af_rds.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963
  1. /*
  2. * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/module.h>
  34. #include <linux/errno.h>
  35. #include <linux/kernel.h>
  36. #include <linux/gfp.h>
  37. #include <linux/in.h>
  38. #include <linux/ipv6.h>
  39. #include <linux/poll.h>
  40. #include <net/sock.h>
  41. #include "rds.h"
  42. /* this is just used for stats gathering :/ */
  43. static DEFINE_SPINLOCK(rds_sock_lock);
  44. static unsigned long rds_sock_count;
  45. static LIST_HEAD(rds_sock_list);
  46. DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
  47. /*
  48. * This is called as the final descriptor referencing this socket is closed.
  49. * We have to unbind the socket so that another socket can be bound to the
  50. * address it was using.
  51. *
  52. * We have to be careful about racing with the incoming path. sock_orphan()
  53. * sets SOCK_DEAD and we use that as an indicator to the rx path that new
  54. * messages shouldn't be queued.
  55. */
  56. static int rds_release(struct socket *sock)
  57. {
  58. struct sock *sk = sock->sk;
  59. struct rds_sock *rs;
  60. if (!sk)
  61. goto out;
  62. rs = rds_sk_to_rs(sk);
  63. sock_orphan(sk);
  64. /* Note - rds_clear_recv_queue grabs rs_recv_lock, so
  65. * that ensures the recv path has completed messing
  66. * with the socket. */
  67. rds_clear_recv_queue(rs);
  68. rds_cong_remove_socket(rs);
  69. rds_remove_bound(rs);
  70. rds_send_drop_to(rs, NULL);
  71. rds_rdma_drop_keys(rs);
  72. rds_notify_queue_get(rs, NULL);
  73. rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
  74. spin_lock_bh(&rds_sock_lock);
  75. list_del_init(&rs->rs_item);
  76. rds_sock_count--;
  77. spin_unlock_bh(&rds_sock_lock);
  78. rds_trans_put(rs->rs_transport);
  79. sock->sk = NULL;
  80. sock_put(sk);
  81. out:
  82. return 0;
  83. }
  84. /*
  85. * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
  86. * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
  87. * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
  88. * this seems more conservative.
  89. * NB - normally, one would use sk_callback_lock for this, but we can
  90. * get here from interrupts, whereas the network code grabs sk_callback_lock
  91. * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
  92. */
  93. void rds_wake_sk_sleep(struct rds_sock *rs)
  94. {
  95. unsigned long flags;
  96. read_lock_irqsave(&rs->rs_recv_lock, flags);
  97. __rds_wake_sk_sleep(rds_rs_to_sk(rs));
  98. read_unlock_irqrestore(&rs->rs_recv_lock, flags);
  99. }
  100. static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
  101. int peer)
  102. {
  103. struct rds_sock *rs = rds_sk_to_rs(sock->sk);
  104. struct sockaddr_in6 *sin6;
  105. struct sockaddr_in *sin;
  106. int uaddr_len;
  107. /* racey, don't care */
  108. if (peer) {
  109. if (ipv6_addr_any(&rs->rs_conn_addr))
  110. return -ENOTCONN;
  111. if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
  112. sin = (struct sockaddr_in *)uaddr;
  113. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  114. sin->sin_family = AF_INET;
  115. sin->sin_port = rs->rs_conn_port;
  116. sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
  117. uaddr_len = sizeof(*sin);
  118. } else {
  119. sin6 = (struct sockaddr_in6 *)uaddr;
  120. sin6->sin6_family = AF_INET6;
  121. sin6->sin6_port = rs->rs_conn_port;
  122. sin6->sin6_addr = rs->rs_conn_addr;
  123. sin6->sin6_flowinfo = 0;
  124. /* scope_id is the same as in the bound address. */
  125. sin6->sin6_scope_id = rs->rs_bound_scope_id;
  126. uaddr_len = sizeof(*sin6);
  127. }
  128. } else {
  129. /* If socket is not yet bound and the socket is connected,
  130. * set the return address family to be the same as the
  131. * connected address, but with 0 address value. If it is not
  132. * connected, set the family to be AF_UNSPEC (value 0) and
  133. * the address size to be that of an IPv4 address.
