actions.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2007-2017 Nicira, Inc.
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/skbuff.h>
  7. #include <linux/in.h>
  8. #include <linux/ip.h>
  9. #include <linux/openvswitch.h>
  10. #include <linux/sctp.h>
  11. #include <linux/tcp.h>
  12. #include <linux/udp.h>
  13. #include <linux/in6.h>
  14. #include <linux/if_arp.h>
  15. #include <linux/if_vlan.h>
  16. #include <net/dst.h>
  17. #include <net/ip.h>
  18. #include <net/ipv6.h>
  19. #include <net/ip6_fib.h>
  20. #include <net/checksum.h>
  21. #include <net/dsfield.h>
  22. #include <net/mpls.h>
  23. #include <net/sctp/checksum.h>
  24. #include "datapath.h"
  25. #include "flow.h"
  26. #include "conntrack.h"
  27. #include "vport.h"
  28. #include "flow_netlink.h"
  29. #include "openvswitch_trace.h"
  30. struct deferred_action {
  31. struct sk_buff *skb;
  32. const struct nlattr *actions;
  33. int actions_len;
  34. /* Store pkt_key clone when creating deferred action. */
  35. struct sw_flow_key pkt_key;
  36. };
  37. #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  38. struct ovs_frag_data {
  39. unsigned long dst;
  40. struct vport *vport;
  41. struct ovs_skb_cb cb;
  42. __be16 inner_protocol;
  43. u16 network_offset; /* valid only for MPLS */
  44. u16 vlan_tci;
  45. __be16 vlan_proto;
  46. unsigned int l2_len;
  47. u8 mac_proto;
  48. u8 l2_data[MAX_L2_LEN];
  49. };
  50. static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  51. #define DEFERRED_ACTION_FIFO_SIZE 10
  52. #define OVS_RECURSION_LIMIT 5
  53. #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  54. struct action_fifo {
  55. int head;
  56. int tail;
  57. /* Deferred action fifo queue storage. */
  58. struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  59. };
  60. struct action_flow_keys {
  61. struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  62. };
  63. static struct action_fifo __percpu *action_fifos;
  64. static struct action_flow_keys __percpu *flow_keys;
  65. static DEFINE_PER_CPU(int, exec_actions_level);
  66. /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
  67. * space. Return NULL if out of key spaces.
  68. */
  69. static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
  70. {
  71. struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
  72. int level = this_cpu_read(exec_actions_level);
  73. struct sw_flow_key *key = NULL;
  74. if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
  75. key = &keys->key[level - 1];
  76. *key = *key_;
  77. }
  78. return key;
  79. }
  80. static void action_fifo_init(struct action_fifo *fifo)
  81. {
  82. fifo->head = 0;
  83. fifo->tail = 0;
  84. }
  85. static bool action_fifo_is_empty(const struct action_fifo *fifo)
  86. {
  87. return (fifo->head == fifo->tail);
  88. }
  89. static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
  90. {
  91. if (action_fifo_is_empty(fifo))
  92. return NULL;
  93. return &fifo->fifo[fifo->tail++];
  94. }
  95. static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
  96. {
  97. if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
  98. return NULL;
  99. return &fifo->fifo[fifo->head++];
  100. }
  101. /* Return true if fifo is not full */
  102. static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
  103. const struct sw_flow_key *key,
  104. const struct nlattr *actions,
  105. const int actions_len)
  106. {
  107. struct action_fifo *fifo;
  108. struct deferred_action *da;
  109. fifo = this_cpu_ptr(action_fifos);
  110. da = action_fifo_put(fifo);
  111. if (da) {
  112. da->skb = skb;
  113. da->actions = actions;
  114. da->actions_len = actions_len;
  115. da->pkt_key = *key;
  116. }
  117. return da;
  118. }
  119. static void invalidate_flow_key(struct sw_flow_key *key)
  120. {
  121. key->mac_proto |= SW_FLOW_KEY_INVALID;
  122. }
  123. static bool is_flow_key_valid(const struct sw_flow_key *key)
  124. {
  125. return !(key->mac_proto & SW_FLOW_KEY_INVALID);
  126. }
  127. static int clone_execute(struct datapath *dp, struct sk_buff *skb,
  128. struct sw_flow_key *key,
  129. u32 recirc_id,
  130. const struct nlattr *actions, int len,
  131. bool last, bool clone_flow_key);
  132. static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  133. struct sw_flow_key *key,
  134. const struct nlattr *attr, int len);
  135. static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
  136. __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
  137. {
  138. int err;
  139. err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
  140. if (err)
  141. return err;
  142. if (!mac_len)
  143. key->mac_proto = MAC_PROTO_NONE;
  144. invalidate_flow_key(key);
  145. return 0;
  146. }
  147. static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
  148. const __be16 ethertype)
  149. {
  150. int err;
  151. err = skb_mpls_pop(skb, ethertype, skb->mac_len,
  152. ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
  153. if (err)
  154. return err;
  155. if (ethertype == htons(ETH_P_TEB))
  156. key->mac_proto = MAC_PROTO_ETHERNET;
  157. invalidate_flow_key(key);
  158. return 0;
  159. }
  160. static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
  161. const __be32 *mpls_lse, const __be32 *mask)
  162. {
  163. struct mpls_shim_hdr *stack;
  164. __be32 lse;
  165. int err;
  166. if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
  167. return -ENOMEM;
  168. stack = mpls_hdr(skb);
  169. lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
  170. err = skb_mpls_update_lse(skb, lse);
  171. if (err)
  172. return err;
  173. flow_key->mpls.lse[0] = lse;
  174. return 0;
  175. }
  176. static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
  177. {
  178. int err;
  179. err = skb_vlan_pop(skb);
  180. if (skb_vlan_tag_present(skb)) {
  181. invalidate_flow_key(key);
  182. } else {
  183. key->eth.vlan.tci = 0;
  184. key->eth.vlan.tpid = 0;
  185. }
  186. return err;
  187. }
  188. static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
  189. const struct ovs_action_push_vlan *vlan)
  190. {
  191. if (skb_vlan_tag_present(skb)) {
  192. invalidate_flow_key(key);
  193. } else {
  194. key->eth.vlan.tci = vlan->vlan_tci;
  195. key->eth.vlan.tpid = vlan->vlan_tpid;
  196. }
  197. return skb_vlan_push(skb, vlan->vlan_tpid,
  198. ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
  199. }
  200. /* 'src' is already properly masked. */
  201. static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
  202. {
  203. u16 *dst = (u16 *)dst_;
  204. const u16 *src = (const u16 *)src_;
  205. const u16 *mask = (const u16 *)mask_;
  206. OVS_SET_MASKED(dst[0], src[0], mask[0]);
  207. OVS_SET_MASKED(dst[1], src[1], mask[1]);
  208. OVS_SET_MASKED(dst[2], src[2], mask[2]);
  209. }
  210. static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
  211. const struct ovs_key_ethernet *key,
  212. const struct ovs_key_ethernet *mask)
  213. {
  214. int err;
  215. err = skb_ensure_writable(skb, ETH_HLEN);
  216. if (unlikely(err))
  217. return err;
  218. skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
  219. ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
  220. mask->eth_src);
  221. ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
  222. mask->eth_dst);
  223. skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
  224. ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
  225. ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
  226. return 0;
  227. }
  228. /* pop_eth does not support VLAN packets as this action is never called
  229. * for them.
