protocol.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Multipath TCP
  3. *
  4. * Copyright (c) 2017 - 2019, Intel Corporation.
  5. */
  6. #define pr_fmt(fmt) "MPTCP: " fmt
  7. #include <linux/kernel.h>
  8. #include <linux/module.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/sched/signal.h>
  11. #include <linux/atomic.h>
  12. #include <net/sock.h>
  13. #include <net/inet_common.h>
  14. #include <net/inet_hashtables.h>
  15. #include <net/protocol.h>
  16. #include <net/tcp.h>
  17. #include <net/tcp_states.h>
  18. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  19. #include <net/transp_v6.h>
  20. #endif
  21. #include <net/mptcp.h>
  22. #include <net/xfrm.h>
  23. #include <asm/ioctls.h>
  24. #include "protocol.h"
  25. #include "mib.h"
  26. #define CREATE_TRACE_POINTS
  27. #include <trace/events/mptcp.h>
  28. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  29. struct mptcp6_sock {
  30. struct mptcp_sock msk;
  31. struct ipv6_pinfo np;
  32. };
  33. #endif
  34. struct mptcp_skb_cb {
  35. u64 map_seq;
  36. u64 end_seq;
  37. u32 offset;
  38. u8 has_rxtstamp:1;
  39. };
  40. #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0]))
  41. enum {
  42. MPTCP_CMSG_TS = BIT(0),
  43. MPTCP_CMSG_INQ = BIT(1),
  44. };
  45. static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
  46. static void __mptcp_destroy_sock(struct sock *sk);
  47. static void mptcp_check_send_data_fin(struct sock *sk);
  48. DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
  49. static struct net_device mptcp_napi_dev;
  50. /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
  51. * completed yet or has failed, return the subflow socket.
  52. * Otherwise return NULL.
  53. */
  54. struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
  55. {
  56. if (!msk->subflow || READ_ONCE(msk->can_ack))
  57. return NULL;
  58. return msk->subflow;
  59. }
  60. /* Returns end sequence number of the receiver's advertised window */
  61. static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
  62. {
  63. return READ_ONCE(msk->wnd_end);
  64. }
  65. static bool mptcp_is_tcpsk(struct sock *sk)
  66. {
  67. struct socket *sock = sk->sk_socket;
  68. if (unlikely(sk->sk_prot == &tcp_prot)) {
  69. /* we are being invoked after mptcp_accept() has
  70. * accepted a non-mp-capable flow: sk is a tcp_sk,
  71. * not an mptcp one.
  72. *
  73. * Hand the socket over to tcp so all further socket ops
  74. * bypass mptcp.
  75. */
  76. sock->ops = &inet_stream_ops;
  77. return true;
  78. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  79. } else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
  80. sock->ops = &inet6_stream_ops;
  81. return true;
  82. #endif
  83. }
  84. return false;
  85. }
  86. static int __mptcp_socket_create(struct mptcp_sock *msk)
  87. {
  88. struct mptcp_subflow_context *subflow;
  89. struct sock *sk = (struct sock *)msk;
  90. struct socket *ssock;
  91. int err;
  92. err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
  93. if (err)
  94. return err;
  95. WRITE_ONCE(msk->first, ssock->sk);
  96. WRITE_ONCE(msk->subflow, ssock);
  97. subflow = mptcp_subflow_ctx(ssock->sk);
  98. list_add(&subflow->node, &msk->conn_list);
  99. sock_hold(ssock->sk);
  100. subflow->request_mptcp = 1;
  101. /* This is the first subflow, always with id 0 */
  102. subflow->local_id_valid = 1;
  103. mptcp_sock_graft(msk->first, sk->sk_socket);
  104. return 0;
  105. }
  106. static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
  107. {
  108. sk_drops_add(sk, skb);
  109. __kfree_skb(skb);
  110. }
  111. static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
  112. {
  113. WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
  114. mptcp_sk(sk)->rmem_fwd_alloc + size);
  115. }
  116. static void mptcp_rmem_charge(struct sock *sk, int size)
  117. {
  118. mptcp_rmem_fwd_alloc_add(sk, -size);
  119. }
  120. static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
  121. struct sk_buff *from)
  122. {
  123. bool fragstolen;
  124. int delta;
  125. if (MPTCP_SKB_CB(from)->offset ||
  126. !skb_try_coalesce(to, from, &fragstolen, &delta))
  127. return false;
  128. pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
  129. MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
  130. to->len, MPTCP_SKB_CB(from)->end_seq);
  131. MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
  132. /* note the fwd memory can reach a negative value after accounting
  133. * for the delta, but the later skb free will restore a non
  134. * negative one
  135. */
  136. atomic_add(delta, &sk->sk_rmem_alloc);
  137. mptcp_rmem_charge(sk, delta);
  138. kfree_skb_partial(from, fragstolen);
  139. return true;
  140. }
  141. static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
  142. struct sk_buff *from)
  143. {
  144. if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
  145. return false;
  146. return mptcp_try_coalesce((struct sock *)msk, to, from);
  147. }
  148. static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
  149. {
  150. amount >>= PAGE_SHIFT;
  151. mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
  152. __sk_mem_reduce_allocated(sk, amount);
  153. }
  154. static void mptcp_rmem_uncharge(struct sock *sk, int size)
  155. {
  156. struct mptcp_sock *msk = mptcp_sk(sk);
  157. int reclaimable;
  158. mptcp_rmem_fwd_alloc_add(sk, size);
  159. reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
  160. /* see sk_mem_uncharge() for the rationale behind the following schema */
  161. if (unlikely(reclaimable >= PAGE_SIZE))
  162. __mptcp_rmem_reclaim(sk, reclaimable);
  163. }
  164. static void mptcp_rfree(struct sk_buff *skb)
  165. {
  166. unsigned int len = skb->truesize;
  167. struct sock *sk = skb->sk;
  168. atomic_sub(len, &sk->sk_rmem_alloc);
  169. mptcp_rmem_uncharge(sk, len);
  170. }
  171. static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
  172. {
  173. skb_orphan(skb);
  174. skb->sk = sk;
  175. skb->destructor = mptcp_rfree;
  176. atomic_add(skb->truesize, &sk->sk_rmem_alloc);
  177. mptcp_rmem_charge(sk, skb->truesize);
  178. }
  179. /* "inspired" by tcp_data_queue_ofo(), main differences:
  180. * - use mptcp seqs
  181. * - don't cope with sacks
  182. */
  183. static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
  184. {
  185. struct sock *sk = (struct sock *)msk;
  186. struct rb_node **p, *parent;
  187. u64 seq, end_seq, max_seq;
  188. struct sk_buff *skb1;
  189. seq = MPTCP_SKB_CB(skb)->map_seq;
  190. end_seq = MPTCP_SKB_CB(skb)->end_seq;
  191. max_seq = atomic64_read(&msk->rcv_wnd_sent);
  192. pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
  193. RB_EMPTY_ROOT(&msk->out_of_order_queue));
  194. if (after64(end_seq, max_seq)) {
  195. /* out of window */
  196. mptcp_drop(sk, skb);
  197. pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
  198. (unsigned long long)end_seq - (unsigned long)max_seq,
  199. (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
  200. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
  201. return;
  202. }
  203. p = &msk->out_of_order_queue.rb_node;
  204. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
  205. if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
  206. rb_link_node(&skb->rbnode, NULL, p);
  207. rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
  208. msk->ooo_last_skb = skb;
  209. goto end;
  210. }
  211. /* with 2 subflows, adding at end of ooo queue is quite likely
  212. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  213. */
  214. if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
  215. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
  216. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
  217. return;
  218. }
  219. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  220. if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
  221. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
  222. parent = &msk->ooo_last_skb->rbnode;
  223. p = &parent->rb_right;
  224. goto insert;
  225. }
  226. /* Find place to insert this segment. Handle overlaps on the way. */
  227. parent = NULL;
  228. while (*p) {
  229. parent = *p;
  230. skb1 = rb_to_skb(parent);
  231. if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
  232. p = &parent->rb_left;
  233. continue;
  234. }
  235. if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
  236. if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
  237. /* All the bits are present. Drop. */
  238. mptcp_drop(sk, skb);
  239. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
  240. return;
  241. }
  242. if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
  243. /* partial overlap:
  244. * | skb |
  245. * | skb1 |
  246. * continue traversing
  247. */
  248. } else {
  249. /* skb's seq == skb1's seq and skb covers skb1.
  250. * Replace skb1 with skb.
  251. */
  252. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  253. &msk->out_of_order_queue);
  254. mptcp_drop(sk, skb1);
  255. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
  256. goto merge_right;
  257. }
  258. } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
  259. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
  260. return;
  261. }
  262. p = &parent->rb_right;
  263. }
  264. insert:
  265. /* Insert segment into RB tree. */
  266. rb_link_node(&skb->rbnode, parent, p);
  267. rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
  268. merge_right:
  269. /* Remove other segments covered by skb. */
  270. while ((skb1 = skb_rb_next(skb)) != NULL) {
  271. if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
  272. break;
  273. rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
  274. mptcp_drop(sk, skb1);
  275. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
  276. }
  277. /* If there is no skb after us, we are the last_skb ! */
  278. if (!skb1)
  279. msk->ooo_last_skb = skb;
  280. end:
  281. skb_condense(skb);
  282. mptcp_set_owner_r(skb, sk);
  283. }
  284. static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
  285. {
  286. struct mptcp_sock *msk = mptcp_sk(sk);
  287. int amt, amount;
  288. if (size <= msk->rmem_fwd_alloc)
  289. return true;
  290. size -= msk->rmem_fwd_alloc;
  291. amt = sk_mem_pages(size);
  292. amount = amt << PAGE_SHIFT;
  293. if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
  294. return false;
  295. mptcp_rmem_fwd_alloc_add(sk, amount);
  296. return true;
  297. }
  298. static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
  299. struct sk_buff *skb, unsigned int offset,
  300. size_t copy_len)
  301. {
  302. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  303. struct sock *sk = (struct sock *)msk;
  304. struct sk_buff *tail;
  305. bool has_rxtstamp;
  306. __skb_unlink(skb, &ssk->sk_receive_queue);
  307. skb_ext_reset(skb);
  308. skb_orphan(skb);
  309. /* try to fetch required memory from subflow */
  310. if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
  311. goto drop;
  312. has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
  313. /* the skb map_seq accounts for the skb offset:
  314. * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
  315. * value
  316. */
  317. MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
  318. MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
  319. MPTCP_SKB_CB(skb)->offset = offset;
  320. MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
  321. if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
  322. /* in sequence */
  323. WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
  324. tail = skb_peek_tail(&sk->sk_receive_queue);
  325. if (tail && mptcp_try_coalesce(sk, tail, skb))
  326. return true;
  327. mptcp_set_owner_r(skb, sk);
  328. __skb_queue_tail(&sk->sk_receive_queue, skb);
  329. return true;
  330. } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
  331. mptcp_data_queue_ofo(msk, skb);
  332. return false;
  333. }
  334. /* old data, keep it simple and drop the whole pkt, sender
  335. * will retransmit as needed, if needed.
  336. */
  337. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
  338. drop:
  339. mptcp_drop(sk, skb);
  340. return false;
  341. }
  342. static void mptcp_stop_rtx_timer(struct sock *sk)
  343. {
  344. struct inet_connection_sock *icsk = inet_csk(sk);
  345. sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
  346. mptcp_sk(sk)->timer_ival = 0;
  347. }
  348. static void mptcp_close_wake_up(struct sock *sk)
  349. {
  350. if (sock_flag(sk, SOCK_DEAD))
  351. return;
  352. sk->sk_state_change(sk);
  353. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  354. sk->sk_state == TCP_CLOSE)
  355. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  356. else
  357. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  358. }
  359. static bool mptcp_pending_data_fin_ack(struct sock *sk)
  360. {
  361. struct mptcp_sock *msk = mptcp_sk(sk);
  362. return ((1 << sk->sk_state) &
  363. (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
  364. msk->write_seq == READ_ONCE(msk->snd_una);
  365. }
  366. static void mptcp_check_data_fin_ack(struct sock *sk)
  367. {
  368. struct mptcp_sock *msk = mptcp_sk(sk);
  369. /* Look for an acknowledged DATA_FIN */
  370. if (mptcp_pending_data_fin_ack(sk)) {
  371. WRITE_ONCE(msk->snd_data_fin_enable, 0);
  372. switch (sk->sk_state) {
  373. case TCP_FIN_WAIT1:
  374. inet_sk_state_store(sk, TCP_FIN_WAIT2);
  375. break;
  376. case TCP_CLOSING:
  377. case TCP_LAST_ACK:
  378. inet_sk_state_store(sk, TCP_CLOSE);
  379. break;
  380. }
  381. mptcp_close_wake_up(sk);
  382. }
  383. }
  384. static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
  385. {
  386. struct mptcp_sock *msk = mptcp_sk(sk);
  387. if (READ_ONCE(msk->rcv_data_fin) &&
  388. ((1 << sk->sk_state) &
  389. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
  390. u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
  391. if (msk->ack_seq == rcv_data_fin_seq) {
  392. if (seq)
  393. *seq = rcv_data_fin_seq;
  394. return true;
  395. }
  396. }
  397. return false;
  398. }
  399. static void mptcp_set_datafin_timeout(const struct sock *sk)
  400. {
  401. struct inet_connection_sock *icsk = inet_csk(sk);
  402. u32 retransmits;
  403. retransmits = min_t(u32, icsk->icsk_retransmits,
  404. ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
  405. mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
  406. }
  407. static void __mptcp_set_timeout(struct sock *sk, long tout)
  408. {
  409. mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
  410. }
  411. static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
  412. {
  413. const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  414. return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
  415. inet_csk(ssk)->icsk_timeout - jiffies : 0;
  416. }
  417. static void mptcp_set_timeout(struct sock *sk)
  418. {
  419. struct mptcp_subflow_context *subflow;
  420. long tout = 0;
  421. mptcp_for_each_subflow(mptcp_sk(sk), subflow)
  422. tout = max(tout, mptcp_timeout_from_subflow(subflow));
  423. __mptcp_set_timeout(sk, tout);
  424. }
  425. static inline bool tcp_can_send_ack(const struct sock *ssk)
  426. {
  427. return !((1 << inet_sk_state_load(ssk)) &
  428. (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
  429. }
  430. void __mptcp_subflow_send_ack(struct sock *ssk)
  431. {
  432. if (tcp_can_send_ack(ssk))
  433. tcp_send_ack(ssk);
  434. }
  435. static void mptcp_subflow_send_ack(struct sock *ssk)
  436. {
  437. bool slow;
  438. slow = lock_sock_fast(ssk);
  439. __mptcp_subflow_send_ack(ssk);
  440. unlock_sock_fast(ssk, slow);
  441. }
  442. static void mptcp_send_ack(struct mptcp_sock *msk)
  443. {
  444. struct mptcp_subflow_context *subflow;
  445. mptcp_for_each_subflow(msk, subflow)
  446. mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
  447. }
  448. static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
  449. {
  450. bool slow;
  451. slow = lock_sock_fast(ssk);
  452. if (tcp_can_send_ack(ssk))
  453. tcp_cleanup_rbuf(ssk, 1);
  454. unlock_sock_fast(ssk, slow);
  455. }
  456. static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
  457. {
  458. const struct inet_connection_sock *icsk = inet_csk(ssk);
  459. u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
  460. const struct tcp_sock *tp = tcp_sk(ssk);
  461. return (ack_pending & ICSK_ACK_SCHED) &&
  462. ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
  463. READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
  464. (rx_empty && ack_pending &
  465. (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
  466. }
  467. static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
  468. {
  469. int old_space = READ_ONCE(msk->old_wspace);
  470. struct mptcp_subflow_context *subflow;
  471. struct sock *sk = (struct sock *)msk;
  472. int space = __mptcp_space(sk);
  473. bool cleanup, rx_empty;
  474. cleanup = (space > 0) && (space >= (old_space << 1));
  475. rx_empty = !__mptcp_rmem(sk);
  476. mptcp_for_each_subflow(msk, subflow) {
  477. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  478. if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
  479. mptcp_subflow_cleanup_rbuf(ssk);
  480. }
  481. }
  482. static bool mptcp_check_data_fin(struct sock *sk)
  483. {
  484. struct mptcp_sock *msk = mptcp_sk(sk);
  485. u64 rcv_data_fin_seq;
  486. bool ret = false;
  487. /* Need to ack a DATA_FIN received from a peer while this side
  488. * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
  489. * msk->rcv_data_fin was set when parsing the incoming options
  490. * at the subflow level and the msk lock was not held, so this
  491. * is the first opportunity to act on the DATA_FIN and change
  492. * the msk state.