  134. */
  135. if (ipv6_addr_any(&rs->rs_bound_addr)) {
  136. if (ipv6_addr_any(&rs->rs_conn_addr)) {
  137. sin = (struct sockaddr_in *)uaddr;
  138. memset(sin, 0, sizeof(*sin));
  139. sin->sin_family = AF_UNSPEC;
  140. return sizeof(*sin);
  141. }
  142. #if IS_ENABLED(CONFIG_IPV6)
  143. if (!(ipv6_addr_type(&rs->rs_conn_addr) &
  144. IPV6_ADDR_MAPPED)) {
  145. sin6 = (struct sockaddr_in6 *)uaddr;
  146. memset(sin6, 0, sizeof(*sin6));
  147. sin6->sin6_family = AF_INET6;
  148. return sizeof(*sin6);
  149. }
  150. #endif
  151. sin = (struct sockaddr_in *)uaddr;
  152. memset(sin, 0, sizeof(*sin));
  153. sin->sin_family = AF_INET;
  154. return sizeof(*sin);
  155. }
  156. if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
  157. sin = (struct sockaddr_in *)uaddr;
  158. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  159. sin->sin_family = AF_INET;
  160. sin->sin_port = rs->rs_bound_port;
  161. sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
  162. uaddr_len = sizeof(*sin);
  163. } else {
  164. sin6 = (struct sockaddr_in6 *)uaddr;
  165. sin6->sin6_family = AF_INET6;
  166. sin6->sin6_port = rs->rs_bound_port;
  167. sin6->sin6_addr = rs->rs_bound_addr;
  168. sin6->sin6_flowinfo = 0;
  169. sin6->sin6_scope_id = rs->rs_bound_scope_id;
  170. uaddr_len = sizeof(*sin6);
  171. }
  172. }
  173. return uaddr_len;
  174. }
  175. /*
  176. * RDS' poll is without a doubt the least intuitive part of the interface,
  177. * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
  178. * a network protocol.
  179. *
  180. * EPOLLIN is asserted if
  181. * - there is data on the receive queue.
  182. * - to signal that a previously congested destination may have become
  183. * uncongested
  184. * - A notification has been queued to the socket (this can be a congestion
  185. * update, or a RDMA completion, or a MSG_ZEROCOPY completion).
  186. *
  187. * EPOLLOUT is asserted if there is room on the send queue. This does not mean
  188. * however, that the next sendmsg() call will succeed. If the application tries
  189. * to send to a congested destination, the system call may still fail (and
  190. * return ENOBUFS).
  191. */
  192. static __poll_t rds_poll(struct file *file, struct socket *sock,
  193. poll_table *wait)
  194. {
  195. struct sock *sk = sock->sk;
  196. struct rds_sock *rs = rds_sk_to_rs(sk);
  197. __poll_t mask = 0;
  198. unsigned long flags;
  199. poll_wait(file, sk_sleep(sk), wait);
  200. if (rs->rs_seen_congestion)
  201. poll_wait(file, &rds_poll_waitq, wait);
  202. read_lock_irqsave(&rs->rs_recv_lock, flags);
  203. if (!rs->rs_cong_monitor) {
  204. /* When a congestion map was updated, we signal EPOLLIN for
  205. * "historical" reasons. Applications can also poll for
  206. * WRBAND instead. */
  207. if (rds_cong_updated_since(&rs->rs_cong_track))
  208. mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
  209. } else {
  210. spin_lock(&rs->rs_lock);
  211. if (rs->rs_cong_notify)
  212. mask |= (EPOLLIN | EPOLLRDNORM);
  213. spin_unlock(&rs->rs_lock);
  214. }
  215. if (!list_empty(&rs->rs_recv_queue) ||
  216. !list_empty(&rs->rs_notify_queue) ||
  217. !list_empty(&rs->rs_zcookie_queue.zcookie_head))
  218. mask |= (EPOLLIN | EPOLLRDNORM);
  219. if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
  220. mask |= (EPOLLOUT | EPOLLWRNORM);
  221. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  222. mask |= POLLERR;
  223. read_unlock_irqrestore(&rs->rs_recv_lock, flags);
  224. /* clear state any time we wake a seen-congested socket */
  225. if (mask)
  226. rs->rs_seen_congestion = 0;
  227. return mask;
  228. }
  229. static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  230. {
  231. struct rds_sock *rs = rds_sk_to_rs(sock->sk);
  232. rds_tos_t utos, tos = 0;
  233. switch (cmd) {
  234. case SIOCRDSSETTOS:
  235. if (get_user(utos, (rds_tos_t __user *)arg))
  236. return -EFAULT;
  237. if (rs->rs_transport &&
  238. rs->rs_transport->get_tos_map)
  239. tos = rs->rs_transport->get_tos_map(utos);
  240. else