  230. */
  231. static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
  232. {
  233. int err;
  234. err = skb_eth_pop(skb);
  235. if (err)
  236. return err;
  237. /* safe right before invalidate_flow_key */
  238. key->mac_proto = MAC_PROTO_NONE;
  239. invalidate_flow_key(key);
  240. return 0;
  241. }
  242. static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
  243. const struct ovs_action_push_eth *ethh)
  244. {
  245. int err;
  246. err = skb_eth_push(skb, ethh->addresses.eth_dst,
  247. ethh->addresses.eth_src);
  248. if (err)
  249. return err;
  250. /* safe right before invalidate_flow_key */
  251. key->mac_proto = MAC_PROTO_ETHERNET;
  252. invalidate_flow_key(key);
  253. return 0;
  254. }
  255. static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
  256. const struct nshhdr *nh)
  257. {
  258. int err;
  259. err = nsh_push(skb, nh);
  260. if (err)
  261. return err;
  262. /* safe right before invalidate_flow_key */
  263. key->mac_proto = MAC_PROTO_NONE;
  264. invalidate_flow_key(key);
  265. return 0;
  266. }
  267. static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
  268. {
  269. int err;
  270. err = nsh_pop(skb);
  271. if (err)
  272. return err;
  273. /* safe right before invalidate_flow_key */
  274. if (skb->protocol == htons(ETH_P_TEB))
  275. key->mac_proto = MAC_PROTO_ETHERNET;
  276. else
  277. key->mac_proto = MAC_PROTO_NONE;
  278. invalidate_flow_key(key);
  279. return 0;
  280. }
  281. static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
  282. __be32 addr, __be32 new_addr)
  283. {
  284. int transport_len = skb->len - skb_transport_offset(skb);
  285. if (nh->frag_off & htons(IP_OFFSET))
  286. return;
  287. if (nh->protocol == IPPROTO_TCP) {
  288. if (likely(transport_len >= sizeof(struct tcphdr)))
  289. inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
  290. addr, new_addr, true);
  291. } else if (nh->protocol == IPPROTO_UDP) {
  292. if (likely(transport_len >= sizeof(struct udphdr))) {
  293. struct udphdr *uh = udp_hdr(skb);
  294. if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
  295. inet_proto_csum_replace4(&uh->check, skb,
  296. addr, new_addr, true);
  297. if (!uh->check)
  298. uh->check = CSUM_MANGLED_0;
  299. }
  300. }
  301. }
  302. }
  303. static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
  304. __be32 *addr, __be32 new_addr)
  305. {
  306. update_ip_l4_checksum(skb, nh, *addr, new_addr);
  307. csum_replace4(&nh->check, *addr, new_addr);
  308. skb_clear_hash(skb);
  309. ovs_ct_clear(skb, NULL);
  310. *addr = new_addr;
  311. }
  312. static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
  313. __be32 addr[4], const __be32 new_addr[4])
  314. {
  315. int transport_len = skb->len - skb_transport_offset(skb);
  316. if (l4_proto == NEXTHDR_TCP) {
  317. if (likely(transport_len >= sizeof(struct tcphdr)))
  318. inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
  319. addr, new_addr, true);
  320. } else if (l4_proto == NEXTHDR_UDP) {
  321. if (likely(transport_len >= sizeof(struct udphdr))) {
  322. struct udphdr *uh = udp_hdr(skb);
  323. if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
  324. inet_proto_csum_replace16(&uh->check, skb,
  325. addr, new_addr, true);
  326. if (!uh->check)
  327. uh->check = CSUM_MANGLED_0;
  328. }
  329. }
  330. } else if (l4_proto == NEXTHDR_ICMP) {
  331. if (likely(transport_len >= sizeof(struct icmp6hdr)))
  332. inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
  333. skb, addr, new_addr, true);
  334. }
  335. }
  336. static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
  337. const __be32 mask[4], __be32 masked[4])
  338. {
  339. masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
  340. masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
  341. masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
  342. masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
  343. }
  344. static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
  345. __be32 addr[4], const __be32 new_addr[4],
  346. bool recalculate_csum)
  347. {
  348. if (recalculate_csum)
  349. update_ipv6_checksum(skb, l4_proto, addr, new_addr);
  350. skb_clear_hash(skb);
  351. ovs_ct_clear(skb, NULL);
  352. memcpy(addr, new_addr, sizeof(__be32[4]));
  353. }
  354. static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
  355. {
  356. u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
  357. ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
  358. if (skb->ip_summed == CHECKSUM_COMPLETE)
  359. csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
  360. (__force __wsum)(ipv6_tclass << 12));
  361. ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
  362. }
  363. static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
  364. {
  365. u32 ofl;
  366. ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2];
  367. fl = OVS_MASKED(ofl, fl, mask);
  368. /* Bits 21-24 are always unmasked, so this retains their values. */
  369. nh->flow_lbl[0] = (u8)(fl >> 16);
  370. nh->flow_lbl[1] = (u8)(fl >> 8);
  371. nh->flow_lbl[2] = (u8)fl;
  372. if (skb->ip_summed == CHECKSUM_COMPLETE)
  373. csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
  374. }
  375. static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
  376. {
  377. new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
  378. if (skb->ip_summed == CHECKSUM_COMPLETE)
  379. csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
  380. (__force __wsum)(new_ttl << 8));
  381. nh->hop_limit = new_ttl;
  382. }
  383. static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
  384. u8 mask)
  385. {
  386. new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
  387. csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
  388. nh->ttl = new_ttl;
  389. }
  390. static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
  391. const struct ovs_key_ipv4 *key,
  392. const struct ovs_key_ipv4 *mask)
  393. {
  394. struct iphdr *nh;
  395. __be32 new_addr;
  396. int err;
  397. err = skb_ensure_writable(skb, skb_network_offset(skb) +
  398. sizeof(struct iphdr));
  399. if (unlikely(err))
  400. return err;
  401. nh = ip_hdr(skb);
  402. /* Setting an IP addresses is typically only a side effect of
  403. * matching on them in the current userspace implementation, so it
  404. * makes sense to check if the value actually changed.
