xonar_cs43xx.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * card driver for models with CS4398/CS4362A DACs (Xonar D1/DX)
  4. *
  5. * Copyright (c) Clemens Ladisch <[email protected]>
  6. */
  7. /*
  8. * Xonar D1/DX
  9. * -----------
  10. *
  11. * CMI8788:
  12. *
  13. * I²C <-> CS4398 (addr 1001111) (front)
  14. * <-> CS4362A (addr 0011000) (surround, center/LFE, back)
  15. *
  16. * GPI 0 <- external power present (DX only)
  17. *
  18. * GPIO 0 -> enable output to speakers
  19. * GPIO 1 -> route output to front panel
  20. * GPIO 2 -> M0 of CS5361
  21. * GPIO 3 -> M1 of CS5361
  22. * GPIO 6 -> ?
  23. * GPIO 7 -> ?
  24. * GPIO 8 -> route input jack to line-in (0) or mic-in (1)
  25. *
  26. * CM9780:
  27. *
  28. * LINE_OUT -> input of ADC
  29. *
  30. * AUX_IN <- aux
  31. * MIC_IN <- mic
  32. * FMIC_IN <- front mic
  33. *
  34. * GPO 0 -> route line-in (0) or AC97 output (1) to CS5361 input
  35. */
  36. #include <linux/pci.h>
  37. #include <linux/delay.h>
  38. #include <sound/ac97_codec.h>
  39. #include <sound/control.h>
  40. #include <sound/core.h>
  41. #include <sound/pcm.h>
  42. #include <sound/pcm_params.h>
  43. #include <sound/tlv.h>
  44. #include "xonar.h"
  45. #include "cm9780.h"
  46. #include "cs4398.h"
  47. #include "cs4362a.h"
  48. #define GPI_EXT_POWER 0x01
  49. #define GPIO_D1_OUTPUT_ENABLE 0x0001
  50. #define GPIO_D1_FRONT_PANEL 0x0002
  51. #define GPIO_D1_MAGIC 0x00c0
  52. #define GPIO_D1_INPUT_ROUTE 0x0100
  53. #define I2C_DEVICE_CS4398 0x9e /* 10011, AD1=1, AD0=1, /W=0 */
  54. #define I2C_DEVICE_CS4362A 0x30 /* 001100, AD0=0, /W=0 */
  55. struct xonar_cs43xx {
  56. struct xonar_generic generic;
  57. u8 cs4398_regs[8];
  58. u8 cs4362a_regs[15];
  59. };
  60. static void cs4398_write(struct oxygen *chip, u8 reg, u8 value)
  61. {
  62. struct xonar_cs43xx *data = chip->model_data;
  63. oxygen_write_i2c(chip, I2C_DEVICE_CS4398, reg, value);
  64. if (reg < ARRAY_SIZE(data->cs4398_regs))
  65. data->cs4398_regs[reg] = value;
  66. }
  67. static void cs4398_write_cached(struct oxygen *chip, u8 reg, u8 value)
  68. {
  69. struct xonar_cs43xx *data = chip->model_data;
  70. if (value != data->cs4398_regs[reg])
  71. cs4398_write(chip, reg, value);
  72. }
  73. static void cs4362a_write(struct oxygen *chip, u8 reg, u8 value)
  74. {
  75. struct xonar_cs43xx *data = chip->model_data;
  76. oxygen_write_i2c(chip, I2C_DEVICE_CS4362A, reg, value);
  77. if (reg < ARRAY_SIZE(data->cs4362a_regs))
  78. data->cs4362a_regs[reg] = value;
  79. }
  80. static void cs4362a_write_cached(struct oxygen *chip, u8 reg, u8 value)
  81. {
  82. struct xonar_cs43xx *data = chip->model_data;
  83. if (value != data->cs4362a_regs[reg])
  84. cs4362a_write(chip, reg, value);
  85. }
  86. static void cs43xx_registers_init(struct oxygen *chip)
  87. {