  241. return -ENOIOCTLCMD;
  242. spin_lock_bh(&rds_sock_lock);
  243. if (rs->rs_tos || rs->rs_conn) {
  244. spin_unlock_bh(&rds_sock_lock);
  245. return -EINVAL;
  246. }
  247. rs->rs_tos = tos;
  248. spin_unlock_bh(&rds_sock_lock);
  249. break;
  250. case SIOCRDSGETTOS:
  251. spin_lock_bh(&rds_sock_lock);
  252. tos = rs->rs_tos;
  253. spin_unlock_bh(&rds_sock_lock);
  254. if (put_user(tos, (rds_tos_t __user *)arg))
  255. return -EFAULT;
  256. break;
  257. default:
  258. return -ENOIOCTLCMD;
  259. }
  260. return 0;
  261. }
  262. static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len)
  263. {
  264. struct sockaddr_in6 sin6;
  265. struct sockaddr_in sin;
  266. int ret = 0;
  267. /* racing with another thread binding seems ok here */
  268. if (ipv6_addr_any(&rs->rs_bound_addr)) {
  269. ret = -ENOTCONN; /* XXX not a great errno */
  270. goto out;
  271. }
  272. if (len < sizeof(struct sockaddr_in)) {
  273. ret = -EINVAL;
  274. goto out;
  275. } else if (len < sizeof(struct sockaddr_in6)) {
  276. /* Assume IPv4 */
  277. if (copy_from_sockptr(&sin, optval,
  278. sizeof(struct sockaddr_in))) {
  279. ret = -EFAULT;
  280. goto out;
  281. }
  282. ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
  283. sin6.sin6_port = sin.sin_port;
  284. } else {
  285. if (copy_from_sockptr(&sin6, optval,
  286. sizeof(struct sockaddr_in6))) {
  287. ret = -EFAULT;
  288. goto out;
  289. }
  290. }
  291. rds_send_drop_to(rs, &sin6);
  292. out:
  293. return ret;
  294. }
  295. static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval,
  296. int optlen)
  297. {
  298. int value;
  299. if (optlen < sizeof(int))
  300. return -EINVAL;
  301. if (copy_from_sockptr(&value, optval, sizeof(int)))
  302. return -EFAULT;
  303. *optvar = !!value;
  304. return 0;
  305. }
  306. static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen)
  307. {
  308. int ret;
  309. ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
  310. if (ret == 0) {
  311. if (rs->rs_cong_monitor) {
  312. rds_cong_add_socket(rs);
  313. } else {
  314. rds_cong_remove_socket(rs);
  315. rs->rs_cong_mask = 0;
  316. rs->rs_cong_notify = 0;
  317. }
  318. }
  319. return ret;
  320. }
  321. static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen)
  322. {
  323. int t_type;
  324. if (rs->rs_transport)
  325. return -EOPNOTSUPP; /* previously attached to transport */
  326. if (optlen != sizeof(int))
  327. return -EINVAL;
  328. if (copy_from_sockptr(&t_type, optval, sizeof(t_type)))
  329. return -EFAULT;
  330. if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
  331. return -EINVAL;
  332. rs->rs_transport = rds_trans_get(t_type);
  333. return rs->rs_transport ? 0 : -ENOPROTOOPT;
  334. }
  335. static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval,
  336. int optlen, int optname)
  337. {
  338. int val, valbool;
  339. if (optlen != sizeof(int))
  340. return -EFAULT;
  341. if (copy_from_sockptr(&val, optval, sizeof(int)))
  342. return -EFAULT;
  343. valbool = val ? 1 : 0;
  344. if (optname == SO_TIMESTAMP_NEW)
  345. sock_set_flag(sk, SOCK_TSTAMP_NEW);
  346. if (valbool)
  347. sock_set_flag(sk, SOCK_RCVTSTAMP);
  348. else
  349. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  350. return 0;
  351. }
  352. static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval,
  353. int optlen)
  354. {
  355. struct rds_rx_trace_so trace;
  356. int i;
  357. if (optlen != sizeof(struct rds_rx_trace_so))
  358. return -EFAULT;
  359. if (copy_from_sockptr(&trace, optval, sizeof(trace)))
  360. return -EFAULT;
  361. if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
  362. return -EFAULT;
  363. rs->rs_rx_traces = trace.rx_traces;
  364. for (i = 0; i < rs->rs_rx_traces; i++) {
  365. if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
  366. rs->rs_rx_traces = 0;
  367. return -EFAULT;
  368. }
  369. rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
  370. }
  371. return 0;
  372. }
  373. static int rds_setsockopt(struct socket *sock, int level, int optname,