  405. */
  406. if (mask->ipv4_src) {
  407. new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
  408. if (unlikely(new_addr != nh->saddr)) {
  409. set_ip_addr(skb, nh, &nh->saddr, new_addr);
  410. flow_key->ipv4.addr.src = new_addr;
  411. }
  412. }
  413. if (mask->ipv4_dst) {
  414. new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
  415. if (unlikely(new_addr != nh->daddr)) {
  416. set_ip_addr(skb, nh, &nh->daddr, new_addr);
  417. flow_key->ipv4.addr.dst = new_addr;
  418. }
  419. }
  420. if (mask->ipv4_tos) {
  421. ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
  422. flow_key->ip.tos = nh->tos;
  423. }
  424. if (mask->ipv4_ttl) {
  425. set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
  426. flow_key->ip.ttl = nh->ttl;
  427. }
  428. return 0;
  429. }
  430. static bool is_ipv6_mask_nonzero(const __be32 addr[4])
  431. {
  432. return !!(addr[0] | addr[1] | addr[2] | addr[3]);
  433. }
  434. static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
  435. const struct ovs_key_ipv6 *key,
  436. const struct ovs_key_ipv6 *mask)
  437. {
  438. struct ipv6hdr *nh;
  439. int err;
  440. err = skb_ensure_writable(skb, skb_network_offset(skb) +
  441. sizeof(struct ipv6hdr));
  442. if (unlikely(err))
  443. return err;
  444. nh = ipv6_hdr(skb);
  445. /* Setting an IP addresses is typically only a side effect of
  446. * matching on them in the current userspace implementation, so it
  447. * makes sense to check if the value actually changed.
  448. */
  449. if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
  450. __be32 *saddr = (__be32 *)&nh->saddr;
  451. __be32 masked[4];
  452. mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
  453. if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
  454. set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
  455. true);
  456. memcpy(&flow_key->ipv6.addr.src, masked,
  457. sizeof(flow_key->ipv6.addr.src));
  458. }
  459. }
  460. if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
  461. unsigned int offset = 0;
  462. int flags = IP6_FH_F_SKIP_RH;
  463. bool recalc_csum = true;
  464. __be32 *daddr = (__be32 *)&nh->daddr;
  465. __be32 masked[4];
  466. mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
  467. if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
  468. if (ipv6_ext_hdr(nh->nexthdr))
  469. recalc_csum = (ipv6_find_hdr(skb, &offset,
  470. NEXTHDR_ROUTING,
  471. NULL, &flags)
  472. != NEXTHDR_ROUTING);
  473. set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
  474. recalc_csum);
  475. memcpy(&flow_key->ipv6.addr.dst, masked,
  476. sizeof(flow_key->ipv6.addr.dst));
  477. }
  478. }
  479. if (mask->ipv6_tclass) {
  480. set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
  481. flow_key->ip.tos = ipv6_get_dsfield(nh);
  482. }
  483. if (mask->ipv6_label) {
  484. set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
  485. ntohl(mask->ipv6_label));
  486. flow_key->ipv6.label =
  487. *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
  488. }
  489. if (mask->ipv6_hlimit) {
  490. set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
  491. flow_key->ip.ttl = nh->hop_limit;
  492. }
  493. return 0;
  494. }
  495. static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
  496. const struct nlattr *a)
  497. {
  498. struct nshhdr *nh;
  499. size_t length;
  500. int err;
  501. u8 flags;
  502. u8 ttl;
  503. int i;
  504. struct ovs_key_nsh key;
  505. struct ovs_key_nsh mask;
  506. err = nsh_key_from_nlattr(a, &key, &mask);
  507. if (err)
  508. return err;
  509. /* Make sure the NSH base header is there */
  510. if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
  511. return -ENOMEM;
  512. nh = nsh_hdr(skb);
  513. length = nsh_hdr_len(nh);
  514. /* Make sure the whole NSH header is there */
  515. err = skb_ensure_writable(skb, skb_network_offset(skb) +
  516. length);
  517. if (unlikely(err))
  518. return err;
  519. nh = nsh_hdr(skb);
  520. skb_postpull_rcsum(skb, nh, length);
  521. flags = nsh_get_flags(nh);
  522. flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
  523. flow_key->nsh.base.flags = flags;
  524. ttl = nsh_get_ttl(nh);
  525. ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
  526. flow_key->nsh.base.ttl = ttl;
  527. nsh_set_flags_and_ttl(nh, flags, ttl);
  528. nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
  529. mask.base.path_hdr);
  530. flow_key->nsh.base.path_hdr = nh->path_hdr;
  531. switch (nh->mdtype) {
  532. case NSH_M_TYPE1:
  533. for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
  534. nh->md1.context[i] =
  535. OVS_MASKED(nh->md1.context[i], key.context[i],
  536. mask.context[i]);
  537. }
  538. memcpy(flow_key->nsh.context, nh->md1.context,
  539. sizeof(nh->md1.context));
  540. break;
  541. case NSH_M_TYPE2:
  542. memset(flow_key->nsh.context, 0,
  543. sizeof(flow_key->nsh.context));
  544. break;