  493. *
  494. * If we are caught up to the sequence number of the incoming
  495. * DATA_FIN, send the DATA_ACK now and do state transition. If
  496. * not caught up, do nothing and let the recv code send DATA_ACK
  497. * when catching up.
  498. */
  499. if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
  500. WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
  501. WRITE_ONCE(msk->rcv_data_fin, 0);
  502. WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
  503. smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
  504. switch (sk->sk_state) {
  505. case TCP_ESTABLISHED:
  506. inet_sk_state_store(sk, TCP_CLOSE_WAIT);
  507. break;
  508. case TCP_FIN_WAIT1:
  509. inet_sk_state_store(sk, TCP_CLOSING);
  510. break;
  511. case TCP_FIN_WAIT2:
  512. inet_sk_state_store(sk, TCP_CLOSE);
  513. break;
  514. default:
  515. /* Other states not expected */
  516. WARN_ON_ONCE(1);
  517. break;
  518. }
  519. ret = true;
  520. if (!__mptcp_check_fallback(msk))
  521. mptcp_send_ack(msk);
  522. mptcp_close_wake_up(sk);
  523. }
  524. return ret;
  525. }
  526. static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
  527. struct sock *ssk,
  528. unsigned int *bytes)
  529. {
  530. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  531. struct sock *sk = (struct sock *)msk;
  532. unsigned int moved = 0;
  533. bool more_data_avail;
  534. struct tcp_sock *tp;
  535. bool done = false;
  536. int sk_rbuf;
  537. sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
  538. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  539. int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
  540. if (unlikely(ssk_rbuf > sk_rbuf)) {
  541. WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
  542. sk_rbuf = ssk_rbuf;
  543. }
  544. }
  545. pr_debug("msk=%p ssk=%p", msk, ssk);
  546. tp = tcp_sk(ssk);
  547. do {
  548. u32 map_remaining, offset;
  549. u32 seq = tp->copied_seq;
  550. struct sk_buff *skb;
  551. bool fin;
  552. /* try to move as much data as available */
  553. map_remaining = subflow->map_data_len -
  554. mptcp_subflow_get_map_offset(subflow);
  555. skb = skb_peek(&ssk->sk_receive_queue);
  556. if (!skb) {
  557. /* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
  558. * a different CPU can have already processed the pending
  559. * data, stop here or we can enter an infinite loop
  560. */
  561. if (!moved)
  562. done = true;
  563. break;
  564. }
  565. if (__mptcp_check_fallback(msk)) {
  566. /* Under fallback skbs have no MPTCP extension and TCP could
  567. * collapse them between the dummy map creation and the
  568. * current dequeue. Be sure to adjust the map size.
  569. */
  570. map_remaining = skb->len;
  571. subflow->map_data_len = skb->len;
  572. }
  573. offset = seq - TCP_SKB_CB(skb)->seq;
  574. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  575. if (fin) {
  576. done = true;
  577. seq++;
  578. }
  579. if (offset < skb->len) {
  580. size_t len = skb->len - offset;
  581. if (tp->urg_data)
  582. done = true;
  583. if (__mptcp_move_skb(msk, ssk, skb, offset, len))
  584. moved += len;
  585. seq += len;
  586. if (WARN_ON_ONCE(map_remaining < len))
  587. break;
  588. } else {
  589. WARN_ON_ONCE(!fin);
  590. sk_eat_skb(ssk, skb);
  591. done = true;
  592. }
  593. WRITE_ONCE(tp->copied_seq, seq);
  594. more_data_avail = mptcp_subflow_data_available(ssk);
  595. if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
  596. done = true;
  597. break;
  598. }
  599. } while (more_data_avail);
  600. *bytes += moved;
  601. return done;
  602. }
  603. static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
  604. {
  605. struct sock *sk = (struct sock *)msk;
  606. struct sk_buff *skb, *tail;
  607. bool moved = false;
  608. struct rb_node *p;
  609. u64 end_seq;
  610. p = rb_first(&msk->out_of_order_queue);
  611. pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
  612. while (p) {
  613. skb = rb_to_skb(p);
  614. if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
  615. break;
  616. p = rb_next(p);
  617. rb_erase(&skb->rbnode, &msk->out_of_order_queue);
  618. if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
  619. msk->ack_seq))) {
  620. mptcp_drop(sk, skb);
  621. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
  622. continue;
  623. }
  624. end_seq = MPTCP_SKB_CB(skb)->end_seq;
  625. tail = skb_peek_tail(&sk->sk_receive_queue);
  626. if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
  627. int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
  628. /* skip overlapping data, if any */
  629. pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
  630. MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
  631. delta);
  632. MPTCP_SKB_CB(skb)->offset += delta;
  633. MPTCP_SKB_CB(skb)->map_seq += delta;
  634. __skb_queue_tail(&sk->sk_receive_queue, skb);
  635. }
  636. msk->ack_seq = end_seq;
  637. moved = true;
  638. }
  639. return moved;
  640. }
  641. static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
  642. {
  643. int err = sock_error(ssk);
  644. int ssk_state;
  645. if (!err)
  646. return false;
  647. /* only propagate errors on fallen-back sockets or
  648. * on MPC connect
  649. */
  650. if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
  651. return false;
  652. /* We need to propagate only transition to CLOSE state.
  653. * Orphaned socket will see such state change via
  654. * subflow_sched_work_if_closed() and that path will properly
  655. * destroy the msk as needed.
  656. */
  657. ssk_state = inet_sk_state_load(ssk);
  658. if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
  659. inet_sk_state_store(sk, ssk_state);
  660. WRITE_ONCE(sk->sk_err, -err);
  661. /* This barrier is coupled with smp_rmb() in mptcp_poll() */
  662. smp_wmb();
  663. sk_error_report(sk);
  664. return true;
  665. }
  666. void __mptcp_error_report(struct sock *sk)
  667. {
  668. struct mptcp_subflow_context *subflow;
  669. struct mptcp_sock *msk = mptcp_sk(sk);
  670. mptcp_for_each_subflow(msk, subflow)
  671. if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
  672. break;
  673. }
  674. /* In most cases we will be able to lock the mptcp socket. If its already
  675. * owned, we need to defer to the work queue to avoid ABBA deadlock.
  676. */
  677. static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
  678. {
  679. struct sock *sk = (struct sock *)msk;
  680. unsigned int moved = 0;
  681. __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
  682. __mptcp_ofo_queue(msk);
  683. if (unlikely(ssk->sk_err)) {
  684. if (!sock_owned_by_user(sk))
  685. __mptcp_error_report(sk);
  686. else
  687. __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
  688. }
  689. /* If the moves have caught up with the DATA_FIN sequence number
  690. * it's time to ack the DATA_FIN and change socket state, but
  691. * this is not a good place to change state. Let the workqueue
  692. * do it.
  693. */
  694. if (mptcp_pending_data_fin(sk, NULL))
  695. mptcp_schedule_work(sk);
  696. return moved > 0;
  697. }
  698. void mptcp_data_ready(struct sock *sk, struct sock *ssk)
  699. {
  700. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  701. struct mptcp_sock *msk = mptcp_sk(sk);
  702. int sk_rbuf, ssk_rbuf;
  703. /* The peer can send data while we are shutting down this
  704. * subflow at msk destruction time, but we must avoid enqueuing
  705. * more data to the msk receive queue
  706. */
  707. if (unlikely(subflow->disposable))
  708. return;
  709. ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
  710. sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
  711. if (unlikely(ssk_rbuf > sk_rbuf))
  712. sk_rbuf = ssk_rbuf;
  713. /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
  714. if (__mptcp_rmem(sk) > sk_rbuf) {
  715. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
  716. return;
  717. }
  718. /* Wake-up the reader only for in-sequence data */
  719. mptcp_data_lock(sk);
  720. if (move_skbs_to_msk(msk, ssk))
  721. sk->sk_data_ready(sk);
  722. mptcp_data_unlock(sk);
  723. }
  724. static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
  725. {
  726. mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
  727. WRITE_ONCE(msk->allow_infinite_fallback, false);
  728. mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
  729. }
  730. static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
  731. {
  732. struct sock *sk = (struct sock *)msk;
  733. if (sk->sk_state != TCP_ESTABLISHED)
  734. return false;
  735. /* attach to msk socket only after we are sure we will deal with it
  736. * at close time
  737. */
  738. if (sk->sk_socket && !ssk->sk_socket)
  739. mptcp_sock_graft(ssk, sk->sk_socket);
  740. mptcp_sockopt_sync_locked(msk, ssk);
  741. mptcp_subflow_joined(msk, ssk);
  742. mptcp_stop_tout_timer(sk);
  743. return true;
  744. }
  745. static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
  746. {
  747. struct mptcp_subflow_context *tmp, *subflow;
  748. struct mptcp_sock *msk = mptcp_sk(sk);
  749. list_for_each_entry_safe(subflow, tmp, join_list, node) {
  750. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  751. bool slow = lock_sock_fast(ssk);
  752. list_move_tail(&subflow->node, &msk->conn_list);
  753. if (!__mptcp_finish_join(msk, ssk))
  754. mptcp_subflow_reset(ssk);
  755. unlock_sock_fast(ssk, slow);
  756. }
  757. }
  758. static bool mptcp_rtx_timer_pending(struct sock *sk)
  759. {
  760. return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
  761. }
  762. static void mptcp_reset_rtx_timer(struct sock *sk)
  763. {
  764. struct inet_connection_sock *icsk = inet_csk(sk);
  765. unsigned long tout;
  766. /* prevent rescheduling on close */
  767. if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
  768. return;
  769. tout = mptcp_sk(sk)->timer_ival;
  770. sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
  771. }
  772. bool mptcp_schedule_work(struct sock *sk)
  773. {
  774. if (inet_sk_state_load(sk) != TCP_CLOSE &&
  775. schedule_work(&mptcp_sk(sk)->work)) {
  776. /* each subflow already holds a reference to the sk, and the
  777. * workqueue is invoked by a subflow, so sk can't go away here.
  778. */
  779. sock_hold(sk);
  780. return true;
  781. }
  782. return false;
  783. }
  784. void mptcp_subflow_eof(struct sock *sk)
  785. {
  786. if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
  787. mptcp_schedule_work(sk);
  788. }
  789. static void mptcp_check_for_eof(struct mptcp_sock *msk)
  790. {
  791. struct mptcp_subflow_context *subflow;
  792. struct sock *sk = (struct sock *)msk;
  793. int receivers = 0;
  794. mptcp_for_each_subflow(msk, subflow)
  795. receivers += !subflow->rx_eof;
  796. if (receivers)
  797. return;
  798. if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
  799. /* hopefully temporary hack: propagate shutdown status
  800. * to msk, when all subflows agree on it
  801. */
  802. WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
  803. smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
  804. sk->sk_data_ready(sk);
  805. }
  806. switch (sk->sk_state) {
  807. case TCP_ESTABLISHED:
  808. inet_sk_state_store(sk, TCP_CLOSE_WAIT);
  809. break;
  810. case TCP_FIN_WAIT1:
  811. inet_sk_state_store(sk, TCP_CLOSING);
  812. break;
  813. case TCP_FIN_WAIT2:
  814. inet_sk_state_store(sk, TCP_CLOSE);
  815. break;
  816. default:
  817. return;
  818. }
  819. mptcp_close_wake_up(sk);
  820. }
  821. static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
  822. {
  823. struct mptcp_subflow_context *subflow;
  824. struct sock *sk = (struct sock *)msk;
  825. sock_owned_by_me(sk);
  826. mptcp_for_each_subflow(msk, subflow) {
  827. if (READ_ONCE(subflow->data_avail))
  828. return mptcp_subflow_tcp_sock(subflow);
  829. }
  830. return NULL;
  831. }
  832. static bool mptcp_skb_can_collapse_to(u64 write_seq,
  833. const struct sk_buff *skb,
  834. const struct mptcp_ext *mpext)
  835. {
  836. if (!tcp_skb_can_collapse_to(skb))
  837. return false;
  838. /* can collapse only if MPTCP level sequence is in order and this
  839. * mapping has not been xmitted yet
  840. */
  841. return mpext && mpext->data_seq + mpext->data_len == write_seq &&
  842. !mpext->frozen;
  843. }
  844. /* we can append data to the given data frag if:
  845. * - there is space available in the backing page_frag
  846. * - the data frag tail matches the current page_frag free offset
  847. * - the data frag end sequence number matches the current write seq
  848. */
  849. static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
  850. const struct page_frag *pfrag,
  851. const struct mptcp_data_frag *df)
  852. {
  853. return df && pfrag->page == df->page &&
  854. pfrag->size - pfrag->offset > 0 &&
  855. pfrag->offset == (df->offset + df->data_len) &&
  856. df->data_seq + df->data_len == msk->write_seq;
  857. }
  858. static void dfrag_uncharge(struct sock *sk, int len)
  859. {
  860. sk_mem_uncharge(sk, len);
  861. sk_wmem_queued_add(sk, -len);
  862. }
  863. static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
  864. {
  865. int len = dfrag->data_len + dfrag->overhead;
  866. list_del(&dfrag->list);
  867. dfrag_uncharge(sk, len);
  868. put_page(dfrag->page);
  869. }
  870. static void __mptcp_clean_una(struct sock *sk)
  871. {
  872. struct mptcp_sock *msk = mptcp_sk(sk);
  873. struct mptcp_data_frag *dtmp, *dfrag;
  874. u64 snd_una;
  875. /* on fallback we just need to ignore snd_una, as this is really
  876. * plain TCP
  877. */
  878. if (__mptcp_check_fallback(msk))
  879. msk->snd_una = READ_ONCE(msk->snd_nxt);
  880. snd_una = msk->snd_una;
  881. list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
  882. if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
  883. break;
  884. if (unlikely(dfrag == msk->first_pending)) {
  885. /* in recovery mode can see ack after the current snd head */
  886. if (WARN_ON_ONCE(!msk->recovery))
  887. break;
  888. WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
  889. }
  890. dfrag_clear(sk, dfrag);
  891. }
  892. dfrag = mptcp_rtx_head(sk);
  893. if (dfrag && after64(snd_una, dfrag->data_seq)) {
  894. u64 delta = snd_una - dfrag->data_seq;
  895. /* prevent wrap around in recovery mode */
  896. if (unlikely(delta > dfrag->already_sent)) {
  897. if (WARN_ON_ONCE(!msk->recovery))
  898. goto out;
  899. if (WARN_ON_ONCE(delta > dfrag->data_len))
  900. goto out;
  901. dfrag->already_sent += delta - dfrag->already_sent;
  902. }
  903. dfrag->data_seq += delta;
  904. dfrag->offset += delta;
  905. dfrag->data_len -= delta;
  906. dfrag->already_sent -= delta;
  907. dfrag_uncharge(sk, delta);
  908. }
  909. /* all retransmitted data acked, recovery completed */
  910. if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
  911. msk->recovery = false;
  912. out:
  913. if (snd_una == READ_ONCE(msk->snd_nxt) &&
  914. snd_una == READ_ONCE(msk->write_seq)) {
  915. if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
  916. mptcp_stop_rtx_timer(sk);
  917. } else {
  918. mptcp_reset_rtx_timer(sk);
  919. }
  920. }
  921. static void __mptcp_clean_una_wakeup(struct sock *sk)
  922. {
  923. lockdep_assert_held_once(&sk->sk_lock.slock);
  924. __mptcp_clean_una(sk);
  925. mptcp_write_space(sk);
  926. }
  927. static void mptcp_clean_una_wakeup(struct sock *sk)
  928. {
  929. mptcp_data_lock(sk);
  930. __mptcp_clean_una_wakeup(sk);
  931. mptcp_data_unlock(sk);
  932. }
  933. static void mptcp_enter_memory_pressure(struct sock *sk)
  934. {
  935. struct mptcp_subflow_context *subflow;
  936. struct mptcp_sock *msk = mptcp_sk(sk);
  937. bool first = true;
  938. sk_stream_moderate_sndbuf(sk);
  939. mptcp_for_each_subflow(msk, subflow) {
  940. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  941. if (first)
  942. tcp_enter_memory_pressure(ssk);
  943. sk_stream_moderate_sndbuf(ssk);
  944. first = false;
  945. }
  946. }
  947. /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
  948. * data
  949. */
  950. static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  951. {
  952. if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
  953. pfrag, sk->sk_allocation)))
  954. return true;
  955. mptcp_enter_memory_pressure(sk);
  956. return false;
  957. }
  958. static struct mptcp_data_frag *
  959. mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
  960. int orig_offset)
  961. {
  962. int offset = ALIGN(orig_offset, sizeof(long));
  963. struct mptcp_data_frag *dfrag;
  964. dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
  965. dfrag->data_len = 0;
  966. dfrag->data_seq = msk->write_seq;
  967. dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
  968. dfrag->offset = offset + sizeof(struct mptcp_data_frag);
  969. dfrag->already_sent = 0;
  970. dfrag->page = pfrag->page;
  971. return dfrag;
  972. }
  973. struct mptcp_sendmsg_info {
  974. int mss_now;
  975. int size_goal;
  976. u16 limit;
  977. u16 sent;
  978. unsigned int flags;
  979. bool data_lock_held;
  980. };
  981. static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
  982. u64 data_seq, int avail_size)
  983. {
  984. u64 window_end = mptcp_wnd_end(msk);
  985. u64 mptcp_snd_wnd;
  986. if (__mptcp_check_fallback(msk))
  987. return avail_size;
  988. mptcp_snd_wnd = window_end - data_seq;
  989. avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
  990. if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
  991. tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
  992. MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
  993. }
  994. return avail_size;
  995. }
  996. static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
  997. {
  998. struct skb_ext *mpext = __skb_ext_alloc(gfp);
  999. if (!mpext)
  1000. return false;
  1001. __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
  1002. return true;
  1003. }
  1004. static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
  1005. {
  1006. struct sk_buff *skb;
  1007. skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
  1008. if (likely(skb)) {
  1009. if (likely(__mptcp_add_ext(skb, gfp))) {
  1010. skb_reserve(skb, MAX_TCP_HEADER);
  1011. skb->ip_summed = CHECKSUM_PARTIAL;
  1012. INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
  1013. return skb;
  1014. }
  1015. __kfree_skb(skb);
  1016. } else {
  1017. mptcp_enter_memory_pressure(sk);
  1018. }
  1019. return NULL;
  1020. }
  1021. static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
  1022. {
  1023. struct sk_buff *skb;
  1024. skb = __mptcp_do_alloc_tx_skb(sk, gfp);
  1025. if (!skb)
  1026. return NULL;
  1027. if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
  1028. tcp_skb_entail(ssk, skb);
  1029. return skb;
  1030. }
  1031. tcp_skb_tsorted_anchor_cleanup(skb);
  1032. kfree_skb(skb);
  1033. return NULL;
  1034. }
  1035. static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
  1036. {
  1037. gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
  1038. return __mptcp_alloc_tx_skb(sk, ssk, gfp);
  1039. }
  1040. /* note: this always recompute the csum on the whole skb, even
  1041. * if we just appended a single frag. More status info needed
  1042. */
  1043. static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
  1044. {
  1045. struct mptcp_ext *mpext = mptcp_get_ext(skb);
  1046. __wsum csum = ~csum_unfold(mpext->csum);
  1047. int offset = skb->len - added;
  1048. mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
  1049. }
  1050. static void mptcp_update_infinite_map(struct mptcp_sock *msk,
  1051. struct sock *ssk,
  1052. struct mptcp_ext *mpext)
  1053. {
  1054. if (!mpext)
  1055. return;
  1056. mpext->infinite_map = 1;
  1057. mpext->data_len = 0;
  1058. MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
  1059. mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
  1060. pr_fallback(msk);
  1061. mptcp_do_fallback(ssk);
  1062. }
  1063. #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
  1064. static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
  1065. struct mptcp_data_frag *dfrag,
  1066. struct mptcp_sendmsg_info *info)
  1067. {
  1068. u64 data_seq = dfrag->data_seq + info->sent;
  1069. int offset = dfrag->offset + info->sent;
  1070. struct mptcp_sock *msk = mptcp_sk(sk);
  1071. bool zero_window_probe = false;
  1072. struct mptcp_ext *mpext = NULL;
  1073. bool can_coalesce = false;
  1074. bool reuse_skb = true;
  1075. struct sk_buff *skb;
  1076. size_t copy;
  1077. int i;
  1078. pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
  1079. msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
  1080. if (WARN_ON_ONCE(info->sent > info->limit ||
  1081. info->limit > dfrag->data_len))
  1082. return 0;
  1083. if (unlikely(!__tcp_can_send(ssk)))
  1084. return -EAGAIN;
  1085. /* compute send limit */
  1086. if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
  1087. ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
  1088. info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
  1089. copy = info->size_goal;
  1090. skb = tcp_write_queue_tail(ssk);
  1091. if (skb && copy > skb->len) {
  1092. /* Limit the write to the size available in the
  1093. * current skb, if any, so that we create at most a new skb.
  1094. * Explicitly tells TCP internals to avoid collapsing on later
  1095. * queue management operation, to avoid breaking the ext <->
  1096. * SSN association set here
  1097. */
  1098. mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
  1099. if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
  1100. TCP_SKB_CB(skb)->eor = 1;
  1101. goto alloc_skb;
  1102. }
  1103. i = skb_shinfo(skb)->nr_frags;
  1104. can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
  1105. if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
  1106. tcp_mark_push(tcp_sk(ssk), skb);
  1107. goto alloc_skb;
  1108. }
  1109. copy -= skb->len;
  1110. } else {
  1111. alloc_skb:
  1112. skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
  1113. if (!skb)
  1114. return -ENOMEM;
  1115. i = skb_shinfo(skb)->nr_frags;
  1116. reuse_skb = false;
  1117. mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
  1118. }
  1119. /* Zero window and all data acked? Probe. */
  1120. copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
  1121. if (copy == 0) {
  1122. u64 snd_una = READ_ONCE(msk->snd_una);
  1123. if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
  1124. tcp_remove_empty_skb(ssk);
  1125. return 0;
  1126. }
  1127. zero_window_probe = true;
  1128. data_seq = snd_una - 1;
  1129. copy = 1;
  1130. }
  1131. copy = min_t(size_t, copy, info->limit - info->sent);
  1132. if (!sk_wmem_schedule(ssk, copy)) {
  1133. tcp_remove_empty_skb(ssk);
  1134. return -ENOMEM;
  1135. }
  1136. if (can_coalesce) {
  1137. skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
  1138. } else {
  1139. get_page(dfrag->page);
  1140. skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
  1141. }
  1142. skb->len += copy;
  1143. skb->data_len += copy;
  1144. skb->truesize += copy;
  1145. sk_wmem_queued_add(ssk, copy);
  1146. sk_mem_charge(ssk, copy);
  1147. WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
  1148. TCP_SKB_CB(skb)->end_seq += copy;
  1149. tcp_skb_pcount_set(skb, 0);
  1150. /* on skb reuse we just need to update the DSS len */
  1151. if (reuse_skb) {
  1152. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
  1153. mpext->data_len += copy;
  1154. goto out;
  1155. }
  1156. memset(mpext, 0, sizeof(*mpext));
  1157. mpext->data_seq = data_seq;
  1158. mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
  1159. mpext->data_len = copy;
  1160. mpext->use_map = 1;
  1161. mpext->dsn64 = 1;
  1162. pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
  1163. mpext->data_seq, mpext->subflow_seq, mpext->data_len,
  1164. mpext->dsn64);
  1165. if (zero_window_probe) {
  1166. mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
  1167. mpext->frozen = 1;
  1168. if (READ_ONCE(msk->csum_enabled))
  1169. mptcp_update_data_checksum(skb, copy);
  1170. tcp_push_pending_frames(ssk);
  1171. return 0;
  1172. }
  1173. out:
  1174. if (READ_ONCE(msk->csum_enabled))
  1175. mptcp_update_data_checksum(skb, copy);
  1176. if (mptcp_subflow_ctx(ssk)->send_infinite_map)
  1177. mptcp_update_infinite_map(msk, ssk, mpext);
  1178. trace_mptcp_sendmsg_frag(mpext);
  1179. mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
  1180. return copy;
  1181. }
  1182. #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
  1183. sizeof(struct tcphdr) - \
  1184. MAX_TCP_OPTION_SPACE - \
  1185. sizeof(struct ipv6hdr) - \
  1186. sizeof(struct frag_hdr))
  1187. struct subflow_send_info {
  1188. struct sock *ssk;
  1189. u64 linger_time;
  1190. };
  1191. void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
  1192. {
  1193. if (!subflow->stale)
  1194. return;
  1195. subflow->stale = 0;
  1196. MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
  1197. }
  1198. bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
  1199. {
  1200. if (unlikely(subflow->stale)) {
  1201. u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
  1202. if (subflow->stale_rcv_tstamp == rcv_tstamp)
  1203. return false;
  1204. mptcp_subflow_set_active(subflow);
  1205. }
  1206. return __mptcp_subflow_active(subflow);
  1207. }
  1208. #define SSK_MODE_ACTIVE 0
  1209. #define SSK_MODE_BACKUP 1
  1210. #define SSK_MODE_MAX 2
  1211. /* implement the mptcp packet scheduler;
  1212. * returns the subflow that will transmit the next DSS
  1213. * additionally updates the rtx timeout
  1214. */
  1215. static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
  1216. {
  1217. struct subflow_send_info send_info[SSK_MODE_MAX];
  1218. struct mptcp_subflow_context *subflow;
  1219. struct sock *sk = (struct sock *)msk;
  1220. u32 pace, burst, wmem;
  1221. int i, nr_active = 0;
  1222. struct sock *ssk;
  1223. u64 linger_time;
  1224. long tout = 0;
  1225. sock_owned_by_me(sk);
  1226. if (__mptcp_check_fallback(msk)) {
  1227. if (!msk->first)
  1228. return NULL;
  1229. return __tcp_can_send(msk->first) &&
  1230. sk_stream_memory_free(msk->first) ? msk->first : NULL;
  1231. }
  1232. /* re-use last subflow, if the burst allow that */
  1233. if (msk->last_snd && msk->snd_burst > 0 &&
  1234. sk_stream_memory_free(msk->last_snd) &&
  1235. mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
  1236. mptcp_set_timeout(sk);
  1237. return msk->last_snd;
  1238. }
  1239. /* pick the subflow with the lower wmem/wspace ratio */
  1240. for (i = 0; i < SSK_MODE_MAX; ++i) {
  1241. send_info[i].ssk = NULL;
  1242. send_info[i].linger_time = -1;
  1243. }
  1244. mptcp_for_each_subflow(msk, subflow) {
  1245. trace_mptcp_subflow_get_send(subflow);
  1246. ssk = mptcp_subflow_tcp_sock(subflow);
  1247. if (!mptcp_subflow_active(subflow))
  1248. continue;
  1249. tout = max(tout, mptcp_timeout_from_subflow(subflow));
  1250. nr_active += !subflow->backup;
  1251. pace = subflow->avg_pacing_rate;
  1252. if (unlikely(!pace)) {
  1253. /* init pacing rate from socket */
  1254. subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
  1255. pace = subflow->avg_pacing_rate;
  1256. if (!pace)
  1257. continue;
  1258. }
  1259. linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
  1260. if (linger_time < send_info[subflow->backup].linger_time) {
  1261. send_info[subflow->backup].ssk = ssk;
  1262. send_info[subflow->backup].linger_time = linger_time;
  1263. }
  1264. }
  1265. __mptcp_set_timeout(sk, tout);
  1266. /* pick the best backup if no other subflow is active */
  1267. if (!nr_active)
  1268. send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
  1269. /* According to the blest algorithm, to avoid HoL blocking for the
  1270. * faster flow, we need to:
  1271. * - estimate the faster flow linger time
  1272. * - use the above to estimate the amount of byte transferred
  1273. * by the faster flow
  1274. * - check that the amount of queued data is greter than the above,
  1275. * otherwise do not use the picked, slower, subflow
  1276. * We select the subflow with the shorter estimated time to flush
  1277. * the queued mem, which basically ensure the above. We just need
  1278. * to check that subflow has a non empty cwin.
  1279. */
  1280. ssk = send_info[SSK_MODE_ACTIVE].ssk;
  1281. if (!ssk || !sk_stream_memory_free(ssk))
  1282. return NULL;
  1283. burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
  1284. wmem = READ_ONCE(ssk->sk_wmem_queued);
  1285. if (!burst) {
  1286. msk->last_snd = NULL;
  1287. return ssk;
  1288. }
  1289. subflow = mptcp_subflow_ctx(ssk);
  1290. subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
  1291. READ_ONCE(ssk->sk_pacing_rate) * burst,
  1292. burst + wmem);
  1293. msk->last_snd = ssk;
  1294. msk->snd_burst = burst;
  1295. return ssk;
  1296. }
  1297. static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
  1298. {
  1299. tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
  1300. release_sock(ssk);
  1301. }
  1302. static void mptcp_update_post_push(struct mptcp_sock *msk,
  1303. struct mptcp_data_frag *dfrag,
  1304. u32 sent)
  1305. {
  1306. u64 snd_nxt_new = dfrag->data_seq;
  1307. dfrag->already_sent += sent;
  1308. msk->snd_burst -= sent;
  1309. snd_nxt_new += dfrag->already_sent;
  1310. /* snd_nxt_new can be smaller than snd_nxt in case mptcp
  1311. * is recovering after a failover. In that event, this re-sends
  1312. * old segments.
  1313. *
  1314. * Thus compute snd_nxt_new candidate based on
  1315. * the dfrag->data_seq that was sent and the data
  1316. * that has been handed to the subflow for transmission
  1317. * and skip update in case it was old dfrag.
