oxygen_mixer.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * C-Media CMI8788 driver - mixer code
  4. *
  5. * Copyright (c) Clemens Ladisch <[email protected]>
  6. */
  7. #include <linux/mutex.h>
  8. #include <sound/ac97_codec.h>
  9. #include <sound/asoundef.h>
  10. #include <sound/control.h>
  11. #include <sound/tlv.h>
  12. #include "oxygen.h"
  13. #include "cm9780.h"
  14. static int dac_volume_info(struct snd_kcontrol *ctl,
  15. struct snd_ctl_elem_info *info)
  16. {
  17. struct oxygen *chip = ctl->private_data;
  18. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  19. info->count = chip->model.dac_channels_mixer;
  20. info->value.integer.min = chip->model.dac_volume_min;
  21. info->value.integer.max = chip->model.dac_volume_max;
  22. return 0;
  23. }
  24. static int dac_volume_get(struct snd_kcontrol *ctl,
  25. struct snd_ctl_elem_value *value)
  26. {
  27. struct oxygen *chip = ctl->private_data;
  28. unsigned int i;
  29. mutex_lock(&chip->mutex);
  30. for (i = 0; i < chip->model.dac_channels_mixer; ++i)
  31. value->value.integer.value[i] = chip->dac_volume[i];
  32. mutex_unlock(&chip->mutex);
  33. return 0;
  34. }
  35. static int dac_volume_put(struct snd_kcontrol *ctl,
  36. struct snd_ctl_elem_value *value)
  37. {
  38. struct oxygen *chip = ctl->private_data;
  39. unsigned int i;
  40. int changed;
  41. changed = 0;
  42. mutex_lock(&chip->mutex);
  43. for (i = 0; i < chip->model.dac_channels_mixer; ++i)
  44. if (value->value.integer.value[i] != chip->dac_volume[i]) {
  45. chip->dac_volume[i] = value->value.integer.value[i];
  46. changed = 1;
  47. }
  48. if (changed)
  49. chip->model.update_dac_volume(chip);
  50. mutex_unlock(&chip->mutex);
  51. return changed;
  52. }
  53. static int dac_mute_get(struct snd_kcontrol *ctl,
  54. struct snd_ctl_elem_value *value)
  55. {
  56. struct oxygen *chip = ctl->private_data;
  57. mutex_lock(&chip->mutex);
  58. value->value.integer.value[0] = !chip->dac_mute;
  59. mutex_unlock(&chip->mutex);
  60. return 0;
  61. }
  62. static int dac_mute_put(struct snd_kcontrol *ctl,
  63. struct snd_ctl_elem_value *value)
  64. {
  65. struct oxygen *chip = ctl->private_data;
  66. int changed;
  67. mutex_lock(&chip->mutex);
  68. changed = (!value->value.integer.value[0]) != chip->dac_mute;
  69. if (changed) {
  70. chip->dac_mute = !value->value.integer.value[0];
  71. chip->model.update_dac_mute(chip);
  72. }
  73. mutex_unlock(&chip->mutex);
  74. return changed;
  75. }
  76. static unsigned int upmix_item_count(struct oxygen *chip)
  77. {
  78. if (chip->model.dac_channels_pcm < 8)
  79. return 2;
  80. else if (chip->model.update_center_lfe_mix)
  81. return 5;
  82. else
  83. return 3;
  84. }
  85. static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  86. {
  87. static const char *const names[5] = {
  88. "Front",
  89. "Front+Surround",
  90. "Front+Surround+Back",
  91. "Front+Surround+Center/LFE",
  92. "Front+Surround+Center/LFE+Back",
  93. };
  94. struct oxygen *chip = ctl->private_data;
  95. unsigned int count = upmix_item_count(chip);
  96. return snd_ctl_enum_info(info, 1, count, names);
  97. }
  98. static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  99. {
  100. struct oxygen *chip = ctl->private_data;
  101. mutex_lock(&chip->mutex);
  102. value->value.enumerated.item[0] = chip->dac_routing;
  103. mutex_unlock(&chip->mutex);
  104. return 0;
  105. }
  106. void oxygen_update_dac_routing(struct oxygen *chip)
  107. {
  108. /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
  109. static const unsigned int reg_values[5] = {
  110. /* stereo -> front */
  111. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  112. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  113. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  114. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  115. /* stereo -> front+surround */
  116. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  117. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  118. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  119. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  120. /* stereo -> front+surround+back */
  121. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  122. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  123. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  124. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  125. /* stereo -> front+surround+center/LFE */
  126. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  127. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  128. (0 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  129. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  130. /* stereo -> front+surround+center/LFE+back */
  131. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  132. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  133. (0 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  134. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  135. };