  88. struct xonar_cs43xx *data = chip->model_data;
  89. unsigned int i;
  90. /* set CPEN (control port mode) and power down */
  91. cs4398_write(chip, 8, CS4398_CPEN | CS4398_PDN);
  92. cs4362a_write(chip, 0x01, CS4362A_PDN | CS4362A_CPEN);
  93. /* configure */
  94. cs4398_write(chip, 2, data->cs4398_regs[2]);
  95. cs4398_write(chip, 3, CS4398_ATAPI_B_R | CS4398_ATAPI_A_L);
  96. cs4398_write(chip, 4, data->cs4398_regs[4]);
  97. cs4398_write(chip, 5, data->cs4398_regs[5]);
  98. cs4398_write(chip, 6, data->cs4398_regs[6]);
  99. cs4398_write(chip, 7, data->cs4398_regs[7]);
  100. cs4362a_write(chip, 0x02, CS4362A_DIF_LJUST);
  101. cs4362a_write(chip, 0x03, CS4362A_MUTEC_6 | CS4362A_AMUTE |
  102. CS4362A_RMP_UP | CS4362A_ZERO_CROSS | CS4362A_SOFT_RAMP);
  103. cs4362a_write(chip, 0x04, data->cs4362a_regs[0x04]);
  104. cs4362a_write(chip, 0x05, 0);
  105. for (i = 6; i <= 14; ++i)
  106. cs4362a_write(chip, i, data->cs4362a_regs[i]);
  107. /* clear power down */
  108. cs4398_write(chip, 8, CS4398_CPEN);
  109. cs4362a_write(chip, 0x01, CS4362A_CPEN);
  110. }
  111. static void xonar_d1_init(struct oxygen *chip)
  112. {
  113. struct xonar_cs43xx *data = chip->model_data;
  114. data->generic.anti_pop_delay = 800;
  115. data->generic.output_enable_bit = GPIO_D1_OUTPUT_ENABLE;
  116. data->cs4398_regs[2] =
  117. CS4398_FM_SINGLE | CS4398_DEM_NONE | CS4398_DIF_LJUST;
  118. data->cs4398_regs[4] = CS4398_MUTEP_LOW |
  119. CS4398_MUTE_B | CS4398_MUTE_A | CS4398_PAMUTE;
  120. data->cs4398_regs[5] = 60 * 2;
  121. data->cs4398_regs[6] = 60 * 2;
  122. data->cs4398_regs[7] = CS4398_RMP_DN | CS4398_RMP_UP |
  123. CS4398_ZERO_CROSS | CS4398_SOFT_RAMP;
  124. data->cs4362a_regs[4] = CS4362A_RMP_DN | CS4362A_DEM_NONE;
  125. data->cs4362a_regs[6] = CS4362A_FM_SINGLE |
  126. CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L;
  127. data->cs4362a_regs[7] = 60 | CS4362A_MUTE;
  128. data->cs4362a_regs[8] = 60 | CS4362A_MUTE;
  129. data->cs4362a_regs[9] = data->cs4362a_regs[6];
  130. data->cs4362a_regs[10] = 60 | CS4362A_MUTE;
  131. data->cs4362a_regs[11] = 60 | CS4362A_MUTE;
  132. data->cs4362a_regs[12] = data->cs4362a_regs[6];
  133. data->cs4362a_regs[13] = 60 | CS4362A_MUTE;
  134. data->cs4362a_regs[14] = 60 | CS4362A_MUTE;
  135. oxygen_write16(chip, OXYGEN_2WIRE_BUS_STATUS,
  136. OXYGEN_2WIRE_LENGTH_8 |
  137. OXYGEN_2WIRE_INTERRUPT_MASK |
  138. OXYGEN_2WIRE_SPEED_FAST);
  139. cs43xx_registers_init(chip);
  140. oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL,
  141. GPIO_D1_FRONT_PANEL |
  142. GPIO_D1_MAGIC |
  143. GPIO_D1_INPUT_ROUTE);
  144. oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA,
  145. GPIO_D1_FRONT_PANEL | GPIO_D1_INPUT_ROUTE);
  146. xonar_init_cs53x1(chip);
  147. xonar_enable_output(chip);
  148. snd_component_add(chip->card, "CS4398");
  149. snd_component_add(chip->card, "CS4362A");