  1318. */
  1319. if (likely(after64(snd_nxt_new, msk->snd_nxt)))
  1320. msk->snd_nxt = snd_nxt_new;
  1321. }
  1322. void mptcp_check_and_set_pending(struct sock *sk)
  1323. {
  1324. if (mptcp_send_head(sk))
  1325. mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
  1326. }
  1327. void __mptcp_push_pending(struct sock *sk, unsigned int flags)
  1328. {
  1329. struct sock *prev_ssk = NULL, *ssk = NULL;
  1330. struct mptcp_sock *msk = mptcp_sk(sk);
  1331. struct mptcp_sendmsg_info info = {
  1332. .flags = flags,
  1333. };
  1334. bool do_check_data_fin = false;
  1335. struct mptcp_data_frag *dfrag;
  1336. int len;
  1337. while ((dfrag = mptcp_send_head(sk))) {
  1338. info.sent = dfrag->already_sent;
  1339. info.limit = dfrag->data_len;
  1340. len = dfrag->data_len - dfrag->already_sent;
  1341. while (len > 0) {
  1342. int ret = 0;
  1343. prev_ssk = ssk;
  1344. ssk = mptcp_subflow_get_send(msk);
  1345. /* First check. If the ssk has changed since
  1346. * the last round, release prev_ssk
  1347. */
  1348. if (ssk != prev_ssk && prev_ssk)
  1349. mptcp_push_release(prev_ssk, &info);
  1350. if (!ssk)
  1351. goto out;
  1352. /* Need to lock the new subflow only if different
  1353. * from the previous one, otherwise we are still
  1354. * helding the relevant lock
  1355. */
  1356. if (ssk != prev_ssk)
  1357. lock_sock(ssk);
  1358. ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
  1359. if (ret <= 0) {
  1360. if (ret == -EAGAIN)
  1361. continue;
  1362. mptcp_push_release(ssk, &info);
  1363. goto out;
  1364. }
  1365. do_check_data_fin = true;
  1366. info.sent += ret;
  1367. len -= ret;
  1368. mptcp_update_post_push(msk, dfrag, ret);
  1369. }
  1370. WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
  1371. }
  1372. /* at this point we held the socket lock for the last subflow we used */
  1373. if (ssk)
  1374. mptcp_push_release(ssk, &info);
  1375. out:
  1376. /* ensure the rtx timer is running */
  1377. if (!mptcp_rtx_timer_pending(sk))
  1378. mptcp_reset_rtx_timer(sk);
  1379. if (do_check_data_fin)
  1380. mptcp_check_send_data_fin(sk);
  1381. }
  1382. static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
  1383. {
  1384. struct mptcp_sock *msk = mptcp_sk(sk);
  1385. struct mptcp_sendmsg_info info = {
  1386. .data_lock_held = true,
  1387. };
  1388. struct mptcp_data_frag *dfrag;
  1389. struct sock *xmit_ssk;
  1390. int len, copied = 0;
  1391. bool first = true;
  1392. info.flags = 0;
  1393. while ((dfrag = mptcp_send_head(sk))) {
  1394. info.sent = dfrag->already_sent;
  1395. info.limit = dfrag->data_len;
  1396. len = dfrag->data_len - dfrag->already_sent;
  1397. while (len > 0) {
  1398. int ret = 0;
  1399. /* the caller already invoked the packet scheduler,
  1400. * check for a different subflow usage only after
  1401. * spooling the first chunk of data
  1402. */
  1403. xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
  1404. if (!xmit_ssk)
  1405. goto out;
  1406. if (xmit_ssk != ssk) {
  1407. mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
  1408. MPTCP_DELEGATE_SEND);
  1409. goto out;
  1410. }
  1411. ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
  1412. if (ret <= 0)
  1413. goto out;
  1414. info.sent += ret;
  1415. copied += ret;
  1416. len -= ret;
  1417. first = false;
  1418. mptcp_update_post_push(msk, dfrag, ret);
  1419. }
  1420. WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
  1421. }
  1422. out:
  1423. /* __mptcp_alloc_tx_skb could have released some wmem and we are
  1424. * not going to flush it via release_sock()
  1425. */
  1426. if (copied) {
  1427. tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
  1428. info.size_goal);
  1429. if (!mptcp_rtx_timer_pending(sk))
  1430. mptcp_reset_rtx_timer(sk);
  1431. if (msk->snd_data_fin_enable &&
  1432. msk->snd_nxt + 1 == msk->write_seq)
  1433. mptcp_schedule_work(sk);
  1434. }
  1435. }
  1436. static void mptcp_set_nospace(struct sock *sk)
  1437. {
  1438. /* enable autotune */
  1439. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1440. /* will be cleared on avail space */
  1441. set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
  1442. }
  1443. static int mptcp_disconnect(struct sock *sk, int flags);
  1444. static int mptcp_sendmsg_fastopen(struct sock *sk, struct sock *ssk, struct msghdr *msg,
  1445. size_t len, int *copied_syn)
  1446. {
  1447. unsigned int saved_flags = msg->msg_flags;
  1448. struct mptcp_sock *msk = mptcp_sk(sk);
  1449. int ret;
  1450. lock_sock(ssk);
  1451. msg->msg_flags |= MSG_DONTWAIT;
  1452. msk->fastopening = 1;
  1453. ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
  1454. msk->fastopening = 0;
  1455. msg->msg_flags = saved_flags;
  1456. release_sock(ssk);
  1457. /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
  1458. if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
  1459. ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
  1460. msg->msg_namelen, msg->msg_flags, 1);
  1461. /* Keep the same behaviour of plain TCP: zero the copied bytes in
  1462. * case of any error, except timeout or signal
  1463. */
  1464. if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
  1465. *copied_syn = 0;
  1466. } else if (ret && ret != -EINPROGRESS) {
  1467. /* The disconnect() op called by tcp_sendmsg_fastopen()/
  1468. * __inet_stream_connect() can fail, due to looking check,
  1469. * see mptcp_disconnect().
  1470. * Attempt it again outside the problematic scope.
  1471. */
  1472. if (!mptcp_disconnect(sk, 0))
  1473. sk->sk_socket->state = SS_UNCONNECTED;
  1474. }
  1475. return ret;
  1476. }
  1477. static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
  1478. {
  1479. struct mptcp_sock *msk = mptcp_sk(sk);
  1480. struct page_frag *pfrag;
  1481. struct socket *ssock;
  1482. size_t copied = 0;
  1483. int ret = 0;
  1484. long timeo;
  1485. /* we don't support FASTOPEN yet */
  1486. if (msg->msg_flags & MSG_FASTOPEN)
  1487. return -EOPNOTSUPP;
  1488. /* silently ignore everything else */
  1489. msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
  1490. lock_sock(sk);
  1491. ssock = __mptcp_nmpc_socket(msk);
  1492. if (unlikely(ssock && inet_sk(ssock->sk)->defer_connect)) {
  1493. int copied_syn = 0;
  1494. ret = mptcp_sendmsg_fastopen(sk, ssock->sk, msg, len, &copied_syn);
  1495. copied += copied_syn;
  1496. if (ret == -EINPROGRESS && copied_syn > 0)
  1497. goto out;
  1498. else if (ret)
  1499. goto do_error;
  1500. }
  1501. timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
  1502. if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
  1503. ret = sk_stream_wait_connect(sk, &timeo);
  1504. if (ret)
  1505. goto do_error;
  1506. }
  1507. ret = -EPIPE;
  1508. if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
  1509. goto do_error;
  1510. pfrag = sk_page_frag(sk);
  1511. while (msg_data_left(msg)) {
  1512. int total_ts, frag_truesize = 0;
  1513. struct mptcp_data_frag *dfrag;
  1514. bool dfrag_collapsed;
  1515. size_t psize, offset;
  1516. /* reuse tail pfrag, if possible, or carve a new one from the
  1517. * page allocator
  1518. */
  1519. dfrag = mptcp_pending_tail(sk);
  1520. dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
  1521. if (!dfrag_collapsed) {
  1522. if (!sk_stream_memory_free(sk))
  1523. goto wait_for_memory;
  1524. if (!mptcp_page_frag_refill(sk, pfrag))
  1525. goto wait_for_memory;
  1526. dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
  1527. frag_truesize = dfrag->overhead;
  1528. }
  1529. /* we do not bound vs wspace, to allow a single packet.
  1530. * memory accounting will prevent execessive memory usage
  1531. * anyway
  1532. */
  1533. offset = dfrag->offset + dfrag->data_len;
  1534. psize = pfrag->size - offset;
  1535. psize = min_t(size_t, psize, msg_data_left(msg));
  1536. total_ts = psize + frag_truesize;
  1537. if (!sk_wmem_schedule(sk, total_ts))
  1538. goto wait_for_memory;
  1539. if (copy_page_from_iter(dfrag->page, offset, psize,
  1540. &msg->msg_iter) != psize) {
  1541. ret = -EFAULT;
  1542. goto do_error;
  1543. }
  1544. /* data successfully copied into the write queue */
  1545. sk_forward_alloc_add(sk, -total_ts);
  1546. copied += psize;
  1547. dfrag->data_len += psize;
  1548. frag_truesize += psize;
  1549. pfrag->offset += frag_truesize;
  1550. WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
  1551. /* charge data on mptcp pending queue to the msk socket
  1552. * Note: we charge such data both to sk and ssk
  1553. */
  1554. sk_wmem_queued_add(sk, frag_truesize);
  1555. if (!dfrag_collapsed) {
  1556. get_page(dfrag->page);
  1557. list_add_tail(&dfrag->list, &msk->rtx_queue);
  1558. if (!msk->first_pending)
  1559. WRITE_ONCE(msk->first_pending, dfrag);
  1560. }
  1561. pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
  1562. dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
  1563. !dfrag_collapsed);
  1564. continue;
  1565. wait_for_memory:
  1566. mptcp_set_nospace(sk);
  1567. __mptcp_push_pending(sk, msg->msg_flags);
  1568. ret = sk_stream_wait_memory(sk, &timeo);
  1569. if (ret)
  1570. goto do_error;
  1571. }
  1572. if (copied)
  1573. __mptcp_push_pending(sk, msg->msg_flags);
  1574. out:
  1575. release_sock(sk);
  1576. return copied;
  1577. do_error:
  1578. if (copied)
  1579. goto out;
  1580. copied = sk_stream_error(sk, msg->msg_flags, ret);
  1581. goto out;
  1582. }
  1583. static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
  1584. struct msghdr *msg,
  1585. size_t len, int flags,
  1586. struct scm_timestamping_internal *tss,
  1587. int *cmsg_flags)
  1588. {
  1589. struct sk_buff *skb, *tmp;
  1590. int copied = 0;
  1591. skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
  1592. u32 offset = MPTCP_SKB_CB(skb)->offset;
  1593. u32 data_len = skb->len - offset;
  1594. u32 count = min_t(size_t, len - copied, data_len);
  1595. int err;
  1596. if (!(flags & MSG_TRUNC)) {
  1597. err = skb_copy_datagram_msg(skb, offset, msg, count);
  1598. if (unlikely(err < 0)) {
  1599. if (!copied)
  1600. return err;
  1601. break;
  1602. }
  1603. }
  1604. if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
  1605. tcp_update_recv_tstamps(skb, tss);
  1606. *cmsg_flags |= MPTCP_CMSG_TS;
  1607. }
  1608. copied += count;
  1609. if (count < data_len) {
  1610. if (!(flags & MSG_PEEK)) {
  1611. MPTCP_SKB_CB(skb)->offset += count;
  1612. MPTCP_SKB_CB(skb)->map_seq += count;
  1613. }
  1614. break;
  1615. }
  1616. if (!(flags & MSG_PEEK)) {
  1617. /* we will bulk release the skb memory later */
  1618. skb->destructor = NULL;
  1619. WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
  1620. __skb_unlink(skb, &msk->receive_queue);
  1621. __kfree_skb(skb);
  1622. }
  1623. if (copied >= len)
  1624. break;
  1625. }
  1626. return copied;
  1627. }
  1628. /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
  1629. *
  1630. * Only difference: Use highest rtt estimate of the subflows in use.
  1631. */
  1632. static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
  1633. {
  1634. struct mptcp_subflow_context *subflow;
  1635. struct sock *sk = (struct sock *)msk;
  1636. u32 time, advmss = 1;
  1637. u64 rtt_us, mstamp;
  1638. sock_owned_by_me(sk);
  1639. if (copied <= 0)
  1640. return;
  1641. msk->rcvq_space.copied += copied;
  1642. mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
  1643. time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
  1644. rtt_us = msk->rcvq_space.rtt_us;
  1645. if (rtt_us && time < (rtt_us >> 3))
  1646. return;
  1647. rtt_us = 0;
  1648. mptcp_for_each_subflow(msk, subflow) {
  1649. const struct tcp_sock *tp;
  1650. u64 sf_rtt_us;
  1651. u32 sf_advmss;
  1652. tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
  1653. sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
  1654. sf_advmss = READ_ONCE(tp->advmss);
  1655. rtt_us = max(sf_rtt_us, rtt_us);
  1656. advmss = max(sf_advmss, advmss);
  1657. }
  1658. msk->rcvq_space.rtt_us = rtt_us;
  1659. if (time < (rtt_us >> 3) || rtt_us == 0)
  1660. return;
  1661. if (msk->rcvq_space.copied <= msk->rcvq_space.space)
  1662. goto new_measure;
  1663. if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
  1664. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  1665. int rcvmem, rcvbuf;
  1666. u64 rcvwin, grow;
  1667. rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
  1668. grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
  1669. do_div(grow, msk->rcvq_space.space);
  1670. rcvwin += (grow << 1);
  1671. rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
  1672. while (tcp_win_from_space(sk, rcvmem) < advmss)
  1673. rcvmem += 128;
  1674. do_div(rcvwin, advmss);
  1675. rcvbuf = min_t(u64, rcvwin * rcvmem,
  1676. READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
  1677. if (rcvbuf > sk->sk_rcvbuf) {
  1678. u32 window_clamp;
  1679. window_clamp = tcp_win_from_space(sk, rcvbuf);
  1680. WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
  1681. /* Make subflows follow along. If we do not do this, we
  1682. * get drops at subflow level if skbs can't be moved to
  1683. * the mptcp rx queue fast enough (announced rcv_win can
  1684. * exceed ssk->sk_rcvbuf).
  1685. */
  1686. mptcp_for_each_subflow(msk, subflow) {
  1687. struct sock *ssk;
  1688. bool slow;
  1689. ssk = mptcp_subflow_tcp_sock(subflow);
  1690. slow = lock_sock_fast(ssk);
  1691. WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
  1692. tcp_sk(ssk)->window_clamp = window_clamp;
  1693. tcp_cleanup_rbuf(ssk, 1);
  1694. unlock_sock_fast(ssk, slow);
  1695. }
  1696. }
  1697. }
  1698. msk->rcvq_space.space = msk->rcvq_space.copied;
  1699. new_measure:
  1700. msk->rcvq_space.copied = 0;
  1701. msk->rcvq_space.time = mstamp;
  1702. }
  1703. static void __mptcp_update_rmem(struct sock *sk)
  1704. {
  1705. struct mptcp_sock *msk = mptcp_sk(sk);
  1706. if (!msk->rmem_released)
  1707. return;
  1708. atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
  1709. mptcp_rmem_uncharge(sk, msk->rmem_released);
  1710. WRITE_ONCE(msk->rmem_released, 0);
  1711. }
  1712. static void __mptcp_splice_receive_queue(struct sock *sk)
  1713. {
  1714. struct mptcp_sock *msk = mptcp_sk(sk);
  1715. skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
  1716. }
  1717. static bool __mptcp_move_skbs(struct mptcp_sock *msk)
  1718. {
  1719. struct sock *sk = (struct sock *)msk;
  1720. unsigned int moved = 0;
  1721. bool ret, done;
  1722. do {
  1723. struct sock *ssk = mptcp_subflow_recv_lookup(msk);
  1724. bool slowpath;
  1725. /* we can have data pending in the subflows only if the msk
  1726. * receive buffer was full at subflow_data_ready() time,
  1727. * that is an unlikely slow path.