  374. sockptr_t optval, unsigned int optlen)
  375. {
  376. struct rds_sock *rs = rds_sk_to_rs(sock->sk);
  377. int ret;
  378. if (level != SOL_RDS) {
  379. ret = -ENOPROTOOPT;
  380. goto out;
  381. }
  382. switch (optname) {
  383. case RDS_CANCEL_SENT_TO:
  384. ret = rds_cancel_sent_to(rs, optval, optlen);
  385. break;
  386. case RDS_GET_MR:
  387. ret = rds_get_mr(rs, optval, optlen);
  388. break;
  389. case RDS_GET_MR_FOR_DEST:
  390. ret = rds_get_mr_for_dest(rs, optval, optlen);
  391. break;
  392. case RDS_FREE_MR:
  393. ret = rds_free_mr(rs, optval, optlen);
  394. break;
  395. case RDS_RECVERR:
  396. ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
  397. break;
  398. case RDS_CONG_MONITOR:
  399. ret = rds_cong_monitor(rs, optval, optlen);
  400. break;
  401. case SO_RDS_TRANSPORT:
  402. lock_sock(sock->sk);
  403. ret = rds_set_transport(rs, optval, optlen);
  404. release_sock(sock->sk);
  405. break;
  406. case SO_TIMESTAMP_OLD:
  407. case SO_TIMESTAMP_NEW:
  408. lock_sock(sock->sk);
  409. ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
  410. release_sock(sock->sk);
  411. break;
  412. case SO_RDS_MSG_RXPATH_LATENCY:
  413. ret = rds_recv_track_latency(rs, optval, optlen);
  414. break;
  415. default:
  416. ret = -ENOPROTOOPT;
  417. }
  418. out:
  419. return ret;
  420. }
  421. static int rds_getsockopt(struct socket *sock, int level, int optname,
  422. char __user *optval, int __user *optlen)
  423. {
  424. struct rds_sock *rs = rds_sk_to_rs(sock->sk);
  425. int ret = -ENOPROTOOPT, len;
  426. int trans;
  427. if (level != SOL_RDS)
  428. goto out;
  429. if (get_user(len, optlen)) {
  430. ret = -EFAULT;
  431. goto out;
  432. }
  433. switch (optname) {
  434. case RDS_INFO_FIRST ... RDS_INFO_LAST:
  435. ret = rds_info_getsockopt(sock, optname, optval,
  436. optlen);
  437. break;
  438. case RDS_RECVERR:
  439. if (len < sizeof(int))
  440. ret = -EINVAL;
  441. else
  442. if (put_user(rs->rs_recverr, (int __user *) optval) ||
  443. put_user(sizeof(int), optlen))
  444. ret = -EFAULT;
  445. else
  446. ret = 0;
  447. break;
  448. case SO_RDS_TRANSPORT:
  449. if (len < sizeof(int)) {
  450. ret = -EINVAL;
  451. break;
  452. }
  453. trans = (rs->rs_transport ? rs->rs_transport->t_type :
  454. RDS_TRANS_NONE); /* unbound */
  455. if (put_user(trans, (int __user *)optval) ||
  456. put_user(sizeof(int), optlen))
  457. ret = -EFAULT;
  458. else
  459. ret = 0;
  460. break;
  461. default:
  462. break;
  463. }
  464. out:
  465. return ret;
  466. }
  467. static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
  468. int addr_len, int flags)
  469. {
  470. struct sock *sk = sock->sk;
  471. struct sockaddr_in *sin;
  472. struct rds_sock *rs = rds_sk_to_rs(sk);
  473. int ret = 0;
  474. if (addr_len < offsetofend(struct sockaddr, sa_family))
  475. return -EINVAL;
  476. lock_sock(sk);
  477. switch (uaddr->sa_family) {
  478. case AF_INET:
  479. sin = (struct sockaddr_in *)uaddr;
  480. if (addr_len < sizeof(struct sockaddr_in)) {
  481. ret = -EINVAL;
  482. break;
  483. }
  484. if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
  485. ret = -EDESTADDRREQ;
  486. break;
  487. }
  488. if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
  489. sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
  490. ret = -EINVAL;
  491. break;
  492. }
  493. ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
  494. rs->rs_conn_port = sin->sin_port;
  495. break;
  496. #if IS_ENABLED(CONFIG_IPV6)
  497. case AF_INET6: {
  498. struct sockaddr_in6 *sin6;
  499. int addr_type;
  500. sin6 = (struct sockaddr_in6 *)uaddr;
  501. if (addr_len < sizeof(struct sockaddr_in6)) {
  502. ret = -EINVAL;
  503. break;
  504. }
  505. addr_type = ipv6_addr_type(&sin6->sin6_addr);
  506. if (!(addr_type & IPV6_ADDR_UNICAST)) {
  507. __be32 addr4;
  508. if (!(addr_type & IPV6_ADDR_MAPPED)) {
  509. ret = -EPROTOTYPE;
  510. break;
  511. }
  512. /* It is a mapped address. Need to do some sanity
  513. * checks.
