sb_mixer.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Copyright (c) by Jaroslav Kysela <[email protected]>
  4. * Routines for Sound Blaster mixer control
  5. */
  6. #include <linux/io.h>
  7. #include <linux/delay.h>
  8. #include <linux/time.h>
  9. #include <sound/core.h>
  10. #include <sound/sb.h>
  11. #include <sound/control.h>
  12. #undef IO_DEBUG
  13. void snd_sbmixer_write(struct snd_sb *chip, unsigned char reg, unsigned char data)
  14. {
  15. outb(reg, SBP(chip, MIXER_ADDR));
  16. udelay(10);
  17. outb(data, SBP(chip, MIXER_DATA));
  18. udelay(10);
  19. #ifdef IO_DEBUG
  20. snd_printk(KERN_DEBUG "mixer_write 0x%x 0x%x\n", reg, data);
  21. #endif
  22. }
  23. unsigned char snd_sbmixer_read(struct snd_sb *chip, unsigned char reg)
  24. {
  25. unsigned char result;
  26. outb(reg, SBP(chip, MIXER_ADDR));
  27. udelay(10);
  28. result = inb(SBP(chip, MIXER_DATA));
  29. udelay(10);
  30. #ifdef IO_DEBUG
  31. snd_printk(KERN_DEBUG "mixer_read 0x%x 0x%x\n", reg, result);
  32. #endif
  33. return result;
  34. }
  35. /*
  36. * Single channel mixer element
  37. */
  38. static int snd_sbmixer_info_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  39. {
  40. int mask = (kcontrol->private_value >> 24) & 0xff;
  41. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  42. uinfo->count = 1;
  43. uinfo->value.integer.min = 0;
  44. uinfo->value.integer.max = mask;
  45. return 0;
  46. }
  47. static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  48. {
  49. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  50. unsigned long flags;
  51. int reg = kcontrol->private_value & 0xff;
  52. int shift = (kcontrol->private_value >> 16) & 0xff;
  53. int mask = (kcontrol->private_value >> 24) & 0xff;
  54. unsigned char val;
  55. spin_lock_irqsave(&sb->mixer_lock, flags);
  56. val = (snd_sbmixer_read(sb, reg) >> shift) & mask;
  57. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  58. ucontrol->value.integer.value[0] = val;
  59. return 0;
  60. }
  61. static int snd_sbmixer_put_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  62. {
  63. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  64. unsigned long flags;
  65. int reg = kcontrol->private_value & 0xff;
  66. int shift = (kcontrol->private_value >> 16) & 0x07;
  67. int mask = (kcontrol->private_value >> 24) & 0xff;
  68. int change;
  69. unsigned char val, oval;
  70. val = (ucontrol->value.integer.value[0] & mask) << shift;
  71. spin_lock_irqsave(&sb->mixer_lock, flags);
  72. oval = snd_sbmixer_read(sb, reg);
  73. val = (oval & ~(mask << shift)) | val;
  74. change = val != oval;
  75. if (change)
  76. snd_sbmixer_write(sb, reg, val);
  77. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  78. return change;
  79. }
  80. /*
  81. * Double channel mixer element
  82. */
  83. static int snd_sbmixer_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  84. {
  85. int mask = (kcontrol->private_value >> 24) & 0xff;
  86. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  87. uinfo->count = 2;
  88. uinfo->value.integer.min = 0;
  89. uinfo->value.integer.max = mask;
  90. return 0;
  91. }
  92. static int snd_sbmixer_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  93. {
  94. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  95. unsigned long flags;
  96. int left_reg = kcontrol->private_value & 0xff;
  97. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  98. int left_shift = (kcontrol->private_value >> 16) & 0x07;
  99. int right_shift = (kcontrol->private_value >> 19) & 0x07;
  100. int mask = (kcontrol->private_value >> 24) & 0xff;
  101. unsigned char left, right;
  102. spin_lock_irqsave(&sb->mixer_lock, flags);
  103. left = (snd_sbmixer_read(sb, left_reg) >> left_shift) & mask;
  104. right = (snd_sbmixer_read(sb, right_reg) >> right_shift) & mask;
  105. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  106. ucontrol->value.integer.value[0] = left;
  107. ucontrol->value.integer.value[1] = right;
  108. return 0;
  109. }