  136. u8 channels;
  137. unsigned int reg_value;
  138. channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
  139. OXYGEN_PLAY_CHANNELS_MASK;
  140. if (channels == OXYGEN_PLAY_CHANNELS_2)
  141. reg_value = reg_values[chip->dac_routing];
  142. else if (channels == OXYGEN_PLAY_CHANNELS_8)
  143. /* in 7.1 mode, "rear" channels go to the "back" jack */
  144. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  145. (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  146. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  147. (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  148. else
  149. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  150. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  151. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  152. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  153. if (chip->model.adjust_dac_routing)
  154. reg_value = chip->model.adjust_dac_routing(chip, reg_value);
  155. oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
  156. OXYGEN_PLAY_DAC0_SOURCE_MASK |
  157. OXYGEN_PLAY_DAC1_SOURCE_MASK |
  158. OXYGEN_PLAY_DAC2_SOURCE_MASK |
  159. OXYGEN_PLAY_DAC3_SOURCE_MASK);
  160. if (chip->model.update_center_lfe_mix)
  161. chip->model.update_center_lfe_mix(chip, chip->dac_routing > 2);
  162. }
  163. EXPORT_SYMBOL(oxygen_update_dac_routing);
  164. static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  165. {
  166. struct oxygen *chip = ctl->private_data;
  167. unsigned int count = upmix_item_count(chip);
  168. int changed;
  169. if (value->value.enumerated.item[0] >= count)
  170. return -EINVAL;
  171. mutex_lock(&chip->mutex);
  172. changed = value->value.enumerated.item[0] != chip->dac_routing;
  173. if (changed) {
  174. chip->dac_routing = value->value.enumerated.item[0];
  175. oxygen_update_dac_routing(chip);
  176. }
  177. mutex_unlock(&chip->mutex);
  178. return changed;
  179. }
  180. static int spdif_switch_get(struct snd_kcontrol *ctl,
  181. struct snd_ctl_elem_value *value)
  182. {
  183. struct oxygen *chip = ctl->private_data;
  184. mutex_lock(&chip->mutex);
  185. value->value.integer.value[0] = chip->spdif_playback_enable;
  186. mutex_unlock(&chip->mutex);
  187. return 0;
  188. }
  189. static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
  190. {
  191. switch (oxygen_rate) {
  192. case OXYGEN_RATE_32000:
  193. return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  194. case OXYGEN_RATE_44100:
  195. return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  196. default: /* OXYGEN_RATE_48000 */
  197. return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  198. case OXYGEN_RATE_64000:
  199. return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
  200. case OXYGEN_RATE_88200:
  201. return IEC958_AES3_CON_FS_88200 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  202. case OXYGEN_RATE_96000:
  203. return IEC958_AES3_CON_FS_96000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  204. case OXYGEN_RATE_176400:
  205. return IEC958_AES3_CON_FS_176400 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  206. case OXYGEN_RATE_192000:
  207. return IEC958_AES3_CON_FS_192000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  208. }
  209. }
  210. void oxygen_update_spdif_source(struct oxygen *chip)
  211. {
  212. u32 old_control, new_control;
  213. u16 old_routing, new_routing;
  214. unsigned int oxygen_rate;
  215. old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  216. old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
  217. if (chip->pcm_active & (1 << PCM_SPDIF)) {
  218. new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
  219. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  220. | OXYGEN_PLAY_SPDIF_SPDIF;
  221. oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
  222. & OXYGEN_I2S_RATE_MASK;
  223. /* S/PDIF rate was already set by the caller */
  224. } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
  225. chip->spdif_playback_enable) {
  226. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  227. | OXYGEN_PLAY_SPDIF_MULTICH_01;
  228. oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
  229. & OXYGEN_I2S_RATE_MASK;
  230. new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
  231. (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
  232. OXYGEN_SPDIF_OUT_ENABLE;
  233. } else {
  234. new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
  235. new_routing = old_routing;
  236. oxygen_rate = OXYGEN_RATE_44100;
  237. }
  238. if (old_routing != new_routing) {
  239. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
  240. new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
  241. oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
  242. }
  243. if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
  244. oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
  245. oxygen_spdif_rate(oxygen_rate) |
  246. ((chip->pcm_active & (1 << PCM_SPDIF)) ?