  514. */
  515. addr4 = sin6->sin6_addr.s6_addr32[3];
  516. if (addr4 == htonl(INADDR_ANY) ||
  517. addr4 == htonl(INADDR_BROADCAST) ||
  518. ipv4_is_multicast(addr4)) {
  519. ret = -EPROTOTYPE;
  520. break;
  521. }
  522. }
  523. if (addr_type & IPV6_ADDR_LINKLOCAL) {
  524. /* If socket is arleady bound to a link local address,
  525. * the peer address must be on the same link.
  526. */
  527. if (sin6->sin6_scope_id == 0 ||
  528. (!ipv6_addr_any(&rs->rs_bound_addr) &&
  529. rs->rs_bound_scope_id &&
  530. sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
  531. ret = -EINVAL;
  532. break;
  533. }
  534. /* Remember the connected address scope ID. It will
  535. * be checked against the binding local address when
  536. * the socket is bound.
  537. */
  538. rs->rs_bound_scope_id = sin6->sin6_scope_id;
  539. }
  540. rs->rs_conn_addr = sin6->sin6_addr;
  541. rs->rs_conn_port = sin6->sin6_port;
  542. break;
  543. }
  544. #endif
  545. default:
  546. ret = -EAFNOSUPPORT;
  547. break;
  548. }
  549. release_sock(sk);
  550. return ret;
  551. }
  552. static struct proto rds_proto = {
  553. .name = "RDS",
  554. .owner = THIS_MODULE,
  555. .obj_size = sizeof(struct rds_sock),
  556. };
  557. static const struct proto_ops rds_proto_ops = {
  558. .family = AF_RDS,
  559. .owner = THIS_MODULE,
  560. .release = rds_release,
  561. .bind = rds_bind,
  562. .connect = rds_connect,
  563. .socketpair = sock_no_socketpair,
  564. .accept = sock_no_accept,
  565. .getname = rds_getname,
  566. .poll = rds_poll,
  567. .ioctl = rds_ioctl,
  568. .listen = sock_no_listen,
  569. .shutdown = sock_no_shutdown,
  570. .setsockopt = rds_setsockopt,
  571. .getsockopt = rds_getsockopt,
  572. .sendmsg = rds_sendmsg,
  573. .recvmsg = rds_recvmsg,
  574. .mmap = sock_no_mmap,
  575. .sendpage = sock_no_sendpage,
  576. };
  577. static void rds_sock_destruct(struct sock *sk)
  578. {
  579. struct rds_sock *rs = rds_sk_to_rs(sk);
  580. WARN_ON((&rs->rs_item != rs->rs_item.next ||
  581. &rs->rs_item != rs->rs_item.prev));
  582. }
  583. static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
  584. {
  585. struct rds_sock *rs;
  586. sock_init_data(sock, sk);
  587. sock->ops = &rds_proto_ops;
  588. sk->sk_protocol = protocol;
  589. sk->sk_destruct = rds_sock_destruct;
  590. rs = rds_sk_to_rs(sk);
  591. spin_lock_init(&rs->rs_lock);
  592. rwlock_init(&rs->rs_recv_lock);
  593. INIT_LIST_HEAD(&rs->rs_send_queue);
  594. INIT_LIST_HEAD(&rs->rs_recv_queue);
  595. INIT_LIST_HEAD(&rs->rs_notify_queue);
  596. INIT_LIST_HEAD(&rs->rs_cong_list);
  597. rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
  598. spin_lock_init(&rs->rs_rdma_lock);
  599. rs->rs_rdma_keys = RB_ROOT;
  600. rs->rs_rx_traces = 0;
  601. rs->rs_tos = 0;
  602. rs->rs_conn = NULL;
  603. spin_lock_bh(&rds_sock_lock);
  604. list_add_tail(&rs->rs_item, &rds_sock_list);
  605. rds_sock_count++;
  606. spin_unlock_bh(&rds_sock_lock);
  607. return 0;
  608. }
  609. static int rds_create(struct net *net, struct socket *sock, int protocol,
  610. int kern)
  611. {
  612. struct sock *sk;
  613. if (sock->type != SOCK_SEQPACKET || protocol)
  614. return -ESOCKTNOSUPPORT;
  615. sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
  616. if (!sk)
  617. return -ENOMEM;
  618. return __rds_create(sock, sk, protocol);
  619. }