  110. static int snd_sbmixer_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  111. {
  112. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  113. unsigned long flags;
  114. int left_reg = kcontrol->private_value & 0xff;
  115. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  116. int left_shift = (kcontrol->private_value >> 16) & 0x07;
  117. int right_shift = (kcontrol->private_value >> 19) & 0x07;
  118. int mask = (kcontrol->private_value >> 24) & 0xff;
  119. int change;
  120. unsigned char left, right, oleft, oright;
  121. left = (ucontrol->value.integer.value[0] & mask) << left_shift;
  122. right = (ucontrol->value.integer.value[1] & mask) << right_shift;
  123. spin_lock_irqsave(&sb->mixer_lock, flags);
  124. if (left_reg == right_reg) {
  125. oleft = snd_sbmixer_read(sb, left_reg);
  126. left = (oleft & ~((mask << left_shift) | (mask << right_shift))) | left | right;
  127. change = left != oleft;
  128. if (change)
  129. snd_sbmixer_write(sb, left_reg, left);
  130. } else {
  131. oleft = snd_sbmixer_read(sb, left_reg);
  132. oright = snd_sbmixer_read(sb, right_reg);
  133. left = (oleft & ~(mask << left_shift)) | left;
  134. right = (oright & ~(mask << right_shift)) | right;
  135. change = left != oleft || right != oright;
  136. if (change) {
  137. snd_sbmixer_write(sb, left_reg, left);
  138. snd_sbmixer_write(sb, right_reg, right);
  139. }
  140. }
  141. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  142. return change;
  143. }
  144. /*
  145. * DT-019x / ALS-007 capture/input switch
  146. */
  147. static int snd_dt019x_input_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  148. {
  149. static const char * const texts[5] = {
  150. "CD", "Mic", "Line", "Synth", "Master"
  151. };
  152. return snd_ctl_enum_info(uinfo, 1, 5, texts);
  153. }
  154. static int snd_dt019x_input_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  155. {
  156. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  157. unsigned long flags;
  158. unsigned char oval;
  159. spin_lock_irqsave(&sb->mixer_lock, flags);
  160. oval = snd_sbmixer_read(sb, SB_DT019X_CAPTURE_SW);
  161. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  162. switch (oval & 0x07) {
  163. case SB_DT019X_CAP_CD:
  164. ucontrol->value.enumerated.item[0] = 0;
  165. break;
  166. case SB_DT019X_CAP_MIC:
  167. ucontrol->value.enumerated.item[0] = 1;
  168. break;
  169. case SB_DT019X_CAP_LINE:
  170. ucontrol->value.enumerated.item[0] = 2;
  171. break;
  172. case SB_DT019X_CAP_MAIN:
  173. ucontrol->value.enumerated.item[0] = 4;
  174. break;
  175. /* To record the synth on these cards you must record the main. */
  176. /* Thus SB_DT019X_CAP_SYNTH == SB_DT019X_CAP_MAIN and would cause */
  177. /* duplicate case labels if left uncommented. */
  178. /* case SB_DT019X_CAP_SYNTH:
  179. * ucontrol->value.enumerated.item[0] = 3;
  180. * break;
  181. */
  182. default:
  183. ucontrol->value.enumerated.item[0] = 4;
  184. break;
  185. }
  186. return 0;
  187. }
  188. static int snd_dt019x_input_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  189. {
  190. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  191. unsigned long flags;
  192. int change;
  193. unsigned char nval, oval;
  194. if (ucontrol->value.enumerated.item[0] > 4)
  195. return -EINVAL;
  196. switch (ucontrol->value.enumerated.item[0]) {
  197. case 0:
  198. nval = SB_DT019X_CAP_CD;
  199. break;
  200. case 1:
  201. nval = SB_DT019X_CAP_MIC;
  202. break;
  203. case 2:
  204. nval = SB_DT019X_CAP_LINE;
  205. break;
  206. case 3:
  207. nval = SB_DT019X_CAP_SYNTH;
  208. break;
  209. case 4:
  210. nval = SB_DT019X_CAP_MAIN;
  211. break;
  212. default:
  213. nval = SB_DT019X_CAP_MAIN;
  214. }
  215. spin_lock_irqsave(&sb->mixer_lock, flags);
  216. oval = snd_sbmixer_read(sb, SB_DT019X_CAPTURE_SW);
  217. change = nval != oval;
  218. if (change)
  219. snd_sbmixer_write(sb, SB_DT019X_CAPTURE_SW, nval);
  220. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  221. return change;
  222. }