  247. chip->spdif_pcm_bits : chip->spdif_bits));
  248. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
  249. }
  250. static int spdif_switch_put(struct snd_kcontrol *ctl,
  251. struct snd_ctl_elem_value *value)
  252. {
  253. struct oxygen *chip = ctl->private_data;
  254. int changed;
  255. mutex_lock(&chip->mutex);
  256. changed = value->value.integer.value[0] != chip->spdif_playback_enable;
  257. if (changed) {
  258. chip->spdif_playback_enable = !!value->value.integer.value[0];
  259. spin_lock_irq(&chip->reg_lock);
  260. oxygen_update_spdif_source(chip);
  261. spin_unlock_irq(&chip->reg_lock);
  262. }
  263. mutex_unlock(&chip->mutex);
  264. return changed;
  265. }
  266. static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  267. {
  268. info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  269. info->count = 1;
  270. return 0;
  271. }
  272. static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
  273. {
  274. value->value.iec958.status[0] =
  275. bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  276. OXYGEN_SPDIF_PREEMPHASIS);
  277. value->value.iec958.status[1] = /* category and original */
  278. bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
  279. }
  280. static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
  281. {
  282. u32 bits;
  283. bits = value->value.iec958.status[0] &
  284. (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  285. OXYGEN_SPDIF_PREEMPHASIS);
  286. bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
  287. if (bits & OXYGEN_SPDIF_NONAUDIO)
  288. bits |= OXYGEN_SPDIF_V;
  289. return bits;
  290. }
  291. static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
  292. {
  293. oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
  294. OXYGEN_SPDIF_NONAUDIO |
  295. OXYGEN_SPDIF_C |
  296. OXYGEN_SPDIF_PREEMPHASIS |
  297. OXYGEN_SPDIF_CATEGORY_MASK |
  298. OXYGEN_SPDIF_ORIGINAL |
  299. OXYGEN_SPDIF_V);
  300. }
  301. static int spdif_default_get(struct snd_kcontrol *ctl,
  302. struct snd_ctl_elem_value *value)
  303. {
  304. struct oxygen *chip = ctl->private_data;
  305. mutex_lock(&chip->mutex);
  306. oxygen_to_iec958(chip->spdif_bits, value);
  307. mutex_unlock(&chip->mutex);
  308. return 0;
  309. }
  310. static int spdif_default_put(struct snd_kcontrol *ctl,
  311. struct snd_ctl_elem_value *value)
  312. {
  313. struct oxygen *chip = ctl->private_data;
  314. u32 new_bits;
  315. int changed;
  316. new_bits = iec958_to_oxygen(value);
  317. mutex_lock(&chip->mutex);
  318. changed = new_bits != chip->spdif_bits;
  319. if (changed) {
  320. chip->spdif_bits = new_bits;
  321. if (!(chip->pcm_active & (1 << PCM_SPDIF)))
  322. write_spdif_bits(chip, new_bits);
  323. }
  324. mutex_unlock(&chip->mutex);
  325. return changed;
  326. }
  327. static int spdif_mask_get(struct snd_kcontrol *ctl,
  328. struct snd_ctl_elem_value *value)
  329. {
  330. value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
  331. IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
  332. value->value.iec958.status[1] =
  333. IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
  334. return 0;
  335. }
  336. static int spdif_pcm_get(struct snd_kcontrol *ctl,
  337. struct snd_ctl_elem_value *value)
  338. {
  339. struct oxygen *chip = ctl->private_data;
  340. mutex_lock(&chip->mutex);
  341. oxygen_to_iec958(chip->spdif_pcm_bits, value);
  342. mutex_unlock(&chip->mutex);
  343. return 0;
  344. }
  345. static int spdif_pcm_put(struct snd_kcontrol *ctl,
  346. struct snd_ctl_elem_value *value)
  347. {
  348. struct oxygen *chip = ctl->private_data;
  349. u32 new_bits;
  350. int changed;
  351. new_bits = iec958_to_oxygen(value);
  352. mutex_lock(&chip->mutex);
  353. changed = new_bits != chip->spdif_pcm_bits;
  354. if (changed) {
  355. chip->spdif_pcm_bits = new_bits;
  356. if (chip->pcm_active & (1 << PCM_SPDIF))
  357. write_spdif_bits(chip, new_bits);
  358. }
  359. mutex_unlock(&chip->mutex);
  360. return changed;
  361. }
  362. static int spdif_input_mask_get(struct snd_kcontrol *ctl,
  363. struct snd_ctl_elem_value *value)
  364. {
  365. value->value.iec958.status[0] = 0xff;
  366. value->value.iec958.status[1] = 0xff;
  367. value->value.iec958.status[2] = 0xff;
  368. value->value.iec958.status[3] = 0xff;
  369. return 0;
  370. }
  371. static int spdif_input_default_get(struct snd_kcontrol *ctl,
  372. struct snd_ctl_elem_value *value)
  373. {
  374. struct oxygen *chip = ctl->private_data;
  375. u32 bits;
  376. bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
  377. value->value.iec958.status[0] = bits;
  378. value->value.iec958.status[1] = bits >> 8;
  379. value->value.iec958.status[2] = bits >> 16;