  545. default:
  546. return -EINVAL;
  547. }
  548. skb_postpush_rcsum(skb, nh, length);
  549. return 0;
  550. }
  551. /* Must follow skb_ensure_writable() since that can move the skb data. */
  552. static void set_tp_port(struct sk_buff *skb, __be16 *port,
  553. __be16 new_port, __sum16 *check)
  554. {
  555. ovs_ct_clear(skb, NULL);
  556. inet_proto_csum_replace2(check, skb, *port, new_port, false);
  557. *port = new_port;
  558. }
  559. static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
  560. const struct ovs_key_udp *key,
  561. const struct ovs_key_udp *mask)
  562. {
  563. struct udphdr *uh;
  564. __be16 src, dst;
  565. int err;
  566. err = skb_ensure_writable(skb, skb_transport_offset(skb) +
  567. sizeof(struct udphdr));
  568. if (unlikely(err))
  569. return err;
  570. uh = udp_hdr(skb);
  571. /* Either of the masks is non-zero, so do not bother checking them. */
  572. src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
  573. dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
  574. if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
  575. if (likely(src != uh->source)) {
  576. set_tp_port(skb, &uh->source, src, &uh->check);
  577. flow_key->tp.src = src;
  578. }
  579. if (likely(dst != uh->dest)) {
  580. set_tp_port(skb, &uh->dest, dst, &uh->check);
  581. flow_key->tp.dst = dst;
  582. }
  583. if (unlikely(!uh->check))
  584. uh->check = CSUM_MANGLED_0;
  585. } else {
  586. uh->source = src;
  587. uh->dest = dst;
  588. flow_key->tp.src = src;
  589. flow_key->tp.dst = dst;
  590. ovs_ct_clear(skb, NULL);
  591. }
  592. skb_clear_hash(skb);
  593. return 0;
  594. }
  595. static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
  596. const struct ovs_key_tcp *key,
  597. const struct ovs_key_tcp *mask)
  598. {
  599. struct tcphdr *th;
  600. __be16 src, dst;
  601. int err;
  602. err = skb_ensure_writable(skb, skb_transport_offset(skb) +
  603. sizeof(struct tcphdr));
  604. if (unlikely(err))
  605. return err;
  606. th = tcp_hdr(skb);
  607. src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
  608. if (likely(src != th->source)) {
  609. set_tp_port(skb, &th->source, src, &th->check);
  610. flow_key->tp.src = src;
  611. }
  612. dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
  613. if (likely(dst != th->dest)) {
  614. set_tp_port(skb, &th->dest, dst, &th->check);
  615. flow_key->tp.dst = dst;
  616. }
  617. skb_clear_hash(skb);
  618. return 0;
  619. }
  620. static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
  621. const struct ovs_key_sctp *key,
  622. const struct ovs_key_sctp *mask)
  623. {
  624. unsigned int sctphoff = skb_transport_offset(skb);
  625. struct sctphdr *sh;
  626. __le32 old_correct_csum, new_csum, old_csum;
  627. int err;
  628. err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
  629. if (unlikely(err))
  630. return err;
  631. sh = sctp_hdr(skb);
  632. old_csum = sh->checksum;
  633. old_correct_csum = sctp_compute_cksum(skb, sctphoff);
  634. sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
  635. sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
  636. new_csum = sctp_compute_cksum(skb, sctphoff);
  637. /* Carry any checksum errors through. */
  638. sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
  639. skb_clear_hash(skb);
  640. ovs_ct_clear(skb, NULL);
  641. flow_key->tp.src = sh->source;
  642. flow_key->tp.dst = sh->dest;
  643. return 0;
  644. }
  645. static int ovs_vport_output(struct net *net, struct sock *sk,
  646. struct sk_buff *skb)
  647. {
  648. struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
  649. struct vport *vport = data->vport;
  650. if (skb_cow_head(skb, data->l2_len) < 0) {
  651. kfree_skb(skb);
  652. return -ENOMEM;
  653. }
  654. __skb_dst_copy(skb, data->dst);
  655. *OVS_CB(skb) = data->cb;
  656. skb->inner_protocol = data->inner_protocol;
  657. if (data->vlan_tci & VLAN_CFI_MASK)
  658. __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
  659. else
  660. __vlan_hwaccel_clear_tag(skb);
  661. /* Reconstruct the MAC header. */
  662. skb_push(skb, data->l2_len);
  663. memcpy(skb->data, &data->l2_data, data->l2_len);
  664. skb_postpush_rcsum(skb, skb->data, data->l2_len);
  665. skb_reset_mac_header(skb);
  666. if (eth_p_mpls(skb->protocol)) {
  667. skb->inner_network_header = skb->network_header;
  668. skb_set_network_header(skb, data->network_offset);
  669. skb_reset_mac_len(skb);
  670. }
  671. ovs_vport_send(vport, skb, data->mac_proto);
  672. return 0;
  673. }
  674. static unsigned int
  675. ovs_dst_get_mtu(const struct dst_entry *dst)
  676. {
  677. return dst->dev->mtu;
  678. }
  679. static struct dst_ops ovs_dst_ops = {
  680. .family = AF_UNSPEC,
  681. .mtu = ovs_dst_get_mtu,
  682. };
  683. /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
  684. * ovs_vport_output(), which is called once per fragmented packet.