  223. /*
  224. * ALS4000 mono recording control switch
  225. */
  226. static int snd_als4k_mono_capture_route_info(struct snd_kcontrol *kcontrol,
  227. struct snd_ctl_elem_info *uinfo)
  228. {
  229. static const char * const texts[3] = {
  230. "L chan only", "R chan only", "L ch/2 + R ch/2"
  231. };
  232. return snd_ctl_enum_info(uinfo, 1, 3, texts);
  233. }
  234. static int snd_als4k_mono_capture_route_get(struct snd_kcontrol *kcontrol,
  235. struct snd_ctl_elem_value *ucontrol)
  236. {
  237. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  238. unsigned long flags;
  239. unsigned char oval;
  240. spin_lock_irqsave(&sb->mixer_lock, flags);
  241. oval = snd_sbmixer_read(sb, SB_ALS4000_MONO_IO_CTRL);
  242. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  243. oval >>= 6;
  244. if (oval > 2)
  245. oval = 2;
  246. ucontrol->value.enumerated.item[0] = oval;
  247. return 0;
  248. }
  249. static int snd_als4k_mono_capture_route_put(struct snd_kcontrol *kcontrol,
  250. struct snd_ctl_elem_value *ucontrol)
  251. {
  252. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  253. unsigned long flags;
  254. int change;
  255. unsigned char nval, oval;
  256. if (ucontrol->value.enumerated.item[0] > 2)
  257. return -EINVAL;
  258. spin_lock_irqsave(&sb->mixer_lock, flags);
  259. oval = snd_sbmixer_read(sb, SB_ALS4000_MONO_IO_CTRL);
  260. nval = (oval & ~(3 << 6))
  261. | (ucontrol->value.enumerated.item[0] << 6);
  262. change = nval != oval;
  263. if (change)
  264. snd_sbmixer_write(sb, SB_ALS4000_MONO_IO_CTRL, nval);
  265. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  266. return change;
  267. }
  268. /*
  269. * SBPRO input multiplexer
  270. */
  271. static int snd_sb8mixer_info_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  272. {
  273. static const char * const texts[3] = {
  274. "Mic", "CD", "Line"
  275. };
  276. return snd_ctl_enum_info(uinfo, 1, 3, texts);
  277. }
  278. static int snd_sb8mixer_get_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  279. {
  280. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  281. unsigned long flags;
  282. unsigned char oval;
  283. spin_lock_irqsave(&sb->mixer_lock, flags);
  284. oval = snd_sbmixer_read(sb, SB_DSP_CAPTURE_SOURCE);
  285. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  286. switch ((oval >> 0x01) & 0x03) {
  287. case SB_DSP_MIXS_CD:
  288. ucontrol->value.enumerated.item[0] = 1;
  289. break;
  290. case SB_DSP_MIXS_LINE:
  291. ucontrol->value.enumerated.item[0] = 2;
  292. break;
  293. default:
  294. ucontrol->value.enumerated.item[0] = 0;
  295. break;
  296. }
  297. return 0;
  298. }
  299. static int snd_sb8mixer_put_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  300. {
  301. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  302. unsigned long flags;
  303. int change;
  304. unsigned char nval, oval;
  305. if (ucontrol->value.enumerated.item[0] > 2)
  306. return -EINVAL;
  307. switch (ucontrol->value.enumerated.item[0]) {
  308. case 1:
  309. nval = SB_DSP_MIXS_CD;
  310. break;
  311. case 2:
  312. nval = SB_DSP_MIXS_LINE;
  313. break;
  314. default:
  315. nval = SB_DSP_MIXS_MIC;
  316. }
  317. nval <<= 1;
  318. spin_lock_irqsave(&sb->mixer_lock, flags);
  319. oval = snd_sbmixer_read(sb, SB_DSP_CAPTURE_SOURCE);
  320. nval |= oval & ~0x06;
  321. change = nval != oval;
  322. if (change)
  323. snd_sbmixer_write(sb, SB_DSP_CAPTURE_SOURCE, nval);
  324. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  325. return change;
  326. }
  327. /*
  328. * SB16 input switch
  329. */
  330. static int snd_sb16mixer_info_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  331. {
  332. uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
  333. uinfo->count = 4;
  334. uinfo->value.integer.min = 0;
  335. uinfo->value.integer.max = 1;
  336. return 0;
  337. }
  338. static int snd_sb16mixer_get_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  339. {
  340. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  341. unsigned long flags;