  380. value->value.iec958.status[3] = bits >> 24;
  381. return 0;
  382. }
  383. static int spdif_bit_switch_get(struct snd_kcontrol *ctl,
  384. struct snd_ctl_elem_value *value)
  385. {
  386. struct oxygen *chip = ctl->private_data;
  387. u32 bit = ctl->private_value;
  388. value->value.integer.value[0] =
  389. !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL) & bit);
  390. return 0;
  391. }
  392. static int spdif_bit_switch_put(struct snd_kcontrol *ctl,
  393. struct snd_ctl_elem_value *value)
  394. {
  395. struct oxygen *chip = ctl->private_data;
  396. u32 bit = ctl->private_value;
  397. u32 oldreg, newreg;
  398. int changed;
  399. spin_lock_irq(&chip->reg_lock);
  400. oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  401. if (value->value.integer.value[0])
  402. newreg = oldreg | bit;
  403. else
  404. newreg = oldreg & ~bit;
  405. changed = newreg != oldreg;
  406. if (changed)
  407. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
  408. spin_unlock_irq(&chip->reg_lock);
  409. return changed;
  410. }
  411. static int monitor_volume_info(struct snd_kcontrol *ctl,
  412. struct snd_ctl_elem_info *info)
  413. {
  414. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  415. info->count = 1;
  416. info->value.integer.min = 0;
  417. info->value.integer.max = 1;
  418. return 0;
  419. }
  420. static int monitor_get(struct snd_kcontrol *ctl,
  421. struct snd_ctl_elem_value *value)
  422. {
  423. struct oxygen *chip = ctl->private_data;
  424. u8 bit = ctl->private_value;
  425. int invert = ctl->private_value & (1 << 8);
  426. value->value.integer.value[0] =
  427. !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
  428. return 0;
  429. }
  430. static int monitor_put(struct snd_kcontrol *ctl,
  431. struct snd_ctl_elem_value *value)
  432. {
  433. struct oxygen *chip = ctl->private_data;
  434. u8 bit = ctl->private_value;
  435. int invert = ctl->private_value & (1 << 8);
  436. u8 oldreg, newreg;
  437. int changed;
  438. spin_lock_irq(&chip->reg_lock);
  439. oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
  440. if ((!!value->value.integer.value[0] ^ !!invert) != 0)
  441. newreg = oldreg | bit;
  442. else
  443. newreg = oldreg & ~bit;
  444. changed = newreg != oldreg;
  445. if (changed)
  446. oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
  447. spin_unlock_irq(&chip->reg_lock);
  448. return changed;
  449. }
  450. static int ac97_switch_get(struct snd_kcontrol *ctl,
  451. struct snd_ctl_elem_value *value)
  452. {
  453. struct oxygen *chip = ctl->private_data;
  454. unsigned int codec = (ctl->private_value >> 24) & 1;
  455. unsigned int index = ctl->private_value & 0xff;
  456. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  457. int invert = ctl->private_value & (1 << 16);
  458. u16 reg;
  459. mutex_lock(&chip->mutex);
  460. reg = oxygen_read_ac97(chip, codec, index);
  461. mutex_unlock(&chip->mutex);
  462. if (!(reg & (1 << bitnr)) ^ !invert)
  463. value->value.integer.value[0] = 1;
  464. else
  465. value->value.integer.value[0] = 0;
  466. return 0;
  467. }
  468. static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
  469. {
  470. unsigned int priv_idx;
  471. u16 value;
  472. if (!chip->controls[control])
  473. return;
  474. priv_idx = chip->controls[control]->private_value & 0xff;
  475. value = oxygen_read_ac97(chip, 0, priv_idx);
  476. if (!(value & 0x8000)) {
  477. oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
  478. if (chip->model.ac97_switch)
  479. chip->model.ac97_switch(chip, priv_idx, 0x8000);
  480. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  481. &chip->controls[control]->id);
  482. }
  483. }
  484. static int ac97_switch_put(struct snd_kcontrol *ctl,
  485. struct snd_ctl_elem_value *value)
  486. {
  487. struct oxygen *chip = ctl->private_data;
  488. unsigned int codec = (ctl->private_value >> 24) & 1;
  489. unsigned int index = ctl->private_value & 0xff;
  490. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  491. int invert = ctl->private_value & (1 << 16);
  492. u16 oldreg, newreg;
  493. int change;
  494. mutex_lock(&chip->mutex);
  495. oldreg = oxygen_read_ac97(chip, codec, index);
  496. newreg = oldreg;
  497. if (!value->value.integer.value[0] ^ !invert)
  498. newreg |= 1 << bitnr;
  499. else
  500. newreg &= ~(1 << bitnr);
  501. change = newreg != oldreg;
  502. if (change) {
  503. oxygen_write_ac97(chip, codec, index, newreg);
  504. if (codec == 0 && chip->model.ac97_switch)
  505. chip->model.ac97_switch(chip, index, newreg & 0x8000);
  506. if (index == AC97_LINE) {
  507. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  508. newreg & 0x8000 ?