  685. */
  686. static void prepare_frag(struct vport *vport, struct sk_buff *skb,
  687. u16 orig_network_offset, u8 mac_proto)
  688. {
  689. unsigned int hlen = skb_network_offset(skb);
  690. struct ovs_frag_data *data;
  691. data = this_cpu_ptr(&ovs_frag_data_storage);
  692. data->dst = skb->_skb_refdst;
  693. data->vport = vport;
  694. data->cb = *OVS_CB(skb);
  695. data->inner_protocol = skb->inner_protocol;
  696. data->network_offset = orig_network_offset;
  697. if (skb_vlan_tag_present(skb))
  698. data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
  699. else
  700. data->vlan_tci = 0;
  701. data->vlan_proto = skb->vlan_proto;
  702. data->mac_proto = mac_proto;
  703. data->l2_len = hlen;
  704. memcpy(&data->l2_data, skb->data, hlen);
  705. memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
  706. skb_pull(skb, hlen);
  707. }
  708. static void ovs_fragment(struct net *net, struct vport *vport,
  709. struct sk_buff *skb, u16 mru,
  710. struct sw_flow_key *key)
  711. {
  712. u16 orig_network_offset = 0;
  713. if (eth_p_mpls(skb->protocol)) {
  714. orig_network_offset = skb_network_offset(skb);
  715. skb->network_header = skb->inner_network_header;
  716. }
  717. if (skb_network_offset(skb) > MAX_L2_LEN) {
  718. OVS_NLERR(1, "L2 header too long to fragment");
  719. goto err;
  720. }
  721. if (key->eth.type == htons(ETH_P_IP)) {
  722. struct rtable ovs_rt = { 0 };
  723. unsigned long orig_dst;
  724. prepare_frag(vport, skb, orig_network_offset,
  725. ovs_key_mac_proto(key));
  726. dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
  727. DST_OBSOLETE_NONE, DST_NOCOUNT);
  728. ovs_rt.dst.dev = vport->dev;
  729. orig_dst = skb->_skb_refdst;
  730. skb_dst_set_noref(skb, &ovs_rt.dst);
  731. IPCB(skb)->frag_max_size = mru;
  732. ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
  733. refdst_drop(orig_dst);
  734. } else if (key->eth.type == htons(ETH_P_IPV6)) {
  735. unsigned long orig_dst;
  736. struct rt6_info ovs_rt;
  737. prepare_frag(vport, skb, orig_network_offset,
  738. ovs_key_mac_proto(key));
  739. memset(&ovs_rt, 0, sizeof(ovs_rt));
  740. dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
  741. DST_OBSOLETE_NONE, DST_NOCOUNT);
  742. ovs_rt.dst.dev = vport->dev;
  743. orig_dst = skb->_skb_refdst;
  744. skb_dst_set_noref(skb, &ovs_rt.dst);
  745. IP6CB(skb)->frag_max_size = mru;
  746. ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
  747. refdst_drop(orig_dst);
  748. } else {
  749. WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
  750. ovs_vport_name(vport), ntohs(key->eth.type), mru,
  751. vport->dev->mtu);
  752. goto err;
  753. }
  754. return;
  755. err:
  756. kfree_skb(skb);
  757. }
  758. static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
  759. struct sw_flow_key *key)
  760. {
  761. struct vport *vport = ovs_vport_rcu(dp, out_port);
  762. if (likely(vport && netif_carrier_ok(vport->dev))) {
  763. u16 mru = OVS_CB(skb)->mru;
  764. u32 cutlen = OVS_CB(skb)->cutlen;
  765. if (unlikely(cutlen > 0)) {
  766. if (skb->len - cutlen > ovs_mac_header_len(key))
  767. pskb_trim(skb, skb->len - cutlen);
  768. else
  769. pskb_trim(skb, ovs_mac_header_len(key));
  770. }
  771. if (likely(!mru ||
  772. (skb->len <= mru + vport->dev->hard_header_len))) {
  773. ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
  774. } else if (mru <= vport->dev->mtu) {
  775. struct net *net = read_pnet(&dp->net);
  776. ovs_fragment(net, vport, skb, mru, key);
  777. } else {
  778. kfree_skb(skb);
  779. }
  780. } else {
  781. kfree_skb(skb);
  782. }
  783. }
  784. static int output_userspace(struct datapath *dp, struct sk_buff *skb,
  785. struct sw_flow_key *key, const struct nlattr *attr,
  786. const struct nlattr *actions, int actions_len,
  787. uint32_t cutlen)
  788. {
  789. struct dp_upcall_info upcall;
  790. const struct nlattr *a;
  791. int rem;
  792. memset(&upcall, 0, sizeof(upcall));
  793. upcall.cmd = OVS_PACKET_CMD_ACTION;
  794. upcall.mru = OVS_CB(skb)->mru;
  795. for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
  796. a = nla_next(a, &rem)) {
  797. switch (nla_type(a)) {
  798. case OVS_USERSPACE_ATTR_USERDATA:
  799. upcall.userdata = a;
  800. break;
  801. case OVS_USERSPACE_ATTR_PID:
  802. if (dp->user_features &
  803. OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
  804. upcall.portid =
  805. ovs_dp_get_upcall_portid(dp,
  806. smp_processor_id());
  807. else
  808. upcall.portid = nla_get_u32(a);
  809. break;
  810. case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
  811. /* Get out tunnel info. */
  812. struct vport *vport;
  813. vport = ovs_vport_rcu(dp, nla_get_u32(a));
  814. if (vport) {
  815. int err;
  816. err = dev_fill_metadata_dst(vport->dev, skb);
  817. if (!err)
  818. upcall.egress_tun_info = skb_tunnel_info(skb);
  819. }
  820. break;
  821. }
  822. case OVS_USERSPACE_ATTR_ACTIONS: {
  823. /* Include actions. */
  824. upcall.actions = actions;
  825. upcall.actions_len = actions_len;
  826. break;
  827. }
  828. } /* End of switch. */
  829. }
  830. return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
  831. }
  832. static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
  833. struct sw_flow_key *key,
  834. const struct nlattr *attr)
  835. {
  836. /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
  837. struct nlattr *actions = nla_data(attr);
  838. if (nla_len(actions))
  839. return clone_execute(dp, skb, key, 0, nla_data(actions),
  840. nla_len(actions), true, false);
  841. consume_skb(skb);
  842. return 0;
  843. }
  844. /* When 'last' is true, sample() should always consume the 'skb'.
  845. * Otherwise, sample() should keep 'skb' intact regardless what
  846. * actions are executed within sample().
  847. */
  848. static int sample(struct datapath *dp, struct sk_buff *skb,
  849. struct sw_flow_key *key, const struct nlattr *attr,
  850. bool last)
  851. {
  852. struct nlattr *actions;
  853. struct nlattr *sample_arg;
  854. int rem = nla_len(attr);
  855. const struct sample_arg *arg;
  856. bool clone_flow_key;
  857. /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
  858. sample_arg = nla_data(attr);
  859. arg = nla_data(sample_arg);
  860. actions = nla_next(sample_arg, &rem);
  861. if ((arg->probability != U32_MAX) &&
  862. (!arg->probability || get_random_u32() > arg->probability)) {
  863. if (last)
  864. consume_skb(skb);
  865. return 0;
  866. }
  867. clone_flow_key = !arg->exec;
  868. return clone_execute(dp, skb, key, 0, actions, rem, last,
  869. clone_flow_key);
  870. }
  871. /* When 'last' is true, clone() should always consume the 'skb'.
  872. * Otherwise, clone() should keep 'skb' intact regardless what
  873. * actions are executed within clone().