  342. int reg1 = kcontrol->private_value & 0xff;
  343. int reg2 = (kcontrol->private_value >> 8) & 0xff;
  344. int left_shift = (kcontrol->private_value >> 16) & 0x0f;
  345. int right_shift = (kcontrol->private_value >> 24) & 0x0f;
  346. unsigned char val1, val2;
  347. spin_lock_irqsave(&sb->mixer_lock, flags);
  348. val1 = snd_sbmixer_read(sb, reg1);
  349. val2 = snd_sbmixer_read(sb, reg2);
  350. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  351. ucontrol->value.integer.value[0] = (val1 >> left_shift) & 0x01;
  352. ucontrol->value.integer.value[1] = (val2 >> left_shift) & 0x01;
  353. ucontrol->value.integer.value[2] = (val1 >> right_shift) & 0x01;
  354. ucontrol->value.integer.value[3] = (val2 >> right_shift) & 0x01;
  355. return 0;
  356. }
  357. static int snd_sb16mixer_put_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  358. {
  359. struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
  360. unsigned long flags;
  361. int reg1 = kcontrol->private_value & 0xff;
  362. int reg2 = (kcontrol->private_value >> 8) & 0xff;
  363. int left_shift = (kcontrol->private_value >> 16) & 0x0f;
  364. int right_shift = (kcontrol->private_value >> 24) & 0x0f;
  365. int change;
  366. unsigned char val1, val2, oval1, oval2;
  367. spin_lock_irqsave(&sb->mixer_lock, flags);
  368. oval1 = snd_sbmixer_read(sb, reg1);
  369. oval2 = snd_sbmixer_read(sb, reg2);
  370. val1 = oval1 & ~((1 << left_shift) | (1 << right_shift));
  371. val2 = oval2 & ~((1 << left_shift) | (1 << right_shift));
  372. val1 |= (ucontrol->value.integer.value[0] & 1) << left_shift;
  373. val2 |= (ucontrol->value.integer.value[1] & 1) << left_shift;
  374. val1 |= (ucontrol->value.integer.value[2] & 1) << right_shift;
  375. val2 |= (ucontrol->value.integer.value[3] & 1) << right_shift;
  376. change = val1 != oval1 || val2 != oval2;
  377. if (change) {
  378. snd_sbmixer_write(sb, reg1, val1);
  379. snd_sbmixer_write(sb, reg2, val2);
  380. }
  381. spin_unlock_irqrestore(&sb->mixer_lock, flags);
  382. return change;
  383. }
  384. /*
  385. */
  386. /*
  387. */
  388. int snd_sbmixer_add_ctl(struct snd_sb *chip, const char *name, int index, int type, unsigned long value)
  389. {
  390. static const struct snd_kcontrol_new newctls[] = {
  391. [SB_MIX_SINGLE] = {
  392. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  393. .info = snd_sbmixer_info_single,
  394. .get = snd_sbmixer_get_single,
  395. .put = snd_sbmixer_put_single,
  396. },
  397. [SB_MIX_DOUBLE] = {
  398. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  399. .info = snd_sbmixer_info_double,
  400. .get = snd_sbmixer_get_double,
  401. .put = snd_sbmixer_put_double,
  402. },
  403. [SB_MIX_INPUT_SW] = {
  404. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  405. .info = snd_sb16mixer_info_input_sw,
  406. .get = snd_sb16mixer_get_input_sw,
  407. .put = snd_sb16mixer_put_input_sw,
  408. },
  409. [SB_MIX_CAPTURE_PRO] = {
  410. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  411. .info = snd_sb8mixer_info_mux,
  412. .get = snd_sb8mixer_get_mux,
  413. .put = snd_sb8mixer_put_mux,
  414. },
  415. [SB_MIX_CAPTURE_DT019X] = {
  416. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  417. .info = snd_dt019x_input_sw_info,
  418. .get = snd_dt019x_input_sw_get,
  419. .put = snd_dt019x_input_sw_put,
  420. },
  421. [SB_MIX_MONO_CAPTURE_ALS4K] = {
  422. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  423. .info = snd_als4k_mono_capture_route_info,
  424. .get = snd_als4k_mono_capture_route_get,
  425. .put = snd_als4k_mono_capture_route_put,
  426. },
  427. };
  428. struct snd_kcontrol *ctl;
  429. int err;
  430. ctl = snd_ctl_new1(&newctls[type], chip);
  431. if (! ctl)
  432. return -ENOMEM;
  433. strscpy(ctl->id.name, name, sizeof(ctl->id.name));
  434. ctl->id.index = index;
  435. ctl->private_value = value;
  436. err = snd_ctl_add(chip->card, ctl);
  437. if (err < 0)
  438. return err;
  439. return 0;
  440. }
  441. /*
  442. * SB 2.0 specific mixer elements