  509. CM9780_GPO0 : 0, CM9780_GPO0);
  510. if (!(newreg & 0x8000)) {
  511. mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
  512. mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
  513. mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
  514. }
  515. } else if ((index == AC97_MIC || index == AC97_CD ||
  516. index == AC97_VIDEO || index == AC97_AUX) &&
  517. bitnr == 15 && !(newreg & 0x8000)) {
  518. mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
  519. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  520. CM9780_GPO0, CM9780_GPO0);
  521. }
  522. }
  523. mutex_unlock(&chip->mutex);
  524. return change;
  525. }
  526. static int ac97_volume_info(struct snd_kcontrol *ctl,
  527. struct snd_ctl_elem_info *info)
  528. {
  529. int stereo = (ctl->private_value >> 16) & 1;
  530. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  531. info->count = stereo ? 2 : 1;
  532. info->value.integer.min = 0;
  533. info->value.integer.max = 0x1f;
  534. return 0;
  535. }
  536. static int ac97_volume_get(struct snd_kcontrol *ctl,
  537. struct snd_ctl_elem_value *value)
  538. {
  539. struct oxygen *chip = ctl->private_data;
  540. unsigned int codec = (ctl->private_value >> 24) & 1;
  541. int stereo = (ctl->private_value >> 16) & 1;
  542. unsigned int index = ctl->private_value & 0xff;
  543. u16 reg;
  544. mutex_lock(&chip->mutex);
  545. reg = oxygen_read_ac97(chip, codec, index);
  546. mutex_unlock(&chip->mutex);
  547. if (!stereo) {
  548. value->value.integer.value[0] = 31 - (reg & 0x1f);
  549. } else {
  550. value->value.integer.value[0] = 31 - ((reg >> 8) & 0x1f);
  551. value->value.integer.value[1] = 31 - (reg & 0x1f);
  552. }
  553. return 0;
  554. }
  555. static int ac97_volume_put(struct snd_kcontrol *ctl,
  556. struct snd_ctl_elem_value *value)
  557. {
  558. struct oxygen *chip = ctl->private_data;
  559. unsigned int codec = (ctl->private_value >> 24) & 1;
  560. int stereo = (ctl->private_value >> 16) & 1;
  561. unsigned int index = ctl->private_value & 0xff;
  562. u16 oldreg, newreg;
  563. int change;
  564. mutex_lock(&chip->mutex);
  565. oldreg = oxygen_read_ac97(chip, codec, index);
  566. if (!stereo) {
  567. newreg = oldreg & ~0x1f;
  568. newreg |= 31 - (value->value.integer.value[0] & 0x1f);
  569. } else {
  570. newreg = oldreg & ~0x1f1f;
  571. newreg |= (31 - (value->value.integer.value[0] & 0x1f)) << 8;
  572. newreg |= 31 - (value->value.integer.value[1] & 0x1f);
  573. }
  574. change = newreg != oldreg;
  575. if (change)
  576. oxygen_write_ac97(chip, codec, index, newreg);
  577. mutex_unlock(&chip->mutex);
  578. return change;
  579. }
  580. static int mic_fmic_source_info(struct snd_kcontrol *ctl,
  581. struct snd_ctl_elem_info *info)
  582. {
  583. static const char *const names[] = { "Mic Jack", "Front Panel" };
  584. return snd_ctl_enum_info(info, 1, 2, names);
  585. }
  586. static int mic_fmic_source_get(struct snd_kcontrol *ctl,
  587. struct snd_ctl_elem_value *value)
  588. {
  589. struct oxygen *chip = ctl->private_data;
  590. mutex_lock(&chip->mutex);
  591. value->value.enumerated.item[0] =
  592. !!(oxygen_read_ac97(chip, 0, CM9780_JACK) & CM9780_FMIC2MIC);
  593. mutex_unlock(&chip->mutex);
  594. return 0;
  595. }
  596. static int mic_fmic_source_put(struct snd_kcontrol *ctl,
  597. struct snd_ctl_elem_value *value)
  598. {
  599. struct oxygen *chip = ctl->private_data;
  600. u16 oldreg, newreg;
  601. int change;
  602. mutex_lock(&chip->mutex);
  603. oldreg = oxygen_read_ac97(chip, 0, CM9780_JACK);
  604. if (value->value.enumerated.item[0])
  605. newreg = oldreg | CM9780_FMIC2MIC;
  606. else
  607. newreg = oldreg & ~CM9780_FMIC2MIC;
  608. change = newreg != oldreg;
  609. if (change)
  610. oxygen_write_ac97(chip, 0, CM9780_JACK, newreg);
  611. mutex_unlock(&chip->mutex);
  612. return change;
  613. }
  614. static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
  615. struct snd_ctl_elem_info *info)
  616. {
  617. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  618. info->count = 2;
  619. info->value.integer.min = 0;
  620. info->value.integer.max = 7;
  621. return 0;
  622. }
  623. static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
  624. struct snd_ctl_elem_value *value)
  625. {
  626. struct oxygen *chip = ctl->private_data;
  627. u16 reg;
  628. mutex_lock(&chip->mutex);
  629. reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  630. mutex_unlock(&chip->mutex);
  631. value->value.integer.value[0] = reg & 7;
  632. value->value.integer.value[1] = (reg >> 8) & 7;
  633. return 0;
  634. }
  635. static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
  636. struct snd_ctl_elem_value *value)
  637. {