  874. */
  875. static int clone(struct datapath *dp, struct sk_buff *skb,
  876. struct sw_flow_key *key, const struct nlattr *attr,
  877. bool last)
  878. {
  879. struct nlattr *actions;
  880. struct nlattr *clone_arg;
  881. int rem = nla_len(attr);
  882. bool dont_clone_flow_key;
  883. /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
  884. clone_arg = nla_data(attr);
  885. dont_clone_flow_key = nla_get_u32(clone_arg);
  886. actions = nla_next(clone_arg, &rem);
  887. return clone_execute(dp, skb, key, 0, actions, rem, last,
  888. !dont_clone_flow_key);
  889. }
  890. static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
  891. const struct nlattr *attr)
  892. {
  893. struct ovs_action_hash *hash_act = nla_data(attr);
  894. u32 hash = 0;
  895. /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
  896. hash = skb_get_hash(skb);
  897. hash = jhash_1word(hash, hash_act->hash_basis);
  898. if (!hash)
  899. hash = 0x1;
  900. key->ovs_flow_hash = hash;
  901. }
  902. static int execute_set_action(struct sk_buff *skb,
  903. struct sw_flow_key *flow_key,
  904. const struct nlattr *a)
  905. {
  906. /* Only tunnel set execution is supported without a mask. */
  907. if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
  908. struct ovs_tunnel_info *tun = nla_data(a);
  909. skb_dst_drop(skb);
  910. dst_hold((struct dst_entry *)tun->tun_dst);
  911. skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
  912. return 0;
  913. }
  914. return -EINVAL;
  915. }
  916. /* Mask is at the midpoint of the data. */
  917. #define get_mask(a, type) ((const type)nla_data(a) + 1)
  918. static int execute_masked_set_action(struct sk_buff *skb,
  919. struct sw_flow_key *flow_key,
  920. const struct nlattr *a)
  921. {
  922. int err = 0;
  923. switch (nla_type(a)) {
  924. case OVS_KEY_ATTR_PRIORITY:
  925. OVS_SET_MASKED(skb->priority, nla_get_u32(a),
  926. *get_mask(a, u32 *));
  927. flow_key->phy.priority = skb->priority;
  928. break;
  929. case OVS_KEY_ATTR_SKB_MARK:
  930. OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
  931. flow_key->phy.skb_mark = skb->mark;
  932. break;
  933. case OVS_KEY_ATTR_TUNNEL_INFO:
  934. /* Masked data not supported for tunnel. */
  935. err = -EINVAL;
  936. break;
  937. case OVS_KEY_ATTR_ETHERNET:
  938. err = set_eth_addr(skb, flow_key, nla_data(a),
  939. get_mask(a, struct ovs_key_ethernet *));
  940. break;
  941. case OVS_KEY_ATTR_NSH:
  942. err = set_nsh(skb, flow_key, a);
  943. break;
  944. case OVS_KEY_ATTR_IPV4:
  945. err = set_ipv4(skb, flow_key, nla_data(a),
  946. get_mask(a, struct ovs_key_ipv4 *));
  947. break;
  948. case OVS_KEY_ATTR_IPV6:
  949. err = set_ipv6(skb, flow_key, nla_data(a),
  950. get_mask(a, struct ovs_key_ipv6 *));
  951. break;
  952. case OVS_KEY_ATTR_TCP:
  953. err = set_tcp(skb, flow_key, nla_data(a),
  954. get_mask(a, struct ovs_key_tcp *));
  955. break;
  956. case OVS_KEY_ATTR_UDP:
  957. err = set_udp(skb, flow_key, nla_data(a),
  958. get_mask(a, struct ovs_key_udp *));
  959. break;
  960. case OVS_KEY_ATTR_SCTP:
  961. err = set_sctp(skb, flow_key, nla_data(a),
  962. get_mask(a, struct ovs_key_sctp *));
  963. break;
  964. case OVS_KEY_ATTR_MPLS:
  965. err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
  966. __be32 *));
  967. break;
  968. case OVS_KEY_ATTR_CT_STATE:
  969. case OVS_KEY_ATTR_CT_ZONE:
  970. case OVS_KEY_ATTR_CT_MARK:
  971. case OVS_KEY_ATTR_CT_LABELS:
  972. case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
  973. case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
  974. err = -EINVAL;
  975. break;
  976. }
  977. return err;
  978. }
  979. static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
  980. struct sw_flow_key *key,
  981. const struct nlattr *a, bool last)
  982. {
  983. u32 recirc_id;
  984. if (!is_flow_key_valid(key)) {
  985. int err;
  986. err = ovs_flow_key_update(skb, key);
  987. if (err)
  988. return err;
  989. }
  990. BUG_ON(!is_flow_key_valid(key));
  991. recirc_id = nla_get_u32(a);
  992. return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
  993. }
  994. static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
  995. struct sw_flow_key *key,
  996. const struct nlattr *attr, bool last)
  997. {
  998. struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
  999. const struct nlattr *actions, *cpl_arg;
  1000. int len, max_len, rem = nla_len(attr);
  1001. const struct check_pkt_len_arg *arg;
  1002. bool clone_flow_key;
  1003. /* The first netlink attribute in 'attr' is always
  1004. * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
  1005. */
  1006. cpl_arg = nla_data(attr);
  1007. arg = nla_data(cpl_arg);
  1008. len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
  1009. max_len = arg->pkt_len;
  1010. if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
  1011. len <= max_len) {
  1012. /* Second netlink attribute in 'attr' is always
  1013. * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
  1014. */
  1015. actions = nla_next(cpl_arg, &rem);
  1016. clone_flow_key = !arg->exec_for_lesser_equal;
  1017. } else {
  1018. /* Third netlink attribute in 'attr' is always
  1019. * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
  1020. */
  1021. actions = nla_next(cpl_arg, &rem);
  1022. actions = nla_next(actions, &rem);
  1023. clone_flow_key = !arg->exec_for_greater;
  1024. }
  1025. return clone_execute(dp, skb, key, 0, nla_data(actions),
  1026. nla_len(actions), last, clone_flow_key);
  1027. }
  1028. static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
  1029. {
  1030. int err;
  1031. if (skb->protocol == htons(ETH_P_IPV6)) {
  1032. struct ipv6hdr *nh;
  1033. err = skb_ensure_writable(skb, skb_network_offset(skb) +
  1034. sizeof(*nh));
  1035. if (unlikely(err))
  1036. return err;
  1037. nh = ipv6_hdr(skb);
  1038. if (nh->hop_limit <= 1)
  1039. return -EHOSTUNREACH;
  1040. key->ip.ttl = --nh->hop_limit;
  1041. } else if (skb->protocol == htons(ETH_P_IP)) {
  1042. struct iphdr *nh;
  1043. u8 old_ttl;
  1044. err = skb_ensure_writable(skb, skb_network_offset(skb) +
  1045. sizeof(*nh));
  1046. if (unlikely(err))
  1047. return err;
  1048. nh = ip_hdr(skb);
  1049. if (nh->ttl <= 1)
  1050. return -EHOSTUNREACH;
  1051. old_ttl = nh->ttl--;
  1052. csum_replace2(&nh->check, htons(old_ttl << 8),
  1053. htons(nh->ttl << 8));
  1054. key->ip.ttl = nh->ttl;
  1055. }
  1056. return 0;
  1057. }
  1058. /* Execute a list of actions against 'skb'. */
  1059. static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  1060. struct sw_flow_key *key,
  1061. const struct nlattr *attr, int len)
  1062. {
  1063. const struct nlattr *a;
  1064. int rem;
  1065. for (a = attr, rem = len; rem > 0;
  1066. a = nla_next(a, &rem)) {
  1067. int err = 0;
  1068. if (trace_ovs_do_execute_action_enabled())
  1069. trace_ovs_do_execute_action(dp, skb, key, a, rem);
  1070. switch (nla_type(a)) {
  1071. case OVS_ACTION_ATTR_OUTPUT: {
  1072. int port = nla_get_u32(a);
  1073. struct sk_buff *clone;
  1074. /* Every output action needs a separate clone
  1075. * of 'skb', In case the output action is the
  1076. * last action, cloning can be avoided.