  620. void rds_sock_addref(struct rds_sock *rs)
  621. {
  622. sock_hold(rds_rs_to_sk(rs));
  623. }
  624. void rds_sock_put(struct rds_sock *rs)
  625. {
  626. sock_put(rds_rs_to_sk(rs));
  627. }
  628. static const struct net_proto_family rds_family_ops = {
  629. .family = AF_RDS,
  630. .create = rds_create,
  631. .owner = THIS_MODULE,
  632. };
  633. static void rds_sock_inc_info(struct socket *sock, unsigned int len,
  634. struct rds_info_iterator *iter,
  635. struct rds_info_lengths *lens)
  636. {
  637. struct rds_sock *rs;
  638. struct rds_incoming *inc;
  639. unsigned int total = 0;
  640. len /= sizeof(struct rds_info_message);
  641. spin_lock_bh(&rds_sock_lock);
  642. list_for_each_entry(rs, &rds_sock_list, rs_item) {
  643. /* This option only supports IPv4 sockets. */
  644. if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
  645. continue;
  646. read_lock(&rs->rs_recv_lock);
  647. /* XXX too lazy to maintain counts.. */
  648. list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
  649. total++;
  650. if (total <= len)
  651. rds_inc_info_copy(inc, iter,
  652. inc->i_saddr.s6_addr32[3],
  653. rs->rs_bound_addr_v4,
  654. 1);
  655. }
  656. read_unlock(&rs->rs_recv_lock);
  657. }
  658. spin_unlock_bh(&rds_sock_lock);
  659. lens->nr = total;
  660. lens->each = sizeof(struct rds_info_message);
  661. }
  662. #if IS_ENABLED(CONFIG_IPV6)
  663. static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
  664. struct rds_info_iterator *iter,
  665. struct rds_info_lengths *lens)
  666. {
  667. struct rds_incoming *inc;
  668. unsigned int total = 0;
  669. struct rds_sock *rs;
  670. len /= sizeof(struct rds6_info_message);
  671. spin_lock_bh(&rds_sock_lock);
  672. list_for_each_entry(rs, &rds_sock_list, rs_item) {
  673. read_lock(&rs->rs_recv_lock);
  674. list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
  675. total++;
  676. if (total <= len)
  677. rds6_inc_info_copy(inc, iter, &inc->i_saddr,
  678. &rs->rs_bound_addr, 1);
  679. }
  680. read_unlock(&rs->rs_recv_lock);
  681. }
  682. spin_unlock_bh(&rds_sock_lock);
  683. lens->nr = total;
  684. lens->each = sizeof(struct rds6_info_message);
  685. }
  686. #endif
  687. static void rds_sock_info(struct socket *sock, unsigned int len,
  688. struct rds_info_iterator *iter,
  689. struct rds_info_lengths *lens)
  690. {
  691. struct rds_info_socket sinfo;
  692. unsigned int cnt = 0;
  693. struct rds_sock *rs;
  694. len /= sizeof(struct rds_info_socket);
  695. spin_lock_bh(&rds_sock_lock);
  696. if (len < rds_sock_count) {
  697. cnt = rds_sock_count;
  698. goto out;
  699. }
  700. list_for_each_entry(rs, &rds_sock_list, rs_item) {
  701. /* This option only supports IPv4 sockets. */
  702. if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
  703. continue;
  704. sinfo.sndbuf = rds_sk_sndbuf(rs);
  705. sinfo.rcvbuf = rds_sk_rcvbuf(rs);
  706. sinfo.bound_addr = rs->rs_bound_addr_v4;
  707. sinfo.connected_addr = rs->rs_conn_addr_v4;
  708. sinfo.bound_port = rs->rs_bound_port;
  709. sinfo.connected_port = rs->rs_conn_port;
  710. sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
  711. rds_info_copy(iter, &sinfo, sizeof(sinfo));
  712. cnt++;
  713. }
  714. out:
  715. lens->nr = cnt;
  716. lens->each = sizeof(struct rds_info_socket);
  717. spin_unlock_bh(&rds_sock_lock);
  718. }
  719. #if IS_ENABLED(CONFIG_IPV6)