  638. struct oxygen *chip = ctl->private_data;
  639. u16 oldreg, newreg;
  640. int change;
  641. mutex_lock(&chip->mutex);
  642. oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  643. newreg = oldreg & ~0x0707;
  644. newreg = newreg | (value->value.integer.value[0] & 7);
  645. newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
  646. change = newreg != oldreg;
  647. if (change)
  648. oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
  649. mutex_unlock(&chip->mutex);
  650. return change;
  651. }
  652. #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
  653. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  654. .name = xname, \
  655. .info = snd_ctl_boolean_mono_info, \
  656. .get = ac97_switch_get, \
  657. .put = ac97_switch_put, \
  658. .private_value = ((codec) << 24) | ((invert) << 16) | \
  659. ((bitnr) << 8) | (index), \
  660. }
  661. #define AC97_VOLUME(xname, codec, index, stereo) { \
  662. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  663. .name = xname, \
  664. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
  665. SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  666. .info = ac97_volume_info, \
  667. .get = ac97_volume_get, \
  668. .put = ac97_volume_put, \
  669. .tlv = { .p = ac97_db_scale, }, \
  670. .private_value = ((codec) << 24) | ((stereo) << 16) | (index), \
  671. }
  672. static DECLARE_TLV_DB_SCALE(monitor_db_scale, -600, 600, 0);
  673. static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
  674. static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
  675. static const struct snd_kcontrol_new controls[] = {
  676. {
  677. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  678. .name = "Master Playback Volume",
  679. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  680. .info = dac_volume_info,
  681. .get = dac_volume_get,
  682. .put = dac_volume_put,
  683. },
  684. {
  685. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  686. .name = "Master Playback Switch",
  687. .info = snd_ctl_boolean_mono_info,
  688. .get = dac_mute_get,
  689. .put = dac_mute_put,
  690. },
  691. {
  692. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  693. .name = "Stereo Upmixing",
  694. .info = upmix_info,
  695. .get = upmix_get,
  696. .put = upmix_put,
  697. },
  698. };
  699. static const struct snd_kcontrol_new spdif_output_controls[] = {
  700. {
  701. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  702. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  703. .info = snd_ctl_boolean_mono_info,
  704. .get = spdif_switch_get,
  705. .put = spdif_switch_put,
  706. },
  707. {
  708. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  709. .device = 1,
  710. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  711. .info = spdif_info,
  712. .get = spdif_default_get,
  713. .put = spdif_default_put,
  714. },
  715. {
  716. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  717. .device = 1,
  718. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  719. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  720. .info = spdif_info,
  721. .get = spdif_mask_get,
  722. },
  723. {
  724. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  725. .device = 1,
  726. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  727. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  728. SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  729. .info = spdif_info,
  730. .get = spdif_pcm_get,
  731. .put = spdif_pcm_put,
  732. },
  733. };
  734. static const struct snd_kcontrol_new spdif_input_controls[] = {
  735. {
  736. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  737. .device = 1,
  738. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
  739. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  740. .info = spdif_info,
  741. .get = spdif_input_mask_get,
  742. },
  743. {
  744. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  745. .device = 1,
  746. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  747. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  748. .info = spdif_info,
  749. .get = spdif_input_default_get,
  750. },
  751. {
  752. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  753. .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
  754. .info = snd_ctl_boolean_mono_info,
  755. .get = spdif_bit_switch_get,
  756. .put = spdif_bit_switch_put,
  757. .private_value = OXYGEN_SPDIF_LOOPBACK,
  758. },
  759. {
  760. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  761. .name = SNDRV_CTL_NAME_IEC958("Validity Check ",CAPTURE,SWITCH),
  762. .info = snd_ctl_boolean_mono_info,
  763. .get = spdif_bit_switch_get,
  764. .put = spdif_bit_switch_put,
  765. .private_value = OXYGEN_SPDIF_SPDVALID,
  766. },