  443. */
  444. static const struct sbmix_elem snd_sb20_controls[] = {
  445. SB_SINGLE("Master Playback Volume", SB_DSP20_MASTER_DEV, 1, 7),
  446. SB_SINGLE("PCM Playback Volume", SB_DSP20_PCM_DEV, 1, 3),
  447. SB_SINGLE("Synth Playback Volume", SB_DSP20_FM_DEV, 1, 7),
  448. SB_SINGLE("CD Playback Volume", SB_DSP20_CD_DEV, 1, 7)
  449. };
  450. static const unsigned char snd_sb20_init_values[][2] = {
  451. { SB_DSP20_MASTER_DEV, 0 },
  452. { SB_DSP20_FM_DEV, 0 },
  453. };
  454. /*
  455. * SB Pro specific mixer elements
  456. */
  457. static const struct sbmix_elem snd_sbpro_controls[] = {
  458. SB_DOUBLE("Master Playback Volume",
  459. SB_DSP_MASTER_DEV, SB_DSP_MASTER_DEV, 5, 1, 7),
  460. SB_DOUBLE("PCM Playback Volume",
  461. SB_DSP_PCM_DEV, SB_DSP_PCM_DEV, 5, 1, 7),
  462. SB_SINGLE("PCM Playback Filter", SB_DSP_PLAYBACK_FILT, 5, 1),
  463. SB_DOUBLE("Synth Playback Volume",
  464. SB_DSP_FM_DEV, SB_DSP_FM_DEV, 5, 1, 7),
  465. SB_DOUBLE("CD Playback Volume", SB_DSP_CD_DEV, SB_DSP_CD_DEV, 5, 1, 7),
  466. SB_DOUBLE("Line Playback Volume",
  467. SB_DSP_LINE_DEV, SB_DSP_LINE_DEV, 5, 1, 7),
  468. SB_SINGLE("Mic Playback Volume", SB_DSP_MIC_DEV, 1, 3),
  469. {
  470. .name = "Capture Source",
  471. .type = SB_MIX_CAPTURE_PRO
  472. },
  473. SB_SINGLE("Capture Filter", SB_DSP_CAPTURE_FILT, 5, 1),
  474. SB_SINGLE("Capture Low-Pass Filter", SB_DSP_CAPTURE_FILT, 3, 1)
  475. };
  476. static const unsigned char snd_sbpro_init_values[][2] = {
  477. { SB_DSP_MASTER_DEV, 0 },
  478. { SB_DSP_PCM_DEV, 0 },
  479. { SB_DSP_FM_DEV, 0 },
  480. };
  481. /*
  482. * SB16 specific mixer elements
  483. */
  484. static const struct sbmix_elem snd_sb16_controls[] = {
  485. SB_DOUBLE("Master Playback Volume",
  486. SB_DSP4_MASTER_DEV, (SB_DSP4_MASTER_DEV + 1), 3, 3, 31),
  487. SB_DOUBLE("PCM Playback Volume",
  488. SB_DSP4_PCM_DEV, (SB_DSP4_PCM_DEV + 1), 3, 3, 31),
  489. SB16_INPUT_SW("Synth Capture Route",
  490. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 6, 5),
  491. SB_DOUBLE("Synth Playback Volume",
  492. SB_DSP4_SYNTH_DEV, (SB_DSP4_SYNTH_DEV + 1), 3, 3, 31),
  493. SB16_INPUT_SW("CD Capture Route",
  494. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 2, 1),
  495. SB_DOUBLE("CD Playback Switch",
  496. SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 2, 1, 1),
  497. SB_DOUBLE("CD Playback Volume",
  498. SB_DSP4_CD_DEV, (SB_DSP4_CD_DEV + 1), 3, 3, 31),
  499. SB16_INPUT_SW("Mic Capture Route",
  500. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0),
  501. SB_SINGLE("Mic Playback Switch", SB_DSP4_OUTPUT_SW, 0, 1),
  502. SB_SINGLE("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
  503. SB_SINGLE("Beep Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
  504. SB_DOUBLE("Capture Volume",
  505. SB_DSP4_IGAIN_DEV, (SB_DSP4_IGAIN_DEV + 1), 6, 6, 3),
  506. SB_DOUBLE("Playback Volume",
  507. SB_DSP4_OGAIN_DEV, (SB_DSP4_OGAIN_DEV + 1), 6, 6, 3),
  508. SB16_INPUT_SW("Line Capture Route",
  509. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 4, 3),
  510. SB_DOUBLE("Line Playback Switch",
  511. SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 4, 3, 1),
  512. SB_DOUBLE("Line Playback Volume",
  513. SB_DSP4_LINE_DEV, (SB_DSP4_LINE_DEV + 1), 3, 3, 31),
  514. SB_SINGLE("Mic Auto Gain", SB_DSP4_MIC_AGC, 0, 1),
  515. SB_SINGLE("3D Enhancement Switch", SB_DSP4_3DSE, 0, 1),
  516. SB_DOUBLE("Tone Control - Bass",
  517. SB_DSP4_BASS_DEV, (SB_DSP4_BASS_DEV + 1), 4, 4, 15),
  518. SB_DOUBLE("Tone Control - Treble",
  519. SB_DSP4_TREBLE_DEV, (SB_DSP4_TREBLE_DEV + 1), 4, 4, 15)
  520. };
  521. static const unsigned char snd_sb16_init_values[][2] = {
  522. { SB_DSP4_MASTER_DEV + 0, 0 },
  523. { SB_DSP4_MASTER_DEV + 1, 0 },
  524. { SB_DSP4_PCM_DEV + 0, 0 },
  525. { SB_DSP4_PCM_DEV + 1, 0 },
  526. { SB_DSP4_SYNTH_DEV + 0, 0 },
  527. { SB_DSP4_SYNTH_DEV + 1, 0 },
  528. { SB_DSP4_INPUT_LEFT, 0 },
  529. { SB_DSP4_INPUT_RIGHT, 0 },
  530. { SB_DSP4_OUTPUT_SW, 0 },
  531. { SB_DSP4_SPEAKER_DEV, 0 },
  532. };
  533. /*