  150. snd_component_add(chip->card, "CS5361");
  151. }
  152. static void xonar_dx_init(struct oxygen *chip)
  153. {
  154. struct xonar_cs43xx *data = chip->model_data;
  155. data->generic.ext_power_reg = OXYGEN_GPI_DATA;
  156. data->generic.ext_power_int_reg = OXYGEN_GPI_INTERRUPT_MASK;
  157. data->generic.ext_power_bit = GPI_EXT_POWER;
  158. xonar_init_ext_power(chip);
  159. xonar_d1_init(chip);
  160. }
  161. static void xonar_d1_cleanup(struct oxygen *chip)
  162. {
  163. xonar_disable_output(chip);
  164. cs4362a_write(chip, 0x01, CS4362A_PDN | CS4362A_CPEN);
  165. oxygen_clear_bits8(chip, OXYGEN_FUNCTION, OXYGEN_FUNCTION_RESET_CODEC);
  166. }
  167. static void xonar_d1_suspend(struct oxygen *chip)
  168. {
  169. xonar_d1_cleanup(chip);
  170. }
  171. static void xonar_d1_resume(struct oxygen *chip)
  172. {
  173. oxygen_set_bits8(chip, OXYGEN_FUNCTION, OXYGEN_FUNCTION_RESET_CODEC);
  174. msleep(1);
  175. cs43xx_registers_init(chip);
  176. xonar_enable_output(chip);
  177. }
  178. static void set_cs43xx_params(struct oxygen *chip,
  179. struct snd_pcm_hw_params *params)
  180. {
  181. struct xonar_cs43xx *data = chip->model_data;
  182. u8 cs4398_fm, cs4362a_fm;
  183. if (params_rate(params) <= 50000) {
  184. cs4398_fm = CS4398_FM_SINGLE;
  185. cs4362a_fm = CS4362A_FM_SINGLE;
  186. } else if (params_rate(params) <= 100000) {
  187. cs4398_fm = CS4398_FM_DOUBLE;
  188. cs4362a_fm = CS4362A_FM_DOUBLE;
  189. } else {
  190. cs4398_fm = CS4398_FM_QUAD;
  191. cs4362a_fm = CS4362A_FM_QUAD;
  192. }
  193. cs4398_fm |= CS4398_DEM_NONE | CS4398_DIF_LJUST;
  194. cs4398_write_cached(chip, 2, cs4398_fm);
  195. cs4362a_fm |= data->cs4362a_regs[6] & ~CS4362A_FM_MASK;
  196. cs4362a_write_cached(chip, 6, cs4362a_fm);
  197. cs4362a_write_cached(chip, 12, cs4362a_fm);
  198. cs4362a_fm &= CS4362A_FM_MASK;
  199. cs4362a_fm |= data->cs4362a_regs[9] & ~CS4362A_FM_MASK;
  200. cs4362a_write_cached(chip, 9, cs4362a_fm);
  201. }
  202. static void update_cs4362a_volumes(struct oxygen *chip)
  203. {
  204. unsigned int i;
  205. u8 mute;
  206. mute = chip->dac_mute ? CS4362A_MUTE : 0;
  207. for (i = 0; i < 6; ++i)
  208. cs4362a_write_cached(chip, 7 + i + i / 2,
  209. (127 - chip->dac_volume[2 + i]) | mute);
  210. }
  211. static void update_cs43xx_volume(struct oxygen *chip)
  212. {
  213. cs4398_write_cached(chip, 5, (127 - chip->dac_volume[0]) * 2);
  214. cs4398_write_cached(chip, 6, (127 - chip->dac_volume[1]) * 2);
  215. update_cs4362a_volumes(chip);
  216. }
  217. static void update_cs43xx_mute(struct oxygen *chip)
  218. {
  219. u8 reg;
  220. reg = CS4398_MUTEP_LOW | CS4398_PAMUTE;
  221. if (chip->dac_mute)
  222. reg |= CS4398_MUTE_B | CS4398_MUTE_A;
  223. cs4398_write_cached(chip, 4, reg);
  224. update_cs4362a_volumes(chip);
  225. }