  1077. */
  1078. if (nla_is_last(a, rem)) {
  1079. do_output(dp, skb, port, key);
  1080. /* 'skb' has been used for output.
  1081. */
  1082. return 0;
  1083. }
  1084. clone = skb_clone(skb, GFP_ATOMIC);
  1085. if (clone)
  1086. do_output(dp, clone, port, key);
  1087. OVS_CB(skb)->cutlen = 0;
  1088. break;
  1089. }
  1090. case OVS_ACTION_ATTR_TRUNC: {
  1091. struct ovs_action_trunc *trunc = nla_data(a);
  1092. if (skb->len > trunc->max_len)
  1093. OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
  1094. break;
  1095. }
  1096. case OVS_ACTION_ATTR_USERSPACE:
  1097. output_userspace(dp, skb, key, a, attr,
  1098. len, OVS_CB(skb)->cutlen);
  1099. OVS_CB(skb)->cutlen = 0;
  1100. break;
  1101. case OVS_ACTION_ATTR_HASH:
  1102. execute_hash(skb, key, a);
  1103. break;
  1104. case OVS_ACTION_ATTR_PUSH_MPLS: {
  1105. struct ovs_action_push_mpls *mpls = nla_data(a);
  1106. err = push_mpls(skb, key, mpls->mpls_lse,
  1107. mpls->mpls_ethertype, skb->mac_len);
  1108. break;
  1109. }
  1110. case OVS_ACTION_ATTR_ADD_MPLS: {
  1111. struct ovs_action_add_mpls *mpls = nla_data(a);
  1112. __u16 mac_len = 0;
  1113. if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
  1114. mac_len = skb->mac_len;
  1115. err = push_mpls(skb, key, mpls->mpls_lse,
  1116. mpls->mpls_ethertype, mac_len);
  1117. break;
  1118. }
  1119. case OVS_ACTION_ATTR_POP_MPLS:
  1120. err = pop_mpls(skb, key, nla_get_be16(a));
  1121. break;
  1122. case OVS_ACTION_ATTR_PUSH_VLAN:
  1123. err = push_vlan(skb, key, nla_data(a));
  1124. break;
  1125. case OVS_ACTION_ATTR_POP_VLAN:
  1126. err = pop_vlan(skb, key);
  1127. break;
  1128. case OVS_ACTION_ATTR_RECIRC: {
  1129. bool last = nla_is_last(a, rem);
  1130. err = execute_recirc(dp, skb, key, a, last);
  1131. if (last) {
  1132. /* If this is the last action, the skb has
  1133. * been consumed or freed.
  1134. * Return immediately.
  1135. */
  1136. return err;
  1137. }
  1138. break;
  1139. }
  1140. case OVS_ACTION_ATTR_SET:
  1141. err = execute_set_action(skb, key, nla_data(a));
  1142. break;
  1143. case OVS_ACTION_ATTR_SET_MASKED:
  1144. case OVS_ACTION_ATTR_SET_TO_MASKED:
  1145. err = execute_masked_set_action(skb, key, nla_data(a));
  1146. break;
  1147. case OVS_ACTION_ATTR_SAMPLE: {
  1148. bool last = nla_is_last(a, rem);
  1149. err = sample(dp, skb, key, a, last);
  1150. if (last)
  1151. return err;
  1152. break;
  1153. }
  1154. case OVS_ACTION_ATTR_CT:
  1155. if (!is_flow_key_valid(key)) {
  1156. err = ovs_flow_key_update(skb, key);
  1157. if (err)
  1158. return err;
  1159. }
  1160. err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
  1161. nla_data(a));
  1162. /* Hide stolen IP fragments from user space. */
  1163. if (err)
  1164. return err == -EINPROGRESS ? 0 : err;
  1165. break;
  1166. case OVS_ACTION_ATTR_CT_CLEAR:
  1167. err = ovs_ct_clear(skb, key);
  1168. break;
  1169. case OVS_ACTION_ATTR_PUSH_ETH:
  1170. err = push_eth(skb, key, nla_data(a));
  1171. break;
  1172. case OVS_ACTION_ATTR_POP_ETH:
  1173. err = pop_eth(skb, key);
  1174. break;
  1175. case OVS_ACTION_ATTR_PUSH_NSH: {
  1176. u8 buffer[NSH_HDR_MAX_LEN];
  1177. struct nshhdr *nh = (struct nshhdr *)buffer;
  1178. err = nsh_hdr_from_nlattr(nla_data(a), nh,
  1179. NSH_HDR_MAX_LEN);
  1180. if (unlikely(err))
  1181. break;
  1182. err = push_nsh(skb, key, nh);
  1183. break;
  1184. }
  1185. case OVS_ACTION_ATTR_POP_NSH:
  1186. err = pop_nsh(skb, key);
  1187. break;
  1188. case OVS_ACTION_ATTR_METER:
  1189. if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
  1190. consume_skb(skb);
  1191. return 0;
  1192. }
  1193. break;
  1194. case OVS_ACTION_ATTR_CLONE: {
  1195. bool last = nla_is_last(a, rem);
  1196. err = clone(dp, skb, key, a, last);
  1197. if (last)
  1198. return err;
  1199. break;
  1200. }
  1201. case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
  1202. bool last = nla_is_last(a, rem);
  1203. err = execute_check_pkt_len(dp, skb, key, a, last);
  1204. if (last)
  1205. return err;
  1206. break;
  1207. }
  1208. case OVS_ACTION_ATTR_DEC_TTL:
  1209. err = execute_dec_ttl(skb, key);
  1210. if (err == -EHOSTUNREACH)
  1211. return dec_ttl_exception_handler(dp, skb,
  1212. key, a);
  1213. break;
  1214. }
  1215. if (unlikely(err)) {
  1216. kfree_skb(skb);
  1217. return err;
  1218. }
  1219. }
  1220. consume_skb(skb);
  1221. return 0;
  1222. }
  1223. /* Execute the actions on the clone of the packet. The effect of the
  1224. * execution does not affect the original 'skb' nor the original 'key'.