  767. };
  768. static const struct {
  769. unsigned int pcm_dev;
  770. struct snd_kcontrol_new controls[2];
  771. } monitor_controls[] = {
  772. {
  773. .pcm_dev = CAPTURE_0_FROM_I2S_1,
  774. .controls = {
  775. {
  776. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  777. .name = "Analog Input Monitor Playback Switch",
  778. .info = snd_ctl_boolean_mono_info,
  779. .get = monitor_get,
  780. .put = monitor_put,
  781. .private_value = OXYGEN_ADC_MONITOR_A,
  782. },
  783. {
  784. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  785. .name = "Analog Input Monitor Playback Volume",
  786. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  787. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  788. .info = monitor_volume_info,
  789. .get = monitor_get,
  790. .put = monitor_put,
  791. .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
  792. | (1 << 8),
  793. .tlv = { .p = monitor_db_scale, },
  794. },
  795. },
  796. },
  797. {
  798. .pcm_dev = CAPTURE_0_FROM_I2S_2,
  799. .controls = {
  800. {
  801. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  802. .name = "Analog Input Monitor Playback Switch",
  803. .info = snd_ctl_boolean_mono_info,
  804. .get = monitor_get,
  805. .put = monitor_put,
  806. .private_value = OXYGEN_ADC_MONITOR_B,
  807. },
  808. {
  809. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  810. .name = "Analog Input Monitor Playback Volume",
  811. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  812. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  813. .info = monitor_volume_info,
  814. .get = monitor_get,
  815. .put = monitor_put,
  816. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  817. | (1 << 8),
  818. .tlv = { .p = monitor_db_scale, },
  819. },
  820. },
  821. },
  822. {
  823. .pcm_dev = CAPTURE_2_FROM_I2S_2,
  824. .controls = {
  825. {
  826. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  827. .name = "Analog Input Monitor Playback Switch",
  828. .index = 1,
  829. .info = snd_ctl_boolean_mono_info,
  830. .get = monitor_get,
  831. .put = monitor_put,
  832. .private_value = OXYGEN_ADC_MONITOR_B,
  833. },
  834. {
  835. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  836. .name = "Analog Input Monitor Playback Volume",
  837. .index = 1,
  838. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  839. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  840. .info = monitor_volume_info,
  841. .get = monitor_get,
  842. .put = monitor_put,
  843. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  844. | (1 << 8),
  845. .tlv = { .p = monitor_db_scale, },
  846. },
  847. },
  848. },
  849. {
  850. .pcm_dev = CAPTURE_3_FROM_I2S_3,
  851. .controls = {
  852. {
  853. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  854. .name = "Analog Input Monitor Playback Switch",
  855. .index = 2,
  856. .info = snd_ctl_boolean_mono_info,
  857. .get = monitor_get,
  858. .put = monitor_put,
  859. .private_value = OXYGEN_ADC_MONITOR_C,
  860. },
  861. {
  862. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  863. .name = "Analog Input Monitor Playback Volume",
  864. .index = 2,
  865. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  866. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  867. .info = monitor_volume_info,
  868. .get = monitor_get,
  869. .put = monitor_put,
  870. .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
  871. | (1 << 8),
  872. .tlv = { .p = monitor_db_scale, },
  873. },
  874. },
  875. },
  876. {
  877. .pcm_dev = CAPTURE_1_FROM_SPDIF,
  878. .controls = {
  879. {
  880. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  881. .name = "Digital Input Monitor Playback Switch",
  882. .info = snd_ctl_boolean_mono_info,
  883. .get = monitor_get,
  884. .put = monitor_put,
  885. .private_value = OXYGEN_ADC_MONITOR_C,
  886. },
  887. {
  888. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  889. .name = "Digital Input Monitor Playback Volume",
  890. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  891. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  892. .info = monitor_volume_info,
  893. .get = monitor_get,
  894. .put = monitor_put,
  895. .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
  896. | (1 << 8),
  897. .tlv = { .p = monitor_db_scale, },
  898. },
  899. },
  900. },
  901. };
  902. static const struct snd_kcontrol_new ac97_controls[] = {
  903. AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC, 0),
  904. AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
  905. AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
  906. {
  907. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  908. .name = "Mic Source Capture Enum",
  909. .info = mic_fmic_source_info,