  1728. */
  1729. if (likely(!ssk))
  1730. break;
  1731. slowpath = lock_sock_fast(ssk);
  1732. mptcp_data_lock(sk);
  1733. __mptcp_update_rmem(sk);
  1734. done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
  1735. mptcp_data_unlock(sk);
  1736. if (unlikely(ssk->sk_err))
  1737. __mptcp_error_report(sk);
  1738. unlock_sock_fast(ssk, slowpath);
  1739. } while (!done);
  1740. /* acquire the data lock only if some input data is pending */
  1741. ret = moved > 0;
  1742. if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
  1743. !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
  1744. mptcp_data_lock(sk);
  1745. __mptcp_update_rmem(sk);
  1746. ret |= __mptcp_ofo_queue(msk);
  1747. __mptcp_splice_receive_queue(sk);
  1748. mptcp_data_unlock(sk);
  1749. }
  1750. if (ret)
  1751. mptcp_check_data_fin((struct sock *)msk);
  1752. return !skb_queue_empty(&msk->receive_queue);
  1753. }
  1754. static unsigned int mptcp_inq_hint(const struct sock *sk)
  1755. {
  1756. const struct mptcp_sock *msk = mptcp_sk(sk);
  1757. const struct sk_buff *skb;
  1758. skb = skb_peek(&msk->receive_queue);
  1759. if (skb) {
  1760. u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
  1761. if (hint_val >= INT_MAX)
  1762. return INT_MAX;
  1763. return (unsigned int)hint_val;
  1764. }
  1765. if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
  1766. return 1;
  1767. return 0;
  1768. }
  1769. static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  1770. int flags, int *addr_len)
  1771. {
  1772. struct mptcp_sock *msk = mptcp_sk(sk);
  1773. struct scm_timestamping_internal tss;
  1774. int copied = 0, cmsg_flags = 0;
  1775. int target;
  1776. long timeo;
  1777. /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
  1778. if (unlikely(flags & MSG_ERRQUEUE))
  1779. return inet_recv_error(sk, msg, len, addr_len);
  1780. lock_sock(sk);
  1781. if (unlikely(sk->sk_state == TCP_LISTEN)) {
  1782. copied = -ENOTCONN;
  1783. goto out_err;
  1784. }
  1785. timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
  1786. len = min_t(size_t, len, INT_MAX);
  1787. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  1788. if (unlikely(msk->recvmsg_inq))
  1789. cmsg_flags = MPTCP_CMSG_INQ;
  1790. while (copied < len) {
  1791. int bytes_read;
  1792. bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
  1793. if (unlikely(bytes_read < 0)) {
  1794. if (!copied)
  1795. copied = bytes_read;
  1796. goto out_err;
  1797. }
  1798. copied += bytes_read;
  1799. /* be sure to advertise window change */
  1800. mptcp_cleanup_rbuf(msk);
  1801. if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
  1802. continue;
  1803. /* only the master socket status is relevant here. The exit
  1804. * conditions mirror closely tcp_recvmsg()
  1805. */
  1806. if (copied >= target)
  1807. break;
  1808. if (copied) {
  1809. if (sk->sk_err ||
  1810. sk->sk_state == TCP_CLOSE ||
  1811. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  1812. !timeo ||
  1813. signal_pending(current))
  1814. break;
  1815. } else {
  1816. if (sk->sk_err) {
  1817. copied = sock_error(sk);
  1818. break;
  1819. }
  1820. if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
  1821. mptcp_check_for_eof(msk);
  1822. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1823. /* race breaker: the shutdown could be after the
  1824. * previous receive queue check
  1825. */
  1826. if (__mptcp_move_skbs(msk))
  1827. continue;
  1828. break;
  1829. }
  1830. if (sk->sk_state == TCP_CLOSE) {
  1831. copied = -ENOTCONN;
  1832. break;
  1833. }
  1834. if (!timeo) {
  1835. copied = -EAGAIN;
  1836. break;
  1837. }
  1838. if (signal_pending(current)) {
  1839. copied = sock_intr_errno(timeo);
  1840. break;
  1841. }
  1842. }
  1843. pr_debug("block timeout %ld", timeo);
  1844. sk_wait_data(sk, &timeo, NULL);
  1845. }
  1846. out_err:
  1847. if (cmsg_flags && copied >= 0) {
  1848. if (cmsg_flags & MPTCP_CMSG_TS)
  1849. tcp_recv_timestamp(msg, sk, &tss);
  1850. if (cmsg_flags & MPTCP_CMSG_INQ) {
  1851. unsigned int inq = mptcp_inq_hint(sk);
  1852. put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
  1853. }
  1854. }
  1855. pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
  1856. msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
  1857. skb_queue_empty(&msk->receive_queue), copied);
  1858. if (!(flags & MSG_PEEK))
  1859. mptcp_rcv_space_adjust(msk, copied);
  1860. release_sock(sk);
  1861. return copied;
  1862. }
  1863. static void mptcp_retransmit_timer(struct timer_list *t)
  1864. {
  1865. struct inet_connection_sock *icsk = from_timer(icsk, t,
  1866. icsk_retransmit_timer);
  1867. struct sock *sk = &icsk->icsk_inet.sk;
  1868. struct mptcp_sock *msk = mptcp_sk(sk);
  1869. bh_lock_sock(sk);
  1870. if (!sock_owned_by_user(sk)) {
  1871. /* we need a process context to retransmit */
  1872. if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
  1873. mptcp_schedule_work(sk);
  1874. } else {
  1875. /* delegate our work to tcp_release_cb() */
  1876. __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
  1877. }
  1878. bh_unlock_sock(sk);
  1879. sock_put(sk);
  1880. }
  1881. static void mptcp_tout_timer(struct timer_list *t)
  1882. {
  1883. struct sock *sk = from_timer(sk, t, sk_timer);
  1884. mptcp_schedule_work(sk);
  1885. sock_put(sk);
  1886. }
  1887. /* Find an idle subflow. Return NULL if there is unacked data at tcp
  1888. * level.
  1889. *
  1890. * A backup subflow is returned only if that is the only kind available.
  1891. */
  1892. static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
  1893. {
  1894. struct sock *backup = NULL, *pick = NULL;
  1895. struct mptcp_subflow_context *subflow;
  1896. int min_stale_count = INT_MAX;
  1897. sock_owned_by_me((const struct sock *)msk);
  1898. if (__mptcp_check_fallback(msk))
  1899. return NULL;
  1900. mptcp_for_each_subflow(msk, subflow) {
  1901. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  1902. if (!__mptcp_subflow_active(subflow))
  1903. continue;
  1904. /* still data outstanding at TCP level? skip this */
  1905. if (!tcp_rtx_and_write_queues_empty(ssk)) {
  1906. mptcp_pm_subflow_chk_stale(msk, ssk);
  1907. min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
  1908. continue;
  1909. }
  1910. if (subflow->backup) {
  1911. if (!backup)
  1912. backup = ssk;
  1913. continue;
  1914. }
  1915. if (!pick)
  1916. pick = ssk;
  1917. }
  1918. if (pick)
  1919. return pick;
  1920. /* use backup only if there are no progresses anywhere */
  1921. return min_stale_count > 1 ? backup : NULL;
  1922. }
  1923. static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
  1924. {
  1925. if (msk->subflow) {
  1926. iput(SOCK_INODE(msk->subflow));
  1927. WRITE_ONCE(msk->subflow, NULL);
  1928. }
  1929. }
  1930. bool __mptcp_retransmit_pending_data(struct sock *sk)
  1931. {
  1932. struct mptcp_data_frag *cur, *rtx_head;
  1933. struct mptcp_sock *msk = mptcp_sk(sk);
  1934. if (__mptcp_check_fallback(mptcp_sk(sk)))
  1935. return false;
  1936. if (tcp_rtx_and_write_queues_empty(sk))
  1937. return false;
  1938. /* the closing socket has some data untransmitted and/or unacked:
  1939. * some data in the mptcp rtx queue has not really xmitted yet.
  1940. * keep it simple and re-inject the whole mptcp level rtx queue
  1941. */
  1942. mptcp_data_lock(sk);
  1943. __mptcp_clean_una_wakeup(sk);
  1944. rtx_head = mptcp_rtx_head(sk);
  1945. if (!rtx_head) {
  1946. mptcp_data_unlock(sk);
  1947. return false;
  1948. }
  1949. msk->recovery_snd_nxt = msk->snd_nxt;
  1950. msk->recovery = true;
  1951. mptcp_data_unlock(sk);
  1952. msk->first_pending = rtx_head;
  1953. msk->snd_burst = 0;
  1954. /* be sure to clear the "sent status" on all re-injected fragments */
  1955. list_for_each_entry(cur, &msk->rtx_queue, list) {
  1956. if (!cur->already_sent)
  1957. break;
  1958. cur->already_sent = 0;
  1959. }
  1960. return true;
  1961. }
  1962. /* flags for __mptcp_close_ssk() */
  1963. #define MPTCP_CF_PUSH BIT(1)
  1964. #define MPTCP_CF_FASTCLOSE BIT(2)
  1965. /* be sure to send a reset only if the caller asked for it, also
  1966. * clean completely the subflow status when the subflow reaches
  1967. * TCP_CLOSE state
  1968. */
  1969. static void __mptcp_subflow_disconnect(struct sock *ssk,
  1970. struct mptcp_subflow_context *subflow,
  1971. unsigned int flags)
  1972. {
  1973. if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
  1974. (flags & MPTCP_CF_FASTCLOSE)) {
  1975. /* The MPTCP code never wait on the subflow sockets, TCP-level
  1976. * disconnect should never fail
  1977. */
  1978. WARN_ON_ONCE(tcp_disconnect(ssk, 0));
  1979. mptcp_subflow_ctx_reset(subflow);
  1980. } else {
  1981. tcp_shutdown(ssk, SEND_SHUTDOWN);
  1982. }
  1983. }
  1984. /* subflow sockets can be either outgoing (connect) or incoming
  1985. * (accept).
  1986. *
  1987. * Outgoing subflows use in-kernel sockets.
  1988. * Incoming subflows do not have their own 'struct socket' allocated,
  1989. * so we need to use tcp_close() after detaching them from the mptcp
  1990. * parent socket.
  1991. */
  1992. static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
  1993. struct mptcp_subflow_context *subflow,
  1994. unsigned int flags)
  1995. {
  1996. struct mptcp_sock *msk = mptcp_sk(sk);
  1997. bool dispose_it, need_push = false;
  1998. /* If the first subflow moved to a close state before accept, e.g. due
  1999. * to an incoming reset or listener shutdown, the subflow socket is
  2000. * already deleted by inet_child_forget() and the mptcp socket can't
  2001. * survive too.
  2002. */
  2003. if (msk->in_accept_queue && msk->first == ssk &&
  2004. (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
  2005. /* ensure later check in mptcp_worker() will dispose the msk */
  2006. mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
  2007. sock_set_flag(sk, SOCK_DEAD);
  2008. lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
  2009. mptcp_subflow_drop_ctx(ssk);
  2010. goto out_release;
  2011. }
  2012. dispose_it = !msk->subflow || ssk != msk->subflow->sk;
  2013. if (dispose_it)
  2014. list_del(&subflow->node);
  2015. lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
  2016. if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
  2017. /* be sure to force the tcp_close path
  2018. * to generate the egress reset
  2019. */
  2020. ssk->sk_lingertime = 0;
  2021. sock_set_flag(ssk, SOCK_LINGER);
  2022. subflow->send_fastclose = 1;
  2023. }
  2024. need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
  2025. if (!dispose_it) {
  2026. __mptcp_subflow_disconnect(ssk, subflow, flags);
  2027. msk->subflow->state = SS_UNCONNECTED;
  2028. release_sock(ssk);
  2029. goto out;
  2030. }
  2031. subflow->disposable = 1;
  2032. /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
  2033. * the ssk has been already destroyed, we just need to release the
  2034. * reference owned by msk;
  2035. */
  2036. if (!inet_csk(ssk)->icsk_ulp_ops) {
  2037. WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
  2038. kfree_rcu(subflow, rcu);
  2039. } else {
  2040. /* otherwise tcp will dispose of the ssk and subflow ctx */
  2041. __tcp_close(ssk, 0);
  2042. /* close acquired an extra ref */
  2043. __sock_put(ssk);
  2044. }
  2045. out_release:
  2046. __mptcp_subflow_error_report(sk, ssk);
  2047. release_sock(ssk);
  2048. sock_put(ssk);
  2049. if (ssk == msk->first)
  2050. WRITE_ONCE(msk->first, NULL);
  2051. out:
  2052. if (ssk == msk->last_snd)
  2053. msk->last_snd = NULL;
  2054. if (need_push)
  2055. __mptcp_push_pending(sk, 0);
  2056. /* Catch every 'all subflows closed' scenario, including peers silently
  2057. * closing them, e.g. due to timeout.
  2058. * For established sockets, allow an additional timeout before closing,
  2059. * as the protocol can still create more subflows.
  2060. */
  2061. if (list_is_singular(&msk->conn_list) && msk->first &&
  2062. inet_sk_state_load(msk->first) == TCP_CLOSE) {
  2063. if (sk->sk_state != TCP_ESTABLISHED ||
  2064. msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
  2065. inet_sk_state_store(sk, TCP_CLOSE);
  2066. mptcp_close_wake_up(sk);
  2067. } else {
  2068. mptcp_start_tout_timer(sk);
  2069. }
  2070. }
  2071. }
  2072. void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
  2073. struct mptcp_subflow_context *subflow)
  2074. {
  2075. if (sk->sk_state == TCP_ESTABLISHED)
  2076. mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
  2077. /* subflow aborted before reaching the fully_established status
  2078. * attempt the creation of the next subflow
  2079. */
  2080. mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
  2081. __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
  2082. }
  2083. static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
  2084. {
  2085. return 0;
  2086. }
  2087. static void __mptcp_close_subflow(struct sock *sk)
  2088. {
  2089. struct mptcp_subflow_context *subflow, *tmp;
  2090. struct mptcp_sock *msk = mptcp_sk(sk);
  2091. might_sleep();
  2092. mptcp_for_each_subflow_safe(msk, subflow, tmp) {
  2093. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  2094. if (inet_sk_state_load(ssk) != TCP_CLOSE)
  2095. continue;
  2096. /* 'subflow_data_ready' will re-sched once rx queue is empty */
  2097. if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
  2098. continue;
  2099. mptcp_close_ssk(sk, ssk, subflow);
  2100. }
  2101. }
  2102. static bool mptcp_close_tout_expired(const struct sock *sk)
  2103. {
  2104. if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
  2105. sk->sk_state == TCP_CLOSE)
  2106. return false;
  2107. return time_after32(tcp_jiffies32,
  2108. inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
  2109. }
  2110. static void mptcp_check_fastclose(struct mptcp_sock *msk)
  2111. {
  2112. struct mptcp_subflow_context *subflow, *tmp;
  2113. struct sock *sk = &msk->sk.icsk_inet.sk;
  2114. if (likely(!READ_ONCE(msk->rcv_fastclose)))
  2115. return;
  2116. mptcp_token_destroy(msk);
  2117. mptcp_for_each_subflow_safe(msk, subflow, tmp) {
  2118. struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
  2119. bool slow;
  2120. slow = lock_sock_fast(tcp_sk);
  2121. if (tcp_sk->sk_state != TCP_CLOSE) {
  2122. tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
  2123. tcp_set_state(tcp_sk, TCP_CLOSE);
  2124. }
  2125. unlock_sock_fast(tcp_sk, slow);
  2126. }
  2127. /* Mirror the tcp_reset() error propagation */
  2128. switch (sk->sk_state) {
  2129. case TCP_SYN_SENT:
  2130. WRITE_ONCE(sk->sk_err, ECONNREFUSED);
  2131. break;
  2132. case TCP_CLOSE_WAIT:
  2133. WRITE_ONCE(sk->sk_err, EPIPE);
  2134. break;
  2135. case TCP_CLOSE:
  2136. return;
  2137. default:
  2138. WRITE_ONCE(sk->sk_err, ECONNRESET);
  2139. }
  2140. inet_sk_state_store(sk, TCP_CLOSE);
  2141. WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
  2142. smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
  2143. set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
  2144. /* the calling mptcp_worker will properly destroy the socket */
  2145. if (sock_flag(sk, SOCK_DEAD))
  2146. return;
  2147. sk->sk_state_change(sk);
  2148. sk_error_report(sk);
  2149. }
  2150. static void __mptcp_retrans(struct sock *sk)
  2151. {
  2152. struct mptcp_sock *msk = mptcp_sk(sk);
  2153. struct mptcp_sendmsg_info info = {};
  2154. struct mptcp_data_frag *dfrag;
  2155. size_t copied = 0;
  2156. struct sock *ssk;
  2157. int ret;