  1225. *
  1226. * The execution may be deferred in case the actions can not be executed
  1227. * immediately.
  1228. */
  1229. static int clone_execute(struct datapath *dp, struct sk_buff *skb,
  1230. struct sw_flow_key *key, u32 recirc_id,
  1231. const struct nlattr *actions, int len,
  1232. bool last, bool clone_flow_key)
  1233. {
  1234. struct deferred_action *da;
  1235. struct sw_flow_key *clone;
  1236. skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
  1237. if (!skb) {
  1238. /* Out of memory, skip this action.
  1239. */
  1240. return 0;
  1241. }
  1242. /* When clone_flow_key is false, the 'key' will not be change
  1243. * by the actions, then the 'key' can be used directly.
  1244. * Otherwise, try to clone key from the next recursion level of
  1245. * 'flow_keys'. If clone is successful, execute the actions
  1246. * without deferring.
  1247. */
  1248. clone = clone_flow_key ? clone_key(key) : key;
  1249. if (clone) {
  1250. int err = 0;
  1251. if (actions) { /* Sample action */
  1252. if (clone_flow_key)
  1253. __this_cpu_inc(exec_actions_level);
  1254. err = do_execute_actions(dp, skb, clone,
  1255. actions, len);
  1256. if (clone_flow_key)
  1257. __this_cpu_dec(exec_actions_level);
  1258. } else { /* Recirc action */
  1259. clone->recirc_id = recirc_id;
  1260. ovs_dp_process_packet(skb, clone);
  1261. }
  1262. return err;
  1263. }
  1264. /* Out of 'flow_keys' space. Defer actions */
  1265. da = add_deferred_actions(skb, key, actions, len);
  1266. if (da) {
  1267. if (!actions) { /* Recirc action */
  1268. key = &da->pkt_key;
  1269. key->recirc_id = recirc_id;
  1270. }
  1271. } else {
  1272. /* Out of per CPU action FIFO space. Drop the 'skb' and
  1273. * log an error.
  1274. */
  1275. kfree_skb(skb);
  1276. if (net_ratelimit()) {
  1277. if (actions) { /* Sample action */
  1278. pr_warn("%s: deferred action limit reached, drop sample action\n",
  1279. ovs_dp_name(dp));
  1280. } else { /* Recirc action */
  1281. pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
  1282. ovs_dp_name(dp), recirc_id);
  1283. }
  1284. }
  1285. }
  1286. return 0;
  1287. }
  1288. static void process_deferred_actions(struct datapath *dp)
  1289. {
  1290. struct action_fifo *fifo = this_cpu_ptr(action_fifos);
  1291. /* Do not touch the FIFO in case there is no deferred actions. */
  1292. if (action_fifo_is_empty(fifo))
  1293. return;
  1294. /* Finishing executing all deferred actions. */
  1295. do {
  1296. struct deferred_action *da = action_fifo_get(fifo);
  1297. struct sk_buff *skb = da->skb;
  1298. struct sw_flow_key *key = &da->pkt_key;
  1299. const struct nlattr *actions = da->actions;
  1300. int actions_len = da->actions_len;
  1301. if (actions)
  1302. do_execute_actions(dp, skb, key, actions, actions_len);
  1303. else
  1304. ovs_dp_process_packet(skb, key);
  1305. } while (!action_fifo_is_empty(fifo));
  1306. /* Reset FIFO for the next packet. */
  1307. action_fifo_init(fifo);
  1308. }
  1309. /* Execute a list of actions against 'skb'. */
  1310. int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
  1311. const struct sw_flow_actions *acts,
  1312. struct sw_flow_key *key)
  1313. {
  1314. int err, level;
  1315. level = __this_cpu_inc_return(exec_actions_level);
  1316. if (unlikely(level > OVS_RECURSION_LIMIT)) {
  1317. net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
  1318. ovs_dp_name(dp));
  1319. kfree_skb(skb);
  1320. err = -ENETDOWN;
  1321. goto out;
  1322. }
  1323. OVS_CB(skb)->acts_origlen = acts->orig_len;
  1324. err = do_execute_actions(dp, skb, key,
  1325. acts->actions, acts->actions_len);
  1326. if (level == 1)
  1327. process_deferred_actions(dp);
  1328. out:
  1329. __this_cpu_dec(exec_actions_level);
  1330. return err;
  1331. }
  1332. int action_fifos_init(void)
  1333. {
  1334. action_fifos = alloc_percpu(struct action_fifo);
  1335. if (!action_fifos)
  1336. return -ENOMEM;
  1337. flow_keys = alloc_percpu(struct action_flow_keys);
  1338. if (!flow_keys) {
  1339. free_percpu(action_fifos);
  1340. return -ENOMEM;
  1341. }
  1342. return 0;
  1343. }
  1344. void action_fifos_exit(void)
  1345. {
  1346. free_percpu(action_fifos);
  1347. free_percpu(flow_keys);
  1348. }