trusted_tee.c 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2019-2021 Linaro Ltd.
  4. *
  5. * Author:
  6. * Sumit Garg <[email protected]>
  7. */
  8. #include <linux/err.h>
  9. #include <linux/key-type.h>
  10. #include <linux/module.h>
  11. #include <linux/slab.h>
  12. #include <linux/string.h>
  13. #include <linux/tee_drv.h>
  14. #include <linux/uuid.h>
  15. #include <keys/trusted_tee.h>
  16. #define DRIVER_NAME "trusted-key-tee"
  17. /*
  18. * Get random data for symmetric key
  19. *
  20. * [out] memref[0] Random data
  21. */
  22. #define TA_CMD_GET_RANDOM 0x0
  23. /*
  24. * Seal trusted key using hardware unique key
  25. *
  26. * [in] memref[0] Plain key
  27. * [out] memref[1] Sealed key datablob
  28. */
  29. #define TA_CMD_SEAL 0x1
  30. /*
  31. * Unseal trusted key using hardware unique key
  32. *
  33. * [in] memref[0] Sealed key datablob
  34. * [out] memref[1] Plain key
  35. */
  36. #define TA_CMD_UNSEAL 0x2
  37. /**
  38. * struct trusted_key_tee_private - TEE Trusted key private data
  39. * @dev: TEE based Trusted key device.
  40. * @ctx: TEE context handler.
  41. * @session_id: Trusted key TA session identifier.
  42. * @shm_pool: Memory pool shared with TEE device.
  43. */
  44. struct trusted_key_tee_private {
  45. struct device *dev;
  46. struct tee_context *ctx;
  47. u32 session_id;
  48. struct tee_shm *shm_pool;
  49. };
  50. static struct trusted_key_tee_private pvt_data;
  51. /*
  52. * Have the TEE seal(encrypt) the symmetric key
  53. */
  54. static int trusted_tee_seal(struct trusted_key_payload *p, char *datablob)
  55. {
  56. int ret;
  57. struct tee_ioctl_invoke_arg inv_arg;
  58. struct tee_param param[4];
  59. struct tee_shm *reg_shm = NULL;
  60. memset(&inv_arg, 0, sizeof(inv_arg));
  61. memset(&param, 0, sizeof(param));
  62. reg_shm = tee_shm_register_kernel_buf(pvt_data.ctx, p->key,
  63. sizeof(p->key) + sizeof(p->blob));
  64. if (IS_ERR(reg_shm)) {
  65. dev_err(pvt_data.dev, "shm register failed\n");
  66. return PTR_ERR(reg_shm);
  67. }
  68. inv_arg.func = TA_CMD_SEAL;
  69. inv_arg.session = pvt_data.session_id;
  70. inv_arg.num_params = 4;
  71. param[0].attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
  72. param[0].u.memref.shm = reg_shm;
  73. param[0].u.memref.size = p->key_len;
  74. param[0].u.memref.shm_offs = 0;
  75. param[1].attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT;
  76. param[1].u.memref.shm = reg_shm;
  77. param[1].u.memref.size = sizeof(p->blob);
  78. param[1].u.memref.shm_offs = sizeof(p->key);
  79. ret = tee_client_invoke_func(pvt_data.ctx, &inv_arg, param);
  80. if ((ret < 0) || (inv_arg.ret != 0)) {
  81. dev_err(pvt_data.dev, "TA_CMD_SEAL invoke err: %x\n",
  82. inv_arg.ret);
  83. ret = -EFAULT;
  84. } else {
  85. p->blob_len = param[1].u.memref.size;
  86. }
  87. tee_shm_free(reg_shm);
  88. return ret;
  89. }
  90. /*
  91. * Have the TEE unseal(decrypt) the symmetric key
  92. */
  93. static int trusted_tee_unseal(struct trusted_key_payload *p, char *datablob)
  94. {
  95. int ret;
  96. struct tee_ioctl_invoke_arg inv_arg;
  97. struct tee_param param[4];
  98. struct tee_shm *reg_shm = NULL;
  99. memset(&inv_arg, 0, sizeof(inv_arg));
  100. memset(&param, 0, sizeof(param));
  101. reg_shm = tee_shm_register_kernel_buf(pvt_data.ctx, p->key,
  102. sizeof(p->key) + sizeof(p->blob));
  103. if (IS_ERR(reg_shm)) {
  104. dev_err(pvt_data.dev, "shm register failed\n");
  105. return PTR_ERR(reg_shm);
  106. }
  107. inv_arg.func = TA_CMD_UNSEAL;
  108. inv_arg.session = pvt_data.session_id;
  109. inv_arg.num_params = 4;
  110. param[0].attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
  111. param[0].u.memref.shm = reg_shm;
  112. param[0].u.memref.size = p->blob_len;
  113. param[0].u.memref.shm_offs = sizeof(p->key);
  114. param[1].attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT;
  115. param[1].u.memref.shm = reg_shm;
  116. param[1].u.memref.size = sizeof(p->key);
  117. param[1].u.memref.shm_offs = 0;
  118. ret = tee_client_invoke_func(pvt_data.ctx, &inv_arg, param);
  119. if ((ret < 0) || (inv_arg.ret != 0)) {