  2158. mptcp_clean_una_wakeup(sk);
  2159. /* first check ssk: need to kick "stale" logic */
  2160. ssk = mptcp_subflow_get_retrans(msk);
  2161. dfrag = mptcp_rtx_head(sk);
  2162. if (!dfrag) {
  2163. if (mptcp_data_fin_enabled(msk)) {
  2164. struct inet_connection_sock *icsk = inet_csk(sk);
  2165. icsk->icsk_retransmits++;
  2166. mptcp_set_datafin_timeout(sk);
  2167. mptcp_send_ack(msk);
  2168. goto reset_timer;
  2169. }
  2170. if (!mptcp_send_head(sk))
  2171. return;
  2172. goto reset_timer;
  2173. }
  2174. if (!ssk)
  2175. goto reset_timer;
  2176. lock_sock(ssk);
  2177. /* limit retransmission to the bytes already sent on some subflows */
  2178. info.sent = 0;
  2179. info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
  2180. while (info.sent < info.limit) {
  2181. ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
  2182. if (ret <= 0)
  2183. break;
  2184. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
  2185. copied += ret;
  2186. info.sent += ret;
  2187. }
  2188. if (copied) {
  2189. dfrag->already_sent = max(dfrag->already_sent, info.sent);
  2190. tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
  2191. info.size_goal);
  2192. WRITE_ONCE(msk->allow_infinite_fallback, false);
  2193. }
  2194. release_sock(ssk);
  2195. reset_timer:
  2196. mptcp_check_and_set_pending(sk);
  2197. if (!mptcp_rtx_timer_pending(sk))
  2198. mptcp_reset_rtx_timer(sk);
  2199. }
  2200. /* schedule the timeout timer for the relevant event: either close timeout
  2201. * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
  2202. */
  2203. void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
  2204. {
  2205. struct sock *sk = (struct sock *)msk;
  2206. unsigned long timeout, close_timeout;
  2207. if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
  2208. return;
  2209. close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
  2210. TCP_TIMEWAIT_LEN;
  2211. /* the close timeout takes precedence on the fail one, and here at least one of
  2212. * them is active
  2213. */
  2214. timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
  2215. sk_reset_timer(sk, &sk->sk_timer, timeout);
  2216. }
  2217. static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
  2218. {
  2219. struct sock *ssk = msk->first;
  2220. bool slow;
  2221. if (!ssk)
  2222. return;
  2223. pr_debug("MP_FAIL doesn't respond, reset the subflow");
  2224. slow = lock_sock_fast(ssk);
  2225. mptcp_subflow_reset(ssk);
  2226. WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
  2227. unlock_sock_fast(ssk, slow);
  2228. }
  2229. static void mptcp_do_fastclose(struct sock *sk)
  2230. {
  2231. struct mptcp_subflow_context *subflow, *tmp;
  2232. struct mptcp_sock *msk = mptcp_sk(sk);
  2233. mptcp_for_each_subflow_safe(msk, subflow, tmp)
  2234. __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
  2235. subflow, MPTCP_CF_FASTCLOSE);
  2236. }
  2237. static void mptcp_worker(struct work_struct *work)
  2238. {
  2239. struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
  2240. struct sock *sk = &msk->sk.icsk_inet.sk;
  2241. unsigned long fail_tout;
  2242. int state;
  2243. lock_sock(sk);
  2244. state = sk->sk_state;
  2245. if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
  2246. goto unlock;
  2247. mptcp_check_fastclose(msk);
  2248. mptcp_pm_nl_work(msk);
  2249. if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
  2250. mptcp_check_for_eof(msk);
  2251. mptcp_check_send_data_fin(sk);
  2252. mptcp_check_data_fin_ack(sk);
  2253. mptcp_check_data_fin(sk);
  2254. if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
  2255. __mptcp_close_subflow(sk);
  2256. if (mptcp_close_tout_expired(sk)) {
  2257. inet_sk_state_store(sk, TCP_CLOSE);
  2258. mptcp_do_fastclose(sk);
  2259. mptcp_close_wake_up(sk);
  2260. }
  2261. if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
  2262. __mptcp_destroy_sock(sk);
  2263. goto unlock;
  2264. }
  2265. if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
  2266. __mptcp_retrans(sk);
  2267. fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
  2268. if (fail_tout && time_after(jiffies, fail_tout))
  2269. mptcp_mp_fail_no_response(msk);
  2270. unlock:
  2271. release_sock(sk);
  2272. sock_put(sk);
  2273. }
  2274. static int __mptcp_init_sock(struct sock *sk)
  2275. {
  2276. struct mptcp_sock *msk = mptcp_sk(sk);
  2277. INIT_LIST_HEAD(&msk->conn_list);
  2278. INIT_LIST_HEAD(&msk->join_list);
  2279. INIT_LIST_HEAD(&msk->rtx_queue);
  2280. INIT_WORK(&msk->work, mptcp_worker);
  2281. __skb_queue_head_init(&msk->receive_queue);
  2282. msk->out_of_order_queue = RB_ROOT;
  2283. msk->first_pending = NULL;
  2284. msk->rmem_fwd_alloc = 0;
  2285. WRITE_ONCE(msk->rmem_released, 0);
  2286. msk->timer_ival = TCP_RTO_MIN;
  2287. WRITE_ONCE(msk->first, NULL);
  2288. inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
  2289. WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
  2290. WRITE_ONCE(msk->allow_infinite_fallback, true);
  2291. msk->recovery = false;
  2292. mptcp_pm_data_init(msk);
  2293. /* re-use the csk retrans timer for MPTCP-level retrans */
  2294. timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
  2295. timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
  2296. return 0;
  2297. }
  2298. static void mptcp_ca_reset(struct sock *sk)
  2299. {
  2300. struct inet_connection_sock *icsk = inet_csk(sk);
  2301. tcp_assign_congestion_control(sk);
  2302. strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
  2303. /* no need to keep a reference to the ops, the name will suffice */
  2304. tcp_cleanup_congestion_control(sk);
  2305. icsk->icsk_ca_ops = NULL;
  2306. }
  2307. static int mptcp_init_sock(struct sock *sk)
  2308. {
  2309. struct net *net = sock_net(sk);
  2310. int ret;
  2311. ret = __mptcp_init_sock(sk);
  2312. if (ret)
  2313. return ret;
  2314. if (!mptcp_is_enabled(net))
  2315. return -ENOPROTOOPT;
  2316. if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
  2317. return -ENOMEM;
  2318. ret = __mptcp_socket_create(mptcp_sk(sk));
  2319. if (ret)
  2320. return ret;
  2321. /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
  2322. * propagate the correct value
  2323. */
  2324. mptcp_ca_reset(sk);
  2325. sk_sockets_allocated_inc(sk);
  2326. sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
  2327. sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
  2328. return 0;
  2329. }
  2330. static void __mptcp_clear_xmit(struct sock *sk)
  2331. {
  2332. struct mptcp_sock *msk = mptcp_sk(sk);
  2333. struct mptcp_data_frag *dtmp, *dfrag;
  2334. WRITE_ONCE(msk->first_pending, NULL);
  2335. list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
  2336. dfrag_clear(sk, dfrag);
  2337. }
  2338. void mptcp_cancel_work(struct sock *sk)
  2339. {
  2340. struct mptcp_sock *msk = mptcp_sk(sk);
  2341. if (cancel_work_sync(&msk->work))
  2342. __sock_put(sk);
  2343. }
  2344. void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
  2345. {
  2346. lock_sock(ssk);
  2347. switch (ssk->sk_state) {
  2348. case TCP_LISTEN:
  2349. if (!(how & RCV_SHUTDOWN))
  2350. break;
  2351. fallthrough;
  2352. case TCP_SYN_SENT:
  2353. WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
  2354. break;
  2355. default:
  2356. if (__mptcp_check_fallback(mptcp_sk(sk))) {
  2357. pr_debug("Fallback");
  2358. ssk->sk_shutdown |= how;
  2359. tcp_shutdown(ssk, how);
  2360. /* simulate the data_fin ack reception to let the state
  2361. * machine move forward
  2362. */
  2363. WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
  2364. mptcp_schedule_work(sk);
  2365. } else {
  2366. pr_debug("Sending DATA_FIN on subflow %p", ssk);
  2367. tcp_send_ack(ssk);
  2368. if (!mptcp_rtx_timer_pending(sk))
  2369. mptcp_reset_rtx_timer(sk);
  2370. }
  2371. break;
  2372. }
  2373. release_sock(ssk);
  2374. }
  2375. static const unsigned char new_state[16] = {
  2376. /* current state: new state: action: */
  2377. [0 /* (Invalid) */] = TCP_CLOSE,
  2378. [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
  2379. [TCP_SYN_SENT] = TCP_CLOSE,
  2380. [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
  2381. [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
  2382. [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
  2383. [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
  2384. [TCP_CLOSE] = TCP_CLOSE,
  2385. [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
  2386. [TCP_LAST_ACK] = TCP_LAST_ACK,
  2387. [TCP_LISTEN] = TCP_CLOSE,
  2388. [TCP_CLOSING] = TCP_CLOSING,
  2389. [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
  2390. };
  2391. static int mptcp_close_state(struct sock *sk)
  2392. {
  2393. int next = (int)new_state[sk->sk_state];
  2394. int ns = next & TCP_STATE_MASK;
  2395. inet_sk_state_store(sk, ns);
  2396. return next & TCP_ACTION_FIN;
  2397. }
  2398. static void mptcp_check_send_data_fin(struct sock *sk)
  2399. {
  2400. struct mptcp_subflow_context *subflow;
  2401. struct mptcp_sock *msk = mptcp_sk(sk);
  2402. pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
  2403. msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
  2404. msk->snd_nxt, msk->write_seq);
  2405. /* we still need to enqueue subflows or not really shutting down,
  2406. * skip this
  2407. */
  2408. if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
  2409. mptcp_send_head(sk))
  2410. return;
  2411. WRITE_ONCE(msk->snd_nxt, msk->write_seq);
  2412. mptcp_for_each_subflow(msk, subflow) {
  2413. struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
  2414. mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
  2415. }
  2416. }
  2417. static void __mptcp_wr_shutdown(struct sock *sk)
  2418. {
  2419. struct mptcp_sock *msk = mptcp_sk(sk);
  2420. pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
  2421. msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
  2422. !!mptcp_send_head(sk));
  2423. /* will be ignored by fallback sockets */
  2424. WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
  2425. WRITE_ONCE(msk->snd_data_fin_enable, 1);
  2426. mptcp_check_send_data_fin(sk);
  2427. }
  2428. static void __mptcp_destroy_sock(struct sock *sk)
  2429. {
  2430. struct mptcp_sock *msk = mptcp_sk(sk);
  2431. pr_debug("msk=%p", msk);
  2432. might_sleep();
  2433. mptcp_stop_rtx_timer(sk);
  2434. sk_stop_timer(sk, &sk->sk_timer);
  2435. msk->pm.status = 0;
  2436. sk->sk_prot->destroy(sk);
  2437. WARN_ON_ONCE(msk->rmem_fwd_alloc);
  2438. WARN_ON_ONCE(msk->rmem_released);
  2439. sk_stream_kill_queues(sk);
  2440. xfrm_sk_free_policy(sk);
  2441. sk_refcnt_debug_release(sk);
  2442. sock_put(sk);
  2443. }
  2444. void __mptcp_unaccepted_force_close(struct sock *sk)
  2445. {
  2446. sock_set_flag(sk, SOCK_DEAD);
  2447. inet_sk_state_store(sk, TCP_CLOSE);
  2448. mptcp_do_fastclose(sk);
  2449. __mptcp_destroy_sock(sk);
  2450. }
  2451. static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
  2452. {
  2453. /* Concurrent splices from sk_receive_queue into receive_queue will
  2454. * always show at least one non-empty queue when checked in this order.
  2455. */
  2456. if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
  2457. skb_queue_empty_lockless(&msk->receive_queue))
  2458. return 0;
  2459. return EPOLLIN | EPOLLRDNORM;
  2460. }
  2461. static void mptcp_check_listen_stop(struct sock *sk)
  2462. {
  2463. struct sock *ssk;
  2464. if (inet_sk_state_load(sk) != TCP_LISTEN)
  2465. return;
  2466. ssk = mptcp_sk(sk)->first;
  2467. if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
  2468. return;
  2469. lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
  2470. tcp_set_state(ssk, TCP_CLOSE);
  2471. mptcp_subflow_queue_clean(sk, ssk);
  2472. inet_csk_listen_stop(ssk);
  2473. release_sock(ssk);
  2474. }
  2475. bool __mptcp_close(struct sock *sk, long timeout)
  2476. {
  2477. struct mptcp_subflow_context *subflow;
  2478. struct mptcp_sock *msk = mptcp_sk(sk);
  2479. bool do_cancel_work = false;
  2480. int subflows_alive = 0;
  2481. WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
  2482. if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
  2483. mptcp_check_listen_stop(sk);
  2484. inet_sk_state_store(sk, TCP_CLOSE);
  2485. goto cleanup;
  2486. }
  2487. if (mptcp_check_readable(msk)) {
  2488. /* the msk has read data, do the MPTCP equivalent of TCP reset */
  2489. inet_sk_state_store(sk, TCP_CLOSE);
  2490. mptcp_do_fastclose(sk);
  2491. } else if (mptcp_close_state(sk)) {
  2492. __mptcp_wr_shutdown(sk);
  2493. }
  2494. sk_stream_wait_close(sk, timeout);
  2495. cleanup:
  2496. /* orphan all the subflows */
  2497. mptcp_for_each_subflow(msk, subflow) {
  2498. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  2499. bool slow = lock_sock_fast_nested(ssk);
  2500. subflows_alive += ssk->sk_state != TCP_CLOSE;
  2501. /* since the close timeout takes precedence on the fail one,
  2502. * cancel the latter
  2503. */
  2504. if (ssk == msk->first)
  2505. subflow->fail_tout = 0;
  2506. /* detach from the parent socket, but allow data_ready to
  2507. * push incoming data into the mptcp stack, to properly ack it
  2508. */
  2509. ssk->sk_socket = NULL;
  2510. ssk->sk_wq = NULL;
  2511. unlock_sock_fast(ssk, slow);
  2512. }
  2513. sock_orphan(sk);
  2514. /* all the subflows are closed, only timeout can change the msk
  2515. * state, let's not keep resources busy for no reasons
  2516. */
  2517. if (subflows_alive == 0)
  2518. inet_sk_state_store(sk, TCP_CLOSE);
  2519. sock_hold(sk);
  2520. pr_debug("msk=%p state=%d", sk, sk->sk_state);
  2521. if (mptcp_sk(sk)->token)
  2522. mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
  2523. if (sk->sk_state == TCP_CLOSE) {
  2524. __mptcp_destroy_sock(sk);
  2525. do_cancel_work = true;
  2526. } else {
  2527. mptcp_start_tout_timer(sk);
  2528. }
  2529. return do_cancel_work;
  2530. }
  2531. static void mptcp_close(struct sock *sk, long timeout)
  2532. {
  2533. bool do_cancel_work;
  2534. lock_sock(sk);
  2535. do_cancel_work = __mptcp_close(sk, timeout);
  2536. release_sock(sk);
  2537. if (do_cancel_work)
  2538. mptcp_cancel_work(sk);
  2539. sock_put(sk);
  2540. }
  2541. static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
  2542. {
  2543. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  2544. const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
  2545. struct ipv6_pinfo *msk6 = inet6_sk(msk);
  2546. msk->sk_v6_daddr = ssk->sk_v6_daddr;
  2547. msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
  2548. if (msk6 && ssk6) {
  2549. msk6->saddr = ssk6->saddr;
  2550. msk6->flow_label = ssk6->flow_label;
  2551. }
  2552. #endif
  2553. inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
  2554. inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
  2555. inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
  2556. inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
  2557. inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
  2558. inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
  2559. }
  2560. static int mptcp_disconnect(struct sock *sk, int flags)
  2561. {
  2562. struct mptcp_sock *msk = mptcp_sk(sk);
  2563. /* Deny disconnect if other threads are blocked in sk_wait_event()
  2564. * or inet_wait_for_connect().
  2565. */
  2566. if (sk->sk_wait_pending)
  2567. return -EBUSY;
  2568. /* We are on the fastopen error path. We can't call straight into the
  2569. * subflows cleanup code due to lock nesting (we are already under
  2570. * msk->firstsocket lock).