  720. static void rds6_sock_info(struct socket *sock, unsigned int len,
  721. struct rds_info_iterator *iter,
  722. struct rds_info_lengths *lens)
  723. {
  724. struct rds6_info_socket sinfo6;
  725. struct rds_sock *rs;
  726. len /= sizeof(struct rds6_info_socket);
  727. spin_lock_bh(&rds_sock_lock);
  728. if (len < rds_sock_count)
  729. goto out;
  730. list_for_each_entry(rs, &rds_sock_list, rs_item) {
  731. sinfo6.sndbuf = rds_sk_sndbuf(rs);
  732. sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
  733. sinfo6.bound_addr = rs->rs_bound_addr;
  734. sinfo6.connected_addr = rs->rs_conn_addr;
  735. sinfo6.bound_port = rs->rs_bound_port;
  736. sinfo6.connected_port = rs->rs_conn_port;
  737. sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));
  738. rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
  739. }
  740. out:
  741. lens->nr = rds_sock_count;
  742. lens->each = sizeof(struct rds6_info_socket);
  743. spin_unlock_bh(&rds_sock_lock);
  744. }
  745. #endif
  746. static void rds_exit(void)
  747. {
  748. sock_unregister(rds_family_ops.family);
  749. proto_unregister(&rds_proto);
  750. rds_conn_exit();
  751. rds_cong_exit();
  752. rds_sysctl_exit();
  753. rds_threads_exit();
  754. rds_stats_exit();
  755. rds_page_exit();
  756. rds_bind_lock_destroy();
  757. rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
  758. rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
  759. #if IS_ENABLED(CONFIG_IPV6)
  760. rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
  761. rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
  762. #endif
  763. }
  764. module_exit(rds_exit);
  765. u32 rds_gen_num;
  766. static int __init rds_init(void)
  767. {
  768. int ret;
  769. net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
  770. ret = rds_bind_lock_init();
  771. if (ret)
  772. goto out;
  773. ret = rds_conn_init();
  774. if (ret)
  775. goto out_bind;
  776. ret = rds_threads_init();
  777. if (ret)
  778. goto out_conn;
  779. ret = rds_sysctl_init();
  780. if (ret)
  781. goto out_threads;
  782. ret = rds_stats_init();
  783. if (ret)
  784. goto out_sysctl;
  785. ret = proto_register(&rds_proto, 1);
  786. if (ret)
  787. goto out_stats;
  788. ret = sock_register(&rds_family_ops);
  789. if (ret)
  790. goto out_proto;
  791. rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
  792. rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
  793. #if IS_ENABLED(CONFIG_IPV6)
  794. rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
  795. rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
  796. #endif
  797. goto out;
  798. out_proto:
  799. proto_unregister(&rds_proto);
  800. out_stats:
  801. rds_stats_exit();
  802. out_sysctl:
  803. rds_sysctl_exit();
  804. out_threads:
  805. rds_threads_exit();
  806. out_conn:
  807. rds_conn_exit();
  808. rds_cong_exit();
  809. rds_page_exit();
  810. out_bind:
  811. rds_bind_lock_destroy();
  812. out:
  813. return ret;
  814. }
  815. module_init(rds_init);
  816. #define DRV_VERSION "4.0"
  817. #define DRV_RELDATE "Feb 12, 2009"
  818. MODULE_AUTHOR("Oracle Corporation <[email protected]>");
  819. MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
  820. " v" DRV_VERSION " (" DRV_RELDATE ")");
  821. MODULE_VERSION(DRV_VERSION);
  822. MODULE_LICENSE("Dual BSD/GPL");
  823. MODULE_ALIAS_NETPROTO(PF_RDS);