  120. dev_err(pvt_data.dev, "TA_CMD_UNSEAL invoke err: %x\n",
  121. inv_arg.ret);
  122. ret = -EFAULT;
  123. } else {
  124. p->key_len = param[1].u.memref.size;
  125. }
  126. tee_shm_free(reg_shm);
  127. return ret;
  128. }
  129. /*
  130. * Have the TEE generate random symmetric key
  131. */
  132. static int trusted_tee_get_random(unsigned char *key, size_t key_len)
  133. {
  134. int ret;
  135. struct tee_ioctl_invoke_arg inv_arg;
  136. struct tee_param param[4];
  137. struct tee_shm *reg_shm = NULL;
  138. memset(&inv_arg, 0, sizeof(inv_arg));
  139. memset(&param, 0, sizeof(param));
  140. reg_shm = tee_shm_register_kernel_buf(pvt_data.ctx, key, key_len);
  141. if (IS_ERR(reg_shm)) {
  142. dev_err(pvt_data.dev, "key shm register failed\n");
  143. return PTR_ERR(reg_shm);
  144. }
  145. inv_arg.func = TA_CMD_GET_RANDOM;
  146. inv_arg.session = pvt_data.session_id;
  147. inv_arg.num_params = 4;
  148. param[0].attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT;
  149. param[0].u.memref.shm = reg_shm;
  150. param[0].u.memref.size = key_len;
  151. param[0].u.memref.shm_offs = 0;
  152. ret = tee_client_invoke_func(pvt_data.ctx, &inv_arg, param);
  153. if ((ret < 0) || (inv_arg.ret != 0)) {
  154. dev_err(pvt_data.dev, "TA_CMD_GET_RANDOM invoke err: %x\n",
  155. inv_arg.ret);
  156. ret = -EFAULT;
  157. } else {
  158. ret = param[0].u.memref.size;
  159. }
  160. tee_shm_free(reg_shm);
  161. return ret;
  162. }
  163. static int optee_ctx_match(struct tee_ioctl_version_data *ver, const void *data)
  164. {
  165. if (ver->impl_id == TEE_IMPL_ID_OPTEE)
  166. return 1;
  167. else
  168. return 0;
  169. }
  170. static int trusted_key_probe(struct device *dev)
  171. {
  172. struct tee_client_device *rng_device = to_tee_client_device(dev);
  173. int ret;
  174. struct tee_ioctl_open_session_arg sess_arg;
  175. memset(&sess_arg, 0, sizeof(sess_arg));
  176. pvt_data.ctx = tee_client_open_context(NULL, optee_ctx_match, NULL,
  177. NULL);
  178. if (IS_ERR(pvt_data.ctx))
  179. return -ENODEV;
  180. memcpy(sess_arg.uuid, rng_device->id.uuid.b, TEE_IOCTL_UUID_LEN);
  181. sess_arg.clnt_login = TEE_IOCTL_LOGIN_REE_KERNEL;
  182. sess_arg.num_params = 0;
  183. ret = tee_client_open_session(pvt_data.ctx, &sess_arg, NULL);
  184. if ((ret < 0) || (sess_arg.ret != 0)) {
  185. dev_err(dev, "tee_client_open_session failed, err: %x\n",
  186. sess_arg.ret);
  187. ret = -EINVAL;
  188. goto out_ctx;
  189. }
  190. pvt_data.session_id = sess_arg.session;
  191. ret = register_key_type(&key_type_trusted);
  192. if (ret < 0)
  193. goto out_sess;
  194. pvt_data.dev = dev;
  195. return 0;
  196. out_sess:
  197. tee_client_close_session(pvt_data.ctx, pvt_data.session_id);
  198. out_ctx:
  199. tee_client_close_context(pvt_data.ctx);
  200. return ret;
  201. }
  202. static int trusted_key_remove(struct device *dev)
  203. {
  204. unregister_key_type(&key_type_trusted);
  205. tee_client_close_session(pvt_data.ctx, pvt_data.session_id);
  206. tee_client_close_context(pvt_data.ctx);
  207. return 0;
  208. }
  209. static const struct tee_client_device_id trusted_key_id_table[] = {
  210. {UUID_INIT(0xf04a0fe7, 0x1f5d, 0x4b9b,
  211. 0xab, 0xf7, 0x61, 0x9b, 0x85, 0xb4, 0xce, 0x8c)},
  212. {}
  213. };
  214. MODULE_DEVICE_TABLE(tee, trusted_key_id_table);
  215. static struct tee_client_driver trusted_key_driver = {
  216. .id_table = trusted_key_id_table,
  217. .driver = {
  218. .name = DRIVER_NAME,
  219. .bus = &tee_bus_type,
  220. .probe = trusted_key_probe,
  221. .remove = trusted_key_remove,
  222. },
  223. };
  224. static int trusted_tee_init(void)
  225. {
  226. return driver_register(&trusted_key_driver.driver);
  227. }
  228. static void trusted_tee_exit(void)
  229. {
  230. driver_unregister(&trusted_key_driver.driver);
  231. }
  232. struct trusted_key_ops trusted_key_tee_ops = {
  233. .migratable = 0, /* non-migratable */
  234. .init = trusted_tee_init,
  235. .seal = trusted_tee_seal,
  236. .unseal = trusted_tee_unseal,
  237. .get_random = trusted_tee_get_random,
  238. .exit = trusted_tee_exit,
  239. };