  2571. */
  2572. if (msk->fastopening)
  2573. return -EBUSY;
  2574. mptcp_check_listen_stop(sk);
  2575. inet_sk_state_store(sk, TCP_CLOSE);
  2576. mptcp_stop_rtx_timer(sk);
  2577. mptcp_stop_tout_timer(sk);
  2578. if (mptcp_sk(sk)->token)
  2579. mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
  2580. /* msk->subflow is still intact, the following will not free the first
  2581. * subflow
  2582. */
  2583. mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
  2584. msk->last_snd = NULL;
  2585. WRITE_ONCE(msk->flags, 0);
  2586. msk->cb_flags = 0;
  2587. msk->push_pending = 0;
  2588. msk->recovery = false;
  2589. msk->can_ack = false;
  2590. msk->fully_established = false;
  2591. msk->rcv_data_fin = false;
  2592. msk->snd_data_fin_enable = false;
  2593. msk->rcv_fastclose = false;
  2594. msk->use_64bit_ack = false;
  2595. WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
  2596. mptcp_pm_data_reset(msk);
  2597. mptcp_ca_reset(sk);
  2598. WRITE_ONCE(sk->sk_shutdown, 0);
  2599. sk_error_report(sk);
  2600. return 0;
  2601. }
  2602. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  2603. static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
  2604. {
  2605. unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
  2606. return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
  2607. }
  2608. #endif
  2609. struct sock *mptcp_sk_clone_init(const struct sock *sk,
  2610. const struct mptcp_options_received *mp_opt,
  2611. struct sock *ssk,
  2612. struct request_sock *req)
  2613. {
  2614. struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
  2615. struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
  2616. struct mptcp_sock *msk;
  2617. u64 ack_seq;
  2618. if (!nsk)
  2619. return NULL;
  2620. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  2621. if (nsk->sk_family == AF_INET6)
  2622. inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
  2623. #endif
  2624. nsk->sk_wait_pending = 0;
  2625. __mptcp_init_sock(nsk);
  2626. msk = mptcp_sk(nsk);
  2627. msk->local_key = subflow_req->local_key;
  2628. msk->token = subflow_req->token;
  2629. WRITE_ONCE(msk->subflow, NULL);
  2630. msk->in_accept_queue = 1;
  2631. WRITE_ONCE(msk->fully_established, false);
  2632. if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
  2633. WRITE_ONCE(msk->csum_enabled, true);
  2634. msk->write_seq = subflow_req->idsn + 1;
  2635. msk->snd_nxt = msk->write_seq;
  2636. msk->snd_una = msk->write_seq;
  2637. msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
  2638. msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
  2639. if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
  2640. msk->can_ack = true;
  2641. msk->remote_key = mp_opt->sndr_key;
  2642. mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
  2643. ack_seq++;
  2644. WRITE_ONCE(msk->ack_seq, ack_seq);
  2645. atomic64_set(&msk->rcv_wnd_sent, ack_seq);
  2646. }
  2647. sock_reset_flag(nsk, SOCK_RCU_FREE);
  2648. security_inet_csk_clone(nsk, req);
  2649. /* this can't race with mptcp_close(), as the msk is
  2650. * not yet exposted to user-space
  2651. */
  2652. inet_sk_state_store(nsk, TCP_ESTABLISHED);
  2653. /* The msk maintain a ref to each subflow in the connections list */
  2654. WRITE_ONCE(msk->first, ssk);
  2655. list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list);
  2656. sock_hold(ssk);
  2657. /* new mpc subflow takes ownership of the newly
  2658. * created mptcp socket
  2659. */
  2660. mptcp_token_accept(subflow_req, msk);
  2661. /* set msk addresses early to ensure mptcp_pm_get_local_id()
  2662. * uses the correct data
  2663. */
  2664. mptcp_copy_inaddrs(nsk, ssk);
  2665. mptcp_propagate_sndbuf(nsk, ssk);
  2666. mptcp_rcv_space_init(msk, ssk);
  2667. bh_unlock_sock(nsk);
  2668. /* note: the newly allocated socket refcount is 2 now */
  2669. return nsk;
  2670. }
  2671. void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
  2672. {
  2673. const struct tcp_sock *tp = tcp_sk(ssk);
  2674. msk->rcvq_space.copied = 0;
  2675. msk->rcvq_space.rtt_us = 0;
  2676. msk->rcvq_space.time = tp->tcp_mstamp;
  2677. /* initial rcv_space offering made to peer */
  2678. msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
  2679. TCP_INIT_CWND * tp->advmss);
  2680. if (msk->rcvq_space.space == 0)
  2681. msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
  2682. WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
  2683. }
  2684. static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
  2685. bool kern)
  2686. {
  2687. struct mptcp_sock *msk = mptcp_sk(sk);
  2688. struct socket *listener;
  2689. struct sock *newsk;
  2690. listener = READ_ONCE(msk->subflow);
  2691. if (WARN_ON_ONCE(!listener)) {
  2692. *err = -EINVAL;
  2693. return NULL;
  2694. }
  2695. pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
  2696. newsk = inet_csk_accept(listener->sk, flags, err, kern);
  2697. if (!newsk)
  2698. return NULL;
  2699. pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
  2700. if (sk_is_mptcp(newsk)) {
  2701. struct mptcp_subflow_context *subflow;
  2702. struct sock *new_mptcp_sock;
  2703. subflow = mptcp_subflow_ctx(newsk);
  2704. new_mptcp_sock = subflow->conn;
  2705. /* is_mptcp should be false if subflow->conn is missing, see
  2706. * subflow_syn_recv_sock()
  2707. */
  2708. if (WARN_ON_ONCE(!new_mptcp_sock)) {
  2709. tcp_sk(newsk)->is_mptcp = 0;
  2710. goto out;
  2711. }
  2712. newsk = new_mptcp_sock;
  2713. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
  2714. } else {
  2715. MPTCP_INC_STATS(sock_net(sk),
  2716. MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
  2717. }
  2718. out:
  2719. newsk->sk_kern_sock = kern;
  2720. return newsk;
  2721. }
  2722. void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
  2723. {
  2724. struct mptcp_subflow_context *subflow, *tmp;
  2725. struct sock *sk = (struct sock *)msk;
  2726. __mptcp_clear_xmit(sk);
  2727. /* join list will be eventually flushed (with rst) at sock lock release time */
  2728. mptcp_for_each_subflow_safe(msk, subflow, tmp)
  2729. __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
  2730. /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
  2731. mptcp_data_lock(sk);
  2732. skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
  2733. __skb_queue_purge(&sk->sk_receive_queue);
  2734. skb_rbtree_purge(&msk->out_of_order_queue);
  2735. mptcp_data_unlock(sk);
  2736. /* move all the rx fwd alloc into the sk_mem_reclaim_final in
  2737. * inet_sock_destruct() will dispose it
  2738. */
  2739. sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
  2740. WRITE_ONCE(msk->rmem_fwd_alloc, 0);
  2741. mptcp_token_destroy(msk);
  2742. mptcp_pm_free_anno_list(msk);
  2743. mptcp_free_local_addr_list(msk);
  2744. }
  2745. static void mptcp_destroy(struct sock *sk)
  2746. {
  2747. struct mptcp_sock *msk = mptcp_sk(sk);
  2748. /* clears msk->subflow, allowing the following to close
  2749. * even the initial subflow
  2750. */
  2751. mptcp_dispose_initial_subflow(msk);
  2752. mptcp_destroy_common(msk, 0);
  2753. sk_sockets_allocated_dec(sk);
  2754. }
  2755. void __mptcp_data_acked(struct sock *sk)
  2756. {
  2757. if (!sock_owned_by_user(sk))
  2758. __mptcp_clean_una(sk);
  2759. else
  2760. __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
  2761. if (mptcp_pending_data_fin_ack(sk))
  2762. mptcp_schedule_work(sk);
  2763. }
  2764. void __mptcp_check_push(struct sock *sk, struct sock *ssk)
  2765. {
  2766. if (!mptcp_send_head(sk))
  2767. return;
  2768. if (!sock_owned_by_user(sk)) {
  2769. struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
  2770. if (xmit_ssk == ssk)
  2771. __mptcp_subflow_push_pending(sk, ssk);
  2772. else if (xmit_ssk)
  2773. mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
  2774. } else {
  2775. __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
  2776. }
  2777. }
  2778. #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
  2779. BIT(MPTCP_RETRANSMIT) | \
  2780. BIT(MPTCP_FLUSH_JOIN_LIST))
  2781. /* processes deferred events and flush wmem */
  2782. static void mptcp_release_cb(struct sock *sk)
  2783. __must_hold(&sk->sk_lock.slock)
  2784. {
  2785. struct mptcp_sock *msk = mptcp_sk(sk);
  2786. for (;;) {
  2787. unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
  2788. msk->push_pending;
  2789. struct list_head join_list;
  2790. if (!flags)
  2791. break;
  2792. INIT_LIST_HEAD(&join_list);
  2793. list_splice_init(&msk->join_list, &join_list);
  2794. /* the following actions acquire the subflow socket lock
  2795. *
  2796. * 1) can't be invoked in atomic scope
  2797. * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
  2798. * datapath acquires the msk socket spinlock while helding
  2799. * the subflow socket lock
  2800. */
  2801. msk->push_pending = 0;
  2802. msk->cb_flags &= ~flags;
  2803. spin_unlock_bh(&sk->sk_lock.slock);
  2804. if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
  2805. __mptcp_flush_join_list(sk, &join_list);
  2806. if (flags & BIT(MPTCP_PUSH_PENDING))
  2807. __mptcp_push_pending(sk, 0);
  2808. if (flags & BIT(MPTCP_RETRANSMIT))
  2809. __mptcp_retrans(sk);
  2810. cond_resched();
  2811. spin_lock_bh(&sk->sk_lock.slock);
  2812. }
  2813. if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
  2814. __mptcp_clean_una_wakeup(sk);
  2815. if (unlikely(msk->cb_flags)) {
  2816. /* be sure to set the current sk state before tacking actions
  2817. * depending on sk_state, that is processing MPTCP_ERROR_REPORT
  2818. */
  2819. if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
  2820. __mptcp_set_connected(sk);
  2821. if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
  2822. __mptcp_error_report(sk);
  2823. if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
  2824. msk->last_snd = NULL;
  2825. }
  2826. __mptcp_update_rmem(sk);
  2827. }
  2828. /* MP_JOIN client subflow must wait for 4th ack before sending any data:
  2829. * TCP can't schedule delack timer before the subflow is fully established.
  2830. * MPTCP uses the delack timer to do 3rd ack retransmissions
  2831. */
  2832. static void schedule_3rdack_retransmission(struct sock *ssk)
  2833. {
  2834. struct inet_connection_sock *icsk = inet_csk(ssk);
  2835. struct tcp_sock *tp = tcp_sk(ssk);
  2836. unsigned long timeout;
  2837. if (mptcp_subflow_ctx(ssk)->fully_established)
  2838. return;
  2839. /* reschedule with a timeout above RTT, as we must look only for drop */
  2840. if (tp->srtt_us)
  2841. timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
  2842. else
  2843. timeout = TCP_TIMEOUT_INIT;
  2844. timeout += jiffies;
  2845. WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
  2846. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  2847. icsk->icsk_ack.timeout = timeout;
  2848. sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
  2849. }
  2850. void mptcp_subflow_process_delegated(struct sock *ssk, long status)
  2851. {
  2852. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  2853. struct sock *sk = subflow->conn;
  2854. if (status & BIT(MPTCP_DELEGATE_SEND)) {
  2855. mptcp_data_lock(sk);
  2856. if (!sock_owned_by_user(sk))
  2857. __mptcp_subflow_push_pending(sk, ssk);
  2858. else
  2859. __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
  2860. mptcp_data_unlock(sk);
  2861. }
  2862. if (status & BIT(MPTCP_DELEGATE_ACK))
  2863. schedule_3rdack_retransmission(ssk);
  2864. }
  2865. static int mptcp_hash(struct sock *sk)
  2866. {
  2867. /* should never be called,
  2868. * we hash the TCP subflows not the master socket
  2869. */
  2870. WARN_ON_ONCE(1);
  2871. return 0;
  2872. }
  2873. static void mptcp_unhash(struct sock *sk)
  2874. {
  2875. /* called from sk_common_release(), but nothing to do here */
  2876. }
  2877. static int mptcp_get_port(struct sock *sk, unsigned short snum)
  2878. {
  2879. struct mptcp_sock *msk = mptcp_sk(sk);
  2880. struct socket *ssock;
  2881. ssock = msk->subflow;
  2882. pr_debug("msk=%p, subflow=%p", msk, ssock);
  2883. if (WARN_ON_ONCE(!ssock))
  2884. return -EINVAL;
  2885. return inet_csk_get_port(ssock->sk, snum);
  2886. }
  2887. void mptcp_finish_connect(struct sock *ssk)
  2888. {
  2889. struct mptcp_subflow_context *subflow;
  2890. struct mptcp_sock *msk;
  2891. struct sock *sk;
  2892. u64 ack_seq;
  2893. subflow = mptcp_subflow_ctx(ssk);
  2894. sk = subflow->conn;
  2895. msk = mptcp_sk(sk);
  2896. pr_debug("msk=%p, token=%u", sk, subflow->token);
  2897. mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
  2898. ack_seq++;
  2899. subflow->map_seq = ack_seq;
  2900. subflow->map_subflow_seq = 1;
  2901. /* the socket is not connected yet, no msk/subflow ops can access/race
  2902. * accessing the field below
  2903. */
  2904. WRITE_ONCE(msk->remote_key, subflow->remote_key);
  2905. WRITE_ONCE(msk->local_key, subflow->local_key);
  2906. WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
  2907. WRITE_ONCE(msk->snd_nxt, msk->write_seq);
  2908. WRITE_ONCE(msk->ack_seq, ack_seq);
  2909. WRITE_ONCE(msk->can_ack, 1);
  2910. WRITE_ONCE(msk->snd_una, msk->write_seq);
  2911. atomic64_set(&msk->rcv_wnd_sent, ack_seq);
  2912. mptcp_pm_new_connection(msk, ssk, 0);
  2913. mptcp_rcv_space_init(msk, ssk);
  2914. }
  2915. void mptcp_sock_graft(struct sock *sk, struct socket *parent)
  2916. {
  2917. write_lock_bh(&sk->sk_callback_lock);
  2918. rcu_assign_pointer(sk->sk_wq, &parent->wq);
  2919. sk_set_socket(sk, parent);
  2920. sk->sk_uid = SOCK_INODE(parent)->i_uid;
  2921. write_unlock_bh(&sk->sk_callback_lock);
  2922. }
  2923. bool mptcp_finish_join(struct sock *ssk)
  2924. {
  2925. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  2926. struct mptcp_sock *msk = mptcp_sk(subflow->conn);
  2927. struct sock *parent = (void *)msk;
  2928. bool ret = true;
  2929. pr_debug("msk=%p, subflow=%p", msk, subflow);
  2930. /* mptcp socket already closing? */
  2931. if (!mptcp_is_fully_established(parent)) {
  2932. subflow->reset_reason = MPTCP_RST_EMPTCP;
  2933. return false;
  2934. }
  2935. /* active subflow, already present inside the conn_list */
  2936. if (!list_empty(&subflow->node)) {
  2937. mptcp_subflow_joined(msk, ssk);
  2938. return true;
  2939. }
  2940. if (!mptcp_pm_allow_new_subflow(msk))
  2941. goto err_prohibited;
  2942. /* If we can't acquire msk socket lock here, let the release callback
  2943. * handle it
  2944. */
  2945. mptcp_data_lock(parent);
  2946. if (!sock_owned_by_user(parent)) {
  2947. ret = __mptcp_finish_join(msk, ssk);
  2948. if (ret) {
  2949. sock_hold(ssk);
  2950. list_add_tail(&subflow->node, &msk->conn_list);
  2951. }
  2952. } else {
  2953. sock_hold(ssk);
  2954. list_add_tail(&subflow->node, &msk->join_list);
  2955. __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
  2956. }
  2957. mptcp_data_unlock(parent);
  2958. if (!ret) {
  2959. err_prohibited:
  2960. subflow->reset_reason = MPTCP_RST_EPROHIBIT;
  2961. return false;
  2962. }
  2963. return true;
  2964. }
  2965. static void mptcp_shutdown(struct sock *sk, int how)
  2966. {
  2967. pr_debug("sk=%p, how=%d", sk, how);
  2968. if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
  2969. __mptcp_wr_shutdown(sk);
  2970. }
  2971. static int mptcp_forward_alloc_get(const struct sock *sk)
  2972. {
  2973. return READ_ONCE(sk->sk_forward_alloc) +
  2974. READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
  2975. }
  2976. static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
  2977. {
  2978. const struct sock *sk = (void *)msk;
  2979. u64 delta;
  2980. if (sk->sk_state == TCP_LISTEN)
  2981. return -EINVAL;
  2982. if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
  2983. return 0;
  2984. delta = msk->write_seq - v;
  2985. if (__mptcp_check_fallback(msk) && msk->first) {
  2986. struct tcp_sock *tp = tcp_sk(msk->first);
  2987. /* the first subflow is disconnected after close - see
  2988. * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
  2989. * so ignore that status, too.