  534. * DT019x specific mixer elements
  535. */
  536. static const struct sbmix_elem snd_dt019x_controls[] = {
  537. /* ALS4000 below has some parts which we might be lacking,
  538. * e.g. snd_als4000_ctl_mono_playback_switch - check it! */
  539. SB_DOUBLE("Master Playback Volume",
  540. SB_DT019X_MASTER_DEV, SB_DT019X_MASTER_DEV, 4, 0, 15),
  541. SB_DOUBLE("PCM Playback Switch",
  542. SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 2, 1, 1),
  543. SB_DOUBLE("PCM Playback Volume",
  544. SB_DT019X_PCM_DEV, SB_DT019X_PCM_DEV, 4, 0, 15),
  545. SB_DOUBLE("Synth Playback Switch",
  546. SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 4, 3, 1),
  547. SB_DOUBLE("Synth Playback Volume",
  548. SB_DT019X_SYNTH_DEV, SB_DT019X_SYNTH_DEV, 4, 0, 15),
  549. SB_DOUBLE("CD Playback Switch",
  550. SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 2, 1, 1),
  551. SB_DOUBLE("CD Playback Volume",
  552. SB_DT019X_CD_DEV, SB_DT019X_CD_DEV, 4, 0, 15),
  553. SB_SINGLE("Mic Playback Switch", SB_DSP4_OUTPUT_SW, 0, 1),
  554. SB_SINGLE("Mic Playback Volume", SB_DT019X_MIC_DEV, 4, 7),
  555. SB_SINGLE("Beep Volume", SB_DT019X_SPKR_DEV, 0, 7),
  556. SB_DOUBLE("Line Playback Switch",
  557. SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 4, 3, 1),
  558. SB_DOUBLE("Line Playback Volume",
  559. SB_DT019X_LINE_DEV, SB_DT019X_LINE_DEV, 4, 0, 15),
  560. {
  561. .name = "Capture Source",
  562. .type = SB_MIX_CAPTURE_DT019X
  563. }
  564. };
  565. static const unsigned char snd_dt019x_init_values[][2] = {
  566. { SB_DT019X_MASTER_DEV, 0 },
  567. { SB_DT019X_PCM_DEV, 0 },
  568. { SB_DT019X_SYNTH_DEV, 0 },
  569. { SB_DT019X_CD_DEV, 0 },
  570. { SB_DT019X_MIC_DEV, 0 }, /* Includes PC-speaker in high nibble */
  571. { SB_DT019X_LINE_DEV, 0 },
  572. { SB_DSP4_OUTPUT_SW, 0 },
  573. { SB_DT019X_OUTPUT_SW2, 0 },
  574. { SB_DT019X_CAPTURE_SW, 0x06 },
  575. };
  576. /*
  577. * ALS4000 specific mixer elements
  578. */
  579. static const struct sbmix_elem snd_als4000_controls[] = {
  580. SB_DOUBLE("PCM Playback Switch",
  581. SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 2, 1, 1),
  582. SB_DOUBLE("Synth Playback Switch",
  583. SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 4, 3, 1),
  584. SB_SINGLE("Mic Boost (+20dB)", SB_ALS4000_MIC_IN_GAIN, 0, 0x03),
  585. SB_SINGLE("Master Mono Playback Switch", SB_ALS4000_MONO_IO_CTRL, 5, 1),
  586. {
  587. .name = "Master Mono Capture Route",
  588. .type = SB_MIX_MONO_CAPTURE_ALS4K
  589. },
  590. SB_SINGLE("Mono Playback Switch", SB_DT019X_OUTPUT_SW2, 0, 1),
  591. SB_SINGLE("Analog Loopback Switch", SB_ALS4000_MIC_IN_GAIN, 7, 0x01),
  592. SB_SINGLE("3D Control - Switch", SB_ALS4000_3D_SND_FX, 6, 0x01),
  593. SB_SINGLE("Digital Loopback Switch",
  594. SB_ALS4000_CR3_CONFIGURATION, 7, 0x01),
  595. /* FIXME: functionality of 3D controls might be swapped, I didn't find
  596. * a description of how to identify what is supposed to be what */
  597. SB_SINGLE("3D Control - Level", SB_ALS4000_3D_SND_FX, 0, 0x07),
  598. /* FIXME: maybe there's actually some standard 3D ctrl name for it?? */
  599. SB_SINGLE("3D Control - Freq", SB_ALS4000_3D_SND_FX, 4, 0x03),
  600. /* FIXME: ALS4000a.pdf mentions BBD (Bucket Brigade Device) time delay,
  601. * but what ALSA 3D attribute is that actually? "Center", "Depth",
  602. * "Wide" or "Space" or even "Level"? Assuming "Wide" for now... */
  603. SB_SINGLE("3D Control - Wide", SB_ALS4000_3D_TIME_DELAY, 0, 0x0f),
  604. SB_SINGLE("3D PowerOff Switch", SB_ALS4000_3D_TIME_DELAY, 4, 0x01),
  605. SB_SINGLE("Master Playback 8kHz / 20kHz LPF Switch",
  606. SB_ALS4000_FMDAC, 5, 0x01),
  607. #ifdef NOT_AVAILABLE
  608. SB_SINGLE("FMDAC Switch (Option ?)", SB_ALS4000_FMDAC, 0, 0x01),
  609. SB_SINGLE("QSound Mode", SB_ALS4000_QSOUND, 1, 0x1f),
  610. #endif
  611. };
  612. static const unsigned char snd_als4000_init_values[][2] = {
  613. { SB_DSP4_MASTER_DEV + 0, 0 },
  614. { SB_DSP4_MASTER_DEV + 1, 0 },
  615. { SB_DSP4_PCM_DEV + 0, 0 },
  616. { SB_DSP4_PCM_DEV + 1, 0 },