  226. static void update_cs43xx_center_lfe_mix(struct oxygen *chip, bool mixed)
  227. {
  228. struct xonar_cs43xx *data = chip->model_data;
  229. u8 reg;
  230. reg = data->cs4362a_regs[9] & ~CS4362A_ATAPI_MASK;
  231. if (mixed)
  232. reg |= CS4362A_ATAPI_B_LR | CS4362A_ATAPI_A_LR;
  233. else
  234. reg |= CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L;
  235. cs4362a_write_cached(chip, 9, reg);
  236. }
  237. static const struct snd_kcontrol_new front_panel_switch = {
  238. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  239. .name = "Front Panel Playback Switch",
  240. .info = snd_ctl_boolean_mono_info,
  241. .get = xonar_gpio_bit_switch_get,
  242. .put = xonar_gpio_bit_switch_put,
  243. .private_value = GPIO_D1_FRONT_PANEL,
  244. };
  245. static int rolloff_info(struct snd_kcontrol *ctl,
  246. struct snd_ctl_elem_info *info)
  247. {
  248. static const char *const names[2] = {
  249. "Fast Roll-off", "Slow Roll-off"
  250. };
  251. return snd_ctl_enum_info(info, 1, 2, names);
  252. }
  253. static int rolloff_get(struct snd_kcontrol *ctl,
  254. struct snd_ctl_elem_value *value)
  255. {
  256. struct oxygen *chip = ctl->private_data;
  257. struct xonar_cs43xx *data = chip->model_data;
  258. value->value.enumerated.item[0] =
  259. (data->cs4398_regs[7] & CS4398_FILT_SEL) != 0;
  260. return 0;
  261. }
  262. static int rolloff_put(struct snd_kcontrol *ctl,
  263. struct snd_ctl_elem_value *value)
  264. {
  265. struct oxygen *chip = ctl->private_data;
  266. struct xonar_cs43xx *data = chip->model_data;
  267. int changed;
  268. u8 reg;
  269. mutex_lock(&chip->mutex);
  270. reg = data->cs4398_regs[7];
  271. if (value->value.enumerated.item[0])
  272. reg |= CS4398_FILT_SEL;
  273. else
  274. reg &= ~CS4398_FILT_SEL;
  275. changed = reg != data->cs4398_regs[7];
  276. if (changed) {
  277. cs4398_write(chip, 7, reg);
  278. if (reg & CS4398_FILT_SEL)
  279. reg = data->cs4362a_regs[0x04] | CS4362A_FILT_SEL;
  280. else
  281. reg = data->cs4362a_regs[0x04] & ~CS4362A_FILT_SEL;
  282. cs4362a_write(chip, 0x04, reg);
  283. }
  284. mutex_unlock(&chip->mutex);
  285. return changed;
  286. }
  287. static const struct snd_kcontrol_new rolloff_control = {
  288. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  289. .name = "DAC Filter Playback Enum",
  290. .info = rolloff_info,
  291. .get = rolloff_get,
  292. .put = rolloff_put,
  293. };
  294. static void xonar_d1_line_mic_ac97_switch(struct oxygen *chip,
  295. unsigned int reg, unsigned int mute)
  296. {
  297. if (reg == AC97_LINE) {
  298. spin_lock_irq(&chip->reg_lock);
  299. oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
  300. mute ? GPIO_D1_INPUT_ROUTE : 0,
  301. GPIO_D1_INPUT_ROUTE);
  302. spin_unlock_irq(&chip->reg_lock);
  303. }
  304. }
  305. static const DECLARE_TLV_DB_SCALE(cs4362a_db_scale, -6000, 100, 0);
