
  400. PLAYBACK_1_TO_SPDIF |
  401. CAPTURE_0_FROM_I2S_1 |
  402. CAPTURE_1_FROM_SPDIF,
  403. .dac_channels_pcm = 6,
  404. .dac_channels_mixer = 0,
  405. .function_flags = OXYGEN_FUNCTION_SPI,
  406. .dac_mclks = OXYGEN_MCLKS(256, 128, 128),
  407. .adc_mclks = OXYGEN_MCLKS(256, 128, 128),
  408. .dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
  409. .adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
  410. };