  2990. */
  2991. if (!((1 << msk->first->sk_state) &
  2992. (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
  2993. delta += READ_ONCE(tp->write_seq) - tp->snd_una;
  2994. }
  2995. if (delta > INT_MAX)
  2996. delta = INT_MAX;
  2997. return (int)delta;
  2998. }
  2999. static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  3000. {
  3001. struct mptcp_sock *msk = mptcp_sk(sk);
  3002. bool slow;
  3003. int answ;
  3004. switch (cmd) {
  3005. case SIOCINQ:
  3006. if (sk->sk_state == TCP_LISTEN)
  3007. return -EINVAL;
  3008. lock_sock(sk);
  3009. __mptcp_move_skbs(msk);
  3010. answ = mptcp_inq_hint(sk);
  3011. release_sock(sk);
  3012. break;
  3013. case SIOCOUTQ:
  3014. slow = lock_sock_fast(sk);
  3015. answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
  3016. unlock_sock_fast(sk, slow);
  3017. break;
  3018. case SIOCOUTQNSD:
  3019. slow = lock_sock_fast(sk);
  3020. answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
  3021. unlock_sock_fast(sk, slow);
  3022. break;
  3023. default:
  3024. return -ENOIOCTLCMD;
  3025. }
  3026. return put_user(answ, (int __user *)arg);
  3027. }
  3028. static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
  3029. struct mptcp_subflow_context *subflow)
  3030. {
  3031. subflow->request_mptcp = 0;
  3032. __mptcp_do_fallback(msk);
  3033. }
  3034. static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
  3035. {
  3036. struct mptcp_subflow_context *subflow;
  3037. struct mptcp_sock *msk = mptcp_sk(sk);
  3038. struct socket *ssock;
  3039. int err = -EINVAL;
  3040. ssock = __mptcp_nmpc_socket(msk);
  3041. if (!ssock)
  3042. return -EINVAL;
  3043. mptcp_token_destroy(msk);
  3044. inet_sk_state_store(sk, TCP_SYN_SENT);
  3045. subflow = mptcp_subflow_ctx(ssock->sk);
  3046. #ifdef CONFIG_TCP_MD5SIG
  3047. /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
  3048. * TCP option space.
  3049. */
  3050. if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
  3051. mptcp_subflow_early_fallback(msk, subflow);
  3052. #endif
  3053. if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
  3054. MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
  3055. mptcp_subflow_early_fallback(msk, subflow);
  3056. }
  3057. if (likely(!__mptcp_check_fallback(msk)))
  3058. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
  3059. /* if reaching here via the fastopen/sendmsg path, the caller already
  3060. * acquired the subflow socket lock, too.
  3061. */
  3062. if (msk->fastopening)
  3063. err = __inet_stream_connect(ssock, uaddr, addr_len, O_NONBLOCK, 1);
  3064. else
  3065. err = inet_stream_connect(ssock, uaddr, addr_len, O_NONBLOCK);
  3066. inet_sk(sk)->defer_connect = inet_sk(ssock->sk)->defer_connect;
  3067. /* on successful connect, the msk state will be moved to established by
  3068. * subflow_finish_connect()
  3069. */
  3070. if (unlikely(err && err != -EINPROGRESS)) {
  3071. inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
  3072. return err;
  3073. }
  3074. mptcp_copy_inaddrs(sk, ssock->sk);
  3075. /* silence EINPROGRESS and let the caller inet_stream_connect
  3076. * handle the connection in progress
  3077. */
  3078. return 0;
  3079. }
  3080. static struct proto mptcp_prot = {
  3081. .name = "MPTCP",
  3082. .owner = THIS_MODULE,
  3083. .init = mptcp_init_sock,
  3084. .connect = mptcp_connect,
  3085. .disconnect = mptcp_disconnect,
  3086. .close = mptcp_close,
  3087. .accept = mptcp_accept,
  3088. .setsockopt = mptcp_setsockopt,
  3089. .getsockopt = mptcp_getsockopt,
  3090. .shutdown = mptcp_shutdown,
  3091. .destroy = mptcp_destroy,
  3092. .sendmsg = mptcp_sendmsg,
  3093. .ioctl = mptcp_ioctl,
  3094. .recvmsg = mptcp_recvmsg,
  3095. .release_cb = mptcp_release_cb,
  3096. .hash = mptcp_hash,
  3097. .unhash = mptcp_unhash,
  3098. .get_port = mptcp_get_port,
  3099. .forward_alloc_get = mptcp_forward_alloc_get,
  3100. .sockets_allocated = &mptcp_sockets_allocated,
  3101. .memory_allocated = &tcp_memory_allocated,
  3102. .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
  3103. .memory_pressure = &tcp_memory_pressure,
  3104. .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
  3105. .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
  3106. .sysctl_mem = sysctl_tcp_mem,
  3107. .obj_size = sizeof(struct mptcp_sock),
  3108. .slab_flags = SLAB_TYPESAFE_BY_RCU,
  3109. .no_autobind = true,
  3110. };
  3111. static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
  3112. {
  3113. struct mptcp_sock *msk = mptcp_sk(sock->sk);
  3114. struct socket *ssock;
  3115. int err;
  3116. lock_sock(sock->sk);
  3117. ssock = __mptcp_nmpc_socket(msk);
  3118. if (!ssock) {
  3119. err = -EINVAL;
  3120. goto unlock;
  3121. }
  3122. err = ssock->ops->bind(ssock, uaddr, addr_len);
  3123. if (!err)
  3124. mptcp_copy_inaddrs(sock->sk, ssock->sk);
  3125. unlock:
  3126. release_sock(sock->sk);
  3127. return err;
  3128. }
  3129. static int mptcp_listen(struct socket *sock, int backlog)
  3130. {
  3131. struct mptcp_sock *msk = mptcp_sk(sock->sk);
  3132. struct sock *sk = sock->sk;
  3133. struct socket *ssock;
  3134. int err;
  3135. pr_debug("msk=%p", msk);
  3136. lock_sock(sk);
  3137. err = -EINVAL;
  3138. if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
  3139. goto unlock;
  3140. ssock = __mptcp_nmpc_socket(msk);
  3141. if (!ssock) {
  3142. err = -EINVAL;
  3143. goto unlock;
  3144. }
  3145. mptcp_token_destroy(msk);
  3146. inet_sk_state_store(sk, TCP_LISTEN);
  3147. sock_set_flag(sk, SOCK_RCU_FREE);
  3148. err = ssock->ops->listen(ssock, backlog);
  3149. inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
  3150. if (!err)
  3151. mptcp_copy_inaddrs(sk, ssock->sk);
  3152. unlock:
  3153. release_sock(sk);
  3154. return err;
  3155. }
  3156. static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
  3157. int flags, bool kern)
  3158. {
  3159. struct mptcp_sock *msk = mptcp_sk(sock->sk);
  3160. struct socket *ssock;
  3161. int err;
  3162. pr_debug("msk=%p", msk);
  3163. /* Buggy applications can call accept on socket states other then LISTEN
  3164. * but no need to allocate the first subflow just to error out.
  3165. */
  3166. ssock = READ_ONCE(msk->subflow);
  3167. if (!ssock)
  3168. return -EINVAL;
  3169. err = ssock->ops->accept(sock, newsock, flags, kern);
  3170. if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
  3171. struct mptcp_sock *msk = mptcp_sk(newsock->sk);
  3172. struct mptcp_subflow_context *subflow;
  3173. struct sock *newsk = newsock->sk;
  3174. msk->in_accept_queue = 0;
  3175. lock_sock(newsk);
  3176. /* set ssk->sk_socket of accept()ed flows to mptcp socket.
  3177. * This is needed so NOSPACE flag can be set from tcp stack.
  3178. */
  3179. mptcp_for_each_subflow(msk, subflow) {
  3180. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  3181. if (!ssk->sk_socket)
  3182. mptcp_sock_graft(ssk, newsock);
  3183. }
  3184. /* Do late cleanup for the first subflow as necessary. Also
  3185. * deal with bad peers not doing a complete shutdown.
  3186. */
  3187. if (msk->first &&
  3188. unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
  3189. __mptcp_close_ssk(newsk, msk->first,
  3190. mptcp_subflow_ctx(msk->first), 0);
  3191. if (unlikely(list_empty(&msk->conn_list)))
  3192. inet_sk_state_store(newsk, TCP_CLOSE);
  3193. }
  3194. release_sock(newsk);
  3195. }
  3196. return err;
  3197. }
  3198. static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
  3199. {
  3200. struct sock *sk = (struct sock *)msk;
  3201. if (sk_stream_is_writeable(sk))
  3202. return EPOLLOUT | EPOLLWRNORM;
  3203. mptcp_set_nospace(sk);
  3204. smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
  3205. if (sk_stream_is_writeable(sk))
  3206. return EPOLLOUT | EPOLLWRNORM;
  3207. return 0;
  3208. }
  3209. static __poll_t mptcp_poll(struct file *file, struct socket *sock,
  3210. struct poll_table_struct *wait)
  3211. {
  3212. struct sock *sk = sock->sk;
  3213. struct mptcp_sock *msk;
  3214. __poll_t mask = 0;
  3215. u8 shutdown;
  3216. int state;
  3217. msk = mptcp_sk(sk);
  3218. sock_poll_wait(file, sock, wait);
  3219. state = inet_sk_state_load(sk);
  3220. pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
  3221. if (state == TCP_LISTEN) {
  3222. struct socket *ssock = READ_ONCE(msk->subflow);
  3223. if (WARN_ON_ONCE(!ssock || !ssock->sk))
  3224. return 0;
  3225. return inet_csk_listen_poll(ssock->sk);
  3226. }
  3227. shutdown = READ_ONCE(sk->sk_shutdown);
  3228. if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
  3229. mask |= EPOLLHUP;
  3230. if (shutdown & RCV_SHUTDOWN)
  3231. mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
  3232. if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
  3233. mask |= mptcp_check_readable(msk);
  3234. if (shutdown & SEND_SHUTDOWN)
  3235. mask |= EPOLLOUT | EPOLLWRNORM;
  3236. else
  3237. mask |= mptcp_check_writeable(msk);
  3238. } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
  3239. /* cf tcp_poll() note about TFO */
  3240. mask |= EPOLLOUT | EPOLLWRNORM;
  3241. }
  3242. /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
  3243. smp_rmb();
  3244. if (READ_ONCE(sk->sk_err))
  3245. mask |= EPOLLERR;
  3246. return mask;
  3247. }
  3248. static const struct proto_ops mptcp_stream_ops = {
  3249. .family = PF_INET,
  3250. .owner = THIS_MODULE,
  3251. .release = inet_release,
  3252. .bind = mptcp_bind,
  3253. .connect = inet_stream_connect,
  3254. .socketpair = sock_no_socketpair,
  3255. .accept = mptcp_stream_accept,
  3256. .getname = inet_getname,
  3257. .poll = mptcp_poll,
  3258. .ioctl = inet_ioctl,
  3259. .gettstamp = sock_gettstamp,
  3260. .listen = mptcp_listen,
  3261. .shutdown = inet_shutdown,
  3262. .setsockopt = sock_common_setsockopt,
  3263. .getsockopt = sock_common_getsockopt,
  3264. .sendmsg = inet_sendmsg,
  3265. .recvmsg = inet_recvmsg,
  3266. .mmap = sock_no_mmap,
  3267. .sendpage = inet_sendpage,
  3268. };
  3269. static struct inet_protosw mptcp_protosw = {
  3270. .type = SOCK_STREAM,
  3271. .protocol = IPPROTO_MPTCP,
  3272. .prot = &mptcp_prot,
  3273. .ops = &mptcp_stream_ops,
  3274. .flags = INET_PROTOSW_ICSK,
  3275. };
  3276. static int mptcp_napi_poll(struct napi_struct *napi, int budget)
  3277. {
  3278. struct mptcp_delegated_action *delegated;
  3279. struct mptcp_subflow_context *subflow;
  3280. int work_done = 0;
  3281. delegated = container_of(napi, struct mptcp_delegated_action, napi);
  3282. while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
  3283. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  3284. bh_lock_sock_nested(ssk);
  3285. if (!sock_owned_by_user(ssk)) {
  3286. mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
  3287. } else {
  3288. /* tcp_release_cb_override already processed
  3289. * the action or will do at next release_sock().
  3290. * In both case must dequeue the subflow here - on the same
  3291. * CPU that scheduled it.
  3292. */
  3293. smp_wmb();
  3294. clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
  3295. }
  3296. bh_unlock_sock(ssk);
  3297. sock_put(ssk);
  3298. if (++work_done == budget)
  3299. return budget;
  3300. }
  3301. /* always provide a 0 'work_done' argument, so that napi_complete_done
  3302. * will not try accessing the NULL napi->dev ptr
  3303. */
  3304. napi_complete_done(napi, 0);
  3305. return work_done;
  3306. }
  3307. void __init mptcp_proto_init(void)
  3308. {
  3309. struct mptcp_delegated_action *delegated;
  3310. int cpu;
  3311. mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
  3312. if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
  3313. panic("Failed to allocate MPTCP pcpu counter\n");
  3314. init_dummy_netdev(&mptcp_napi_dev);
  3315. for_each_possible_cpu(cpu) {
  3316. delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
  3317. INIT_LIST_HEAD(&delegated->head);
  3318. netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
  3319. mptcp_napi_poll);
  3320. napi_enable(&delegated->napi);
  3321. }
  3322. mptcp_subflow_init();
  3323. mptcp_pm_init();
  3324. mptcp_token_init();
  3325. if (proto_register(&mptcp_prot, 1) != 0)
  3326. panic("Failed to register MPTCP proto.\n");
  3327. inet_register_protosw(&mptcp_protosw);
  3328. BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
  3329. }
  3330. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  3331. static const struct proto_ops mptcp_v6_stream_ops = {
  3332. .family = PF_INET6,
  3333. .owner = THIS_MODULE,
  3334. .release = inet6_release,
  3335. .bind = mptcp_bind,
  3336. .connect = inet_stream_connect,
  3337. .socketpair = sock_no_socketpair,
  3338. .accept = mptcp_stream_accept,
  3339. .getname = inet6_getname,
  3340. .poll = mptcp_poll,
  3341. .ioctl = inet6_ioctl,
  3342. .gettstamp = sock_gettstamp,
  3343. .listen = mptcp_listen,
  3344. .shutdown = inet_shutdown,
  3345. .setsockopt = sock_common_setsockopt,
  3346. .getsockopt = sock_common_getsockopt,
  3347. .sendmsg = inet6_sendmsg,
  3348. .recvmsg = inet6_recvmsg,
  3349. .mmap = sock_no_mmap,
  3350. .sendpage = inet_sendpage,
  3351. #ifdef CONFIG_COMPAT
  3352. .compat_ioctl = inet6_compat_ioctl,
  3353. #endif
  3354. };
  3355. static struct proto mptcp_v6_prot;
  3356. static struct inet_protosw mptcp_v6_protosw = {
  3357. .type = SOCK_STREAM,
  3358. .protocol = IPPROTO_MPTCP,
  3359. .prot = &mptcp_v6_prot,
  3360. .ops = &mptcp_v6_stream_ops,
  3361. .flags = INET_PROTOSW_ICSK,
  3362. };
  3363. int __init mptcp_proto_v6_init(void)
  3364. {
  3365. int err;
  3366. mptcp_v6_prot = mptcp_prot;
  3367. strcpy(mptcp_v6_prot.name, "MPTCPv6");
  3368. mptcp_v6_prot.slab = NULL;
  3369. mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
  3370. err = proto_register(&mptcp_v6_prot, 1);
  3371. if (err)
  3372. return err;
  3373. err = inet6_register_protosw(&mptcp_v6_protosw);
  3374. if (err)
  3375. proto_unregister(&mptcp_v6_prot);
  3376. return err;
  3377. }
  3378. #endif