  910. .get = mic_fmic_source_get,
  911. .put = mic_fmic_source_put,
  912. },
  913. AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
  914. AC97_VOLUME("CD Capture Volume", 0, AC97_CD, 1),
  915. AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
  916. AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX, 1),
  917. AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
  918. };
  919. static const struct snd_kcontrol_new ac97_fp_controls[] = {
  920. AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE, 1),
  921. AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
  922. {
  923. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  924. .name = "Front Panel Capture Volume",
  925. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  926. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  927. .info = ac97_fp_rec_volume_info,
  928. .get = ac97_fp_rec_volume_get,
  929. .put = ac97_fp_rec_volume_put,
  930. .tlv = { .p = ac97_rec_db_scale, },
  931. },
  932. AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
  933. };
  934. static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
  935. {
  936. struct oxygen *chip = ctl->private_data;
  937. unsigned int i;
  938. /* I'm too lazy to write a function for each control :-) */
  939. for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
  940. chip->controls[i] = NULL;
  941. }
  942. static int add_controls(struct oxygen *chip,
  943. const struct snd_kcontrol_new controls[],
  944. unsigned int count)
  945. {
  946. static const char *const known_ctl_names[CONTROL_COUNT] = {
  947. [CONTROL_SPDIF_PCM] =
  948. SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  949. [CONTROL_SPDIF_INPUT_BITS] =
  950. SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  951. [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
  952. [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
  953. [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
  954. [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
  955. };
  956. unsigned int i;
  957. struct snd_kcontrol_new template;
  958. struct snd_kcontrol *ctl;
  959. int j, err;
  960. for (i = 0; i < count; ++i) {
  961. template = controls[i];
  962. if (chip->model.control_filter) {
  963. err = chip->model.control_filter(&template);
  964. if (err < 0)
  965. return err;
  966. if (err == 1)
  967. continue;
  968. }
  969. if (!strcmp(template.name, "Stereo Upmixing") &&
  970. chip->model.dac_channels_pcm == 2)
  971. continue;
  972. if (!strcmp(template.name, "Mic Source Capture Enum") &&
  973. !(chip->model.device_config & AC97_FMIC_SWITCH))
  974. continue;
  975. if (!strncmp(template.name, "CD Capture ", 11) &&
  976. !(chip->model.device_config & AC97_CD_INPUT))
  977. continue;
  978. if (!strcmp(template.name, "Master Playback Volume") &&
  979. chip->model.dac_tlv) {
  980. template.tlv.p = chip->model.dac_tlv;
  981. template.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  982. }
  983. ctl = snd_ctl_new1(&template, chip);
  984. if (!ctl)
  985. return -ENOMEM;
  986. err = snd_ctl_add(chip->card, ctl);
  987. if (err < 0)
  988. return err;
  989. j = match_string(known_ctl_names, CONTROL_COUNT, ctl->id.name);
  990. if (j >= 0) {
  991. chip->controls[j] = ctl;
  992. ctl->private_free = oxygen_any_ctl_free;
  993. }
  994. }
  995. return 0;
  996. }
  997. int oxygen_mixer_init(struct oxygen *chip)
  998. {
  999. unsigned int i;
  1000. int err;
  1001. err = add_controls(chip, controls, ARRAY_SIZE(controls));
  1002. if (err < 0)
  1003. return err;
  1004. if (chip->model.device_config & PLAYBACK_1_TO_SPDIF) {
  1005. err = add_controls(chip, spdif_output_controls,
  1006. ARRAY_SIZE(spdif_output_controls));
  1007. if (err < 0)
  1008. return err;
  1009. }
  1010. if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) {
  1011. err = add_controls(chip, spdif_input_controls,
  1012. ARRAY_SIZE(spdif_input_controls));
  1013. if (err < 0)
  1014. return err;
  1015. }
  1016. for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
  1017. if (!(chip->model.device_config & monitor_controls[i].pcm_dev))
  1018. continue;
  1019. err = add_controls(chip, monitor_controls[i].controls,
  1020. ARRAY_SIZE(monitor_controls[i].controls));
  1021. if (err < 0)
  1022. return err;
  1023. }
  1024. if (chip->has_ac97_0) {
  1025. err = add_controls(chip, ac97_controls,
  1026. ARRAY_SIZE(ac97_controls));
  1027. if (err < 0)
  1028. return err;
  1029. }
  1030. if (chip->has_ac97_1) {
  1031. err = add_controls(chip, ac97_fp_controls,
  1032. ARRAY_SIZE(ac97_fp_controls));
  1033. if (err < 0)
  1034. return err;
  1035. }
  1036. return chip->model.mixer_init ? chip->model.mixer_init(chip) : 0;
  1037. }