  617. { SB_DSP4_SYNTH_DEV + 0, 0 },
  618. { SB_DSP4_SYNTH_DEV + 1, 0 },
  619. { SB_DSP4_SPEAKER_DEV, 0 },
  620. { SB_DSP4_OUTPUT_SW, 0 },
  621. { SB_DSP4_INPUT_LEFT, 0 },
  622. { SB_DSP4_INPUT_RIGHT, 0 },
  623. { SB_DT019X_OUTPUT_SW2, 0 },
  624. { SB_ALS4000_MIC_IN_GAIN, 0 },
  625. };
  626. /*
  627. */
  628. static int snd_sbmixer_init(struct snd_sb *chip,
  629. const struct sbmix_elem *controls,
  630. int controls_count,
  631. const unsigned char map[][2],
  632. int map_count,
  633. char *name)
  634. {
  635. unsigned long flags;
  636. struct snd_card *card = chip->card;
  637. int idx, err;
  638. /* mixer reset */
  639. spin_lock_irqsave(&chip->mixer_lock, flags);
  640. snd_sbmixer_write(chip, 0x00, 0x00);
  641. spin_unlock_irqrestore(&chip->mixer_lock, flags);
  642. /* mute and zero volume channels */
  643. for (idx = 0; idx < map_count; idx++) {
  644. spin_lock_irqsave(&chip->mixer_lock, flags);
  645. snd_sbmixer_write(chip, map[idx][0], map[idx][1]);
  646. spin_unlock_irqrestore(&chip->mixer_lock, flags);
  647. }
  648. for (idx = 0; idx < controls_count; idx++) {
  649. err = snd_sbmixer_add_ctl_elem(chip, &controls[idx]);
  650. if (err < 0)
  651. return err;
  652. }
  653. snd_component_add(card, name);
  654. strcpy(card->mixername, name);
  655. return 0;
  656. }
  657. int snd_sbmixer_new(struct snd_sb *chip)
  658. {
  659. struct snd_card *card;
  660. int err;
  661. if (snd_BUG_ON(!chip || !chip->card))
  662. return -EINVAL;
  663. card = chip->card;
  664. switch (chip->hardware) {
  665. case SB_HW_10:
  666. return 0; /* no mixer chip on SB1.x */
  667. case SB_HW_20:
  668. case SB_HW_201:
  669. err = snd_sbmixer_init(chip,
  670. snd_sb20_controls,
  671. ARRAY_SIZE(snd_sb20_controls),
  672. snd_sb20_init_values,
  673. ARRAY_SIZE(snd_sb20_init_values),
  674. "CTL1335");
  675. if (err < 0)
  676. return err;
  677. break;
  678. case SB_HW_PRO:
  679. case SB_HW_JAZZ16:
  680. err = snd_sbmixer_init(chip,
  681. snd_sbpro_controls,
  682. ARRAY_SIZE(snd_sbpro_controls),
  683. snd_sbpro_init_values,
  684. ARRAY_SIZE(snd_sbpro_init_values),
  685. "CTL1345");
  686. if (err < 0)
  687. return err;
  688. break;
  689. case SB_HW_16:
  690. case SB_HW_ALS100:
  691. case SB_HW_CS5530:
  692. err = snd_sbmixer_init(chip,
  693. snd_sb16_controls,
  694. ARRAY_SIZE(snd_sb16_controls),
  695. snd_sb16_init_values,
  696. ARRAY_SIZE(snd_sb16_init_values),
  697. "CTL1745");
  698. if (err < 0)
  699. return err;
  700. break;
  701. case SB_HW_ALS4000:
  702. /* use only the first 16 controls from SB16 */
  703. err = snd_sbmixer_init(chip,
  704. snd_sb16_controls,
  705. 16,
  706. snd_sb16_init_values,
  707. ARRAY_SIZE(snd_sb16_init_values),
  708. "ALS4000");
  709. if (err < 0)
  710. return err;
  711. err = snd_sbmixer_init(chip,
  712. snd_als4000_controls,
  713. ARRAY_SIZE(snd_als4000_controls),
  714. snd_als4000_init_values,
  715. ARRAY_SIZE(snd_als4000_init_values),
  716. "ALS4000");
  717. if (err < 0)
  718. return err;
  719. break;
  720. case SB_HW_DT019X:
  721. err = snd_sbmixer_init(chip,
  722. snd_dt019x_controls,
  723. ARRAY_SIZE(snd_dt019x_controls),
  724. snd_dt019x_init_values,
  725. ARRAY_SIZE(snd_dt019x_init_values),
  726. "DT019X");
  727. if (err < 0)
  728. return err;
  729. break;
  730. default:
  731. strcpy(card->mixername, "???");
  732. }
  733. return 0;
  734. }
  735. #ifdef CONFIG_PM
  736. static const unsigned char sb20_saved_regs[] = {
  737. SB_DSP20_MASTER_DEV,
  738. SB_DSP20_PCM_DEV,
  739. SB_DSP20_FM_DEV,
  740. SB_DSP20_CD_DEV,
  741. };
  742. static const unsigned char sbpro_saved_regs[] = {
  743. SB_DSP_MASTER_DEV,
  744. SB_DSP_PCM_DEV,
  745. SB_DSP_PLAYBACK_FILT,
  746. SB_DSP_FM_DEV,
  747. SB_DSP_CD_DEV,
  748. SB_DSP_LINE_DEV,
  749. SB_DSP_MIC_DEV,
  750. SB_DSP_CAPTURE_SOURCE,
  751. SB_DSP_CAPTURE_FILT,
  752. };
  753. static const unsigned char sb16_saved_regs[] = {
  754. SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
  755. SB_DSP4_3DSE,
  756. SB_DSP4_BASS_DEV, SB_DSP4_BASS_DEV + 1,