  306. static int xonar_d1_mixer_init(struct oxygen *chip)
  307. {
  308. int err;
  309. err = snd_ctl_add(chip->card, snd_ctl_new1(&front_panel_switch, chip));
  310. if (err < 0)
  311. return err;
  312. err = snd_ctl_add(chip->card, snd_ctl_new1(&rolloff_control, chip));
  313. if (err < 0)
  314. return err;
  315. return 0;
  316. }
  317. static void dump_cs4362a_registers(struct xonar_cs43xx *data,
  318. struct snd_info_buffer *buffer)
  319. {
  320. unsigned int i;
  321. snd_iprintf(buffer, "\nCS4362A:");
  322. for (i = 1; i <= 14; ++i)
  323. snd_iprintf(buffer, " %02x", data->cs4362a_regs[i]);
  324. snd_iprintf(buffer, "\n");
  325. }
  326. static void dump_d1_registers(struct oxygen *chip,
  327. struct snd_info_buffer *buffer)
  328. {
  329. struct xonar_cs43xx *data = chip->model_data;
  330. unsigned int i;
  331. snd_iprintf(buffer, "\nCS4398: 7?");
  332. for (i = 2; i < 8; ++i)
  333. snd_iprintf(buffer, " %02x", data->cs4398_regs[i]);
  334. snd_iprintf(buffer, "\n");
  335. dump_cs4362a_registers(data, buffer);
  336. }
  337. static const struct oxygen_model model_xonar_d1 = {
  338. .longname = "Asus Virtuoso 100",
  339. .chip = "AV200",
  340. .init = xonar_d1_init,
  341. .mixer_init = xonar_d1_mixer_init,
  342. .cleanup = xonar_d1_cleanup,
  343. .suspend = xonar_d1_suspend,
  344. .resume = xonar_d1_resume,
  345. .set_dac_params = set_cs43xx_params,
  346. .set_adc_params = xonar_set_cs53x1_params,
  347. .update_dac_volume = update_cs43xx_volume,
  348. .update_dac_mute = update_cs43xx_mute,
  349. .update_center_lfe_mix = update_cs43xx_center_lfe_mix,
  350. .ac97_switch = xonar_d1_line_mic_ac97_switch,
  351. .dump_registers = dump_d1_registers,
  352. .dac_tlv = cs4362a_db_scale,
  353. .model_data_size = sizeof(struct xonar_cs43xx),
  354. .device_config = PLAYBACK_0_TO_I2S |
  355. PLAYBACK_1_TO_SPDIF |
  356. CAPTURE_0_FROM_I2S_2 |
  357. CAPTURE_1_FROM_SPDIF |
  358. AC97_FMIC_SWITCH,
  359. .dac_channels_pcm = 8,
  360. .dac_channels_mixer = 8,
  361. .dac_volume_min = 127 - 60,
  362. .dac_volume_max = 127,
  363. .function_flags = OXYGEN_FUNCTION_2WIRE,
  364. .dac_mclks = OXYGEN_MCLKS(256, 128, 128),
  365. .adc_mclks = OXYGEN_MCLKS(256, 128, 128),
  366. .dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
  367. .adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
  368. };
  369. int get_xonar_cs43xx_model(struct oxygen *chip,
  370. const struct pci_device_id *id)
  371. {
  372. switch (id->subdevice) {
  373. case 0x834f:
  374. chip->model = model_xonar_d1;
  375. chip->model.shortname = "Xonar D1";
  376. break;
  377. case 0x8275:
  378. case 0x8327:
  379. chip->model = model_xonar_d1;
  380. chip->model.shortname = "Xonar DX";
  381. chip->model.init = xonar_dx_init;
  382. break;
  383. default:
  384. return -EINVAL;
  385. }
  386. return 0;
  387. }