  757. SB_DSP4_TREBLE_DEV, SB_DSP4_TREBLE_DEV + 1,
  758. SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
  759. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
  760. SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
  761. SB_DSP4_OUTPUT_SW,
  762. SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
  763. SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
  764. SB_DSP4_MIC_DEV,
  765. SB_DSP4_SPEAKER_DEV,
  766. SB_DSP4_IGAIN_DEV, SB_DSP4_IGAIN_DEV + 1,
  767. SB_DSP4_OGAIN_DEV, SB_DSP4_OGAIN_DEV + 1,
  768. SB_DSP4_MIC_AGC
  769. };
  770. static const unsigned char dt019x_saved_regs[] = {
  771. SB_DT019X_MASTER_DEV,
  772. SB_DT019X_PCM_DEV,
  773. SB_DT019X_SYNTH_DEV,
  774. SB_DT019X_CD_DEV,
  775. SB_DT019X_MIC_DEV,
  776. SB_DT019X_SPKR_DEV,
  777. SB_DT019X_LINE_DEV,
  778. SB_DSP4_OUTPUT_SW,
  779. SB_DT019X_OUTPUT_SW2,
  780. SB_DT019X_CAPTURE_SW,
  781. };
  782. static const unsigned char als4000_saved_regs[] = {
  783. /* please verify in dsheet whether regs to be added
  784. are actually real H/W or just dummy */
  785. SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
  786. SB_DSP4_OUTPUT_SW,
  787. SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
  788. SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
  789. SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
  790. SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
  791. SB_DSP4_MIC_DEV,
  792. SB_DSP4_SPEAKER_DEV,
  793. SB_DSP4_IGAIN_DEV, SB_DSP4_IGAIN_DEV + 1,
  794. SB_DSP4_OGAIN_DEV, SB_DSP4_OGAIN_DEV + 1,
  795. SB_DT019X_OUTPUT_SW2,
  796. SB_ALS4000_MONO_IO_CTRL,
  797. SB_ALS4000_MIC_IN_GAIN,
  798. SB_ALS4000_FMDAC,
  799. SB_ALS4000_3D_SND_FX,
  800. SB_ALS4000_3D_TIME_DELAY,
  801. SB_ALS4000_CR3_CONFIGURATION,
  802. };
  803. static void save_mixer(struct snd_sb *chip, const unsigned char *regs, int num_regs)
  804. {
  805. unsigned char *val = chip->saved_regs;
  806. if (snd_BUG_ON(num_regs > ARRAY_SIZE(chip->saved_regs)))
  807. return;
  808. for (; num_regs; num_regs--)
  809. *val++ = snd_sbmixer_read(chip, *regs++);
  810. }
  811. static void restore_mixer(struct snd_sb *chip, const unsigned char *regs, int num_regs)
  812. {
  813. unsigned char *val = chip->saved_regs;
  814. if (snd_BUG_ON(num_regs > ARRAY_SIZE(chip->saved_regs)))
  815. return;
  816. for (; num_regs; num_regs--)
  817. snd_sbmixer_write(chip, *regs++, *val++);
  818. }
  819. void snd_sbmixer_suspend(struct snd_sb *chip)
  820. {
  821. switch (chip->hardware) {
  822. case SB_HW_20:
  823. case SB_HW_201:
  824. save_mixer(chip, sb20_saved_regs, ARRAY_SIZE(sb20_saved_regs));
  825. break;
  826. case SB_HW_PRO:
  827. case SB_HW_JAZZ16:
  828. save_mixer(chip, sbpro_saved_regs, ARRAY_SIZE(sbpro_saved_regs));
  829. break;
  830. case SB_HW_16:
  831. case SB_HW_ALS100:
  832. case SB_HW_CS5530:
  833. save_mixer(chip, sb16_saved_regs, ARRAY_SIZE(sb16_saved_regs));
  834. break;
  835. case SB_HW_ALS4000:
  836. save_mixer(chip, als4000_saved_regs, ARRAY_SIZE(als4000_saved_regs));
  837. break;
  838. case SB_HW_DT019X:
  839. save_mixer(chip, dt019x_saved_regs, ARRAY_SIZE(dt019x_saved_regs));
  840. break;
  841. default:
  842. break;
  843. }
  844. }
  845. void snd_sbmixer_resume(struct snd_sb *chip)
  846. {
  847. switch (chip->hardware) {
  848. case SB_HW_20:
  849. case SB_HW_201:
  850. restore_mixer(chip, sb20_saved_regs, ARRAY_SIZE(sb20_saved_regs));
  851. break;
  852. case SB_HW_PRO:
  853. case SB_HW_JAZZ16:
  854. restore_mixer(chip, sbpro_saved_regs, ARRAY_SIZE(sbpro_saved_regs));
  855. break;
  856. case SB_HW_16:
  857. case SB_HW_ALS100:
  858. case SB_HW_CS5530:
  859. restore_mixer(chip, sb16_saved_regs, ARRAY_SIZE(sb16_saved_regs));
  860. break;
  861. case SB_HW_ALS4000:
  862. restore_mixer(chip, als4000_saved_regs, ARRAY_SIZE(als4000_saved_regs));
  863. break;
  864. case SB_HW_DT019X:
  865. restore_mixer(chip, dt019x_saved_regs, ARRAY_SIZE(dt019x_saved_regs));
  866. break;
  867. default:
  868. break;
  869. }
  870. }
  871. #endif