af_key.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  4. *
  5. * Authors: Maxim Giryaev <[email protected]>
  6. * David S. Miller <[email protected]>
  7. * Alexey Kuznetsov <[email protected]>
  8. * Kunihiro Ishiguro <[email protected]>
  9. * Kazunori MIYAZAWA / USAGI Project <[email protected]>
  10. * Derek Atkins <[email protected]>
  11. */
  12. #include <linux/capability.h>
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/socket.h>
  16. #include <linux/pfkeyv2.h>
  17. #include <linux/ipsec.h>
  18. #include <linux/skbuff.h>
  19. #include <linux/rtnetlink.h>
  20. #include <linux/in.h>
  21. #include <linux/in6.h>
  22. #include <linux/proc_fs.h>
  23. #include <linux/init.h>
  24. #include <linux/slab.h>
  25. #include <net/net_namespace.h>
  26. #include <net/netns/generic.h>
  27. #include <net/xfrm.h>
  28. #include <net/sock.h>
  29. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  30. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  31. static unsigned int pfkey_net_id __read_mostly;
  32. struct netns_pfkey {
  33. /* List of all pfkey sockets. */
  34. struct hlist_head table;
  35. atomic_t socks_nr;
  36. };
  37. static DEFINE_MUTEX(pfkey_mutex);
  38. #define DUMMY_MARK 0
  39. static const struct xfrm_mark dummy_mark = {0, 0};
  40. struct pfkey_sock {
  41. /* struct sock must be the first member of struct pfkey_sock */
  42. struct sock sk;
  43. int registered;
  44. int promisc;
  45. struct {
  46. uint8_t msg_version;
  47. uint32_t msg_portid;
  48. int (*dump)(struct pfkey_sock *sk);
  49. void (*done)(struct pfkey_sock *sk);
  50. union {
  51. struct xfrm_policy_walk policy;
  52. struct xfrm_state_walk state;
  53. } u;
  54. struct sk_buff *skb;
  55. } dump;
  56. struct mutex dump_lock;
  57. };
  58. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  59. xfrm_address_t *saddr, xfrm_address_t *daddr,
  60. u16 *family);
  61. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  62. {
  63. return (struct pfkey_sock *)sk;
  64. }
  65. static int pfkey_can_dump(const struct sock *sk)
  66. {
  67. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  68. return 1;
  69. return 0;
  70. }
  71. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  72. {
  73. if (pfk->dump.dump) {
  74. if (pfk->dump.skb) {
  75. kfree_skb(pfk->dump.skb);
  76. pfk->dump.skb = NULL;
  77. }
  78. pfk->dump.done(pfk);
  79. pfk->dump.dump = NULL;
  80. pfk->dump.done = NULL;
  81. }
  82. }
  83. static void pfkey_sock_destruct(struct sock *sk)
  84. {
  85. struct net *net = sock_net(sk);
  86. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  87. pfkey_terminate_dump(pfkey_sk(sk));
  88. skb_queue_purge(&sk->sk_receive_queue);
  89. if (!sock_flag(sk, SOCK_DEAD)) {
  90. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  91. return;
  92. }
  93. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  94. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  95. atomic_dec(&net_pfkey->socks_nr);
  96. }
  97. static const struct proto_ops pfkey_ops;
  98. static void pfkey_insert(struct sock *sk)
  99. {
  100. struct net *net = sock_net(sk);
  101. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  102. mutex_lock(&pfkey_mutex);
  103. sk_add_node_rcu(sk, &net_pfkey->table);
  104. mutex_unlock(&pfkey_mutex);
  105. }
  106. static void pfkey_remove(struct sock *sk)
  107. {
  108. mutex_lock(&pfkey_mutex);
  109. sk_del_node_init_rcu(sk);
  110. mutex_unlock(&pfkey_mutex);
  111. }
  112. static struct proto key_proto = {
  113. .name = "KEY",
  114. .owner = THIS_MODULE,
  115. .obj_size = sizeof(struct pfkey_sock),
  116. };
  117. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  118. int kern)
  119. {
  120. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  121. struct sock *sk;
  122. struct pfkey_sock *pfk;
  123. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  124. return -EPERM;
  125. if (sock->type != SOCK_RAW)
  126. return -ESOCKTNOSUPPORT;
  127. if (protocol != PF_KEY_V2)
  128. return -EPROTONOSUPPORT;
  129. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto, kern);
  130. if (sk == NULL)
  131. return -ENOMEM;
  132. pfk = pfkey_sk(sk);
  133. mutex_init(&pfk->dump_lock);
  134. sock->ops = &pfkey_ops;
  135. sock_init_data(sock, sk);
  136. sk->sk_family = PF_KEY;
  137. sk->sk_destruct = pfkey_sock_destruct;
  138. atomic_inc(&net_pfkey->socks_nr);
  139. pfkey_insert(sk);
  140. return 0;
  141. }
  142. static int pfkey_release(struct socket *sock)
  143. {
  144. struct sock *sk = sock->sk;
  145. if (!sk)
  146. return 0;
  147. pfkey_remove(sk);
  148. sock_orphan(sk);
  149. sock->sk = NULL;
  150. skb_queue_purge(&sk->sk_write_queue);
  151. synchronize_rcu();
  152. sock_put(sk);
  153. return 0;
  154. }
  155. static int pfkey_broadcast_one(struct sk_buff *skb, gfp_t allocation,
  156. struct sock *sk)
  157. {
  158. int err = -ENOBUFS;
  159. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  160. return err;
  161. skb = skb_clone(skb, allocation);
  162. if (skb) {
  163. skb_set_owner_r(skb, sk);
  164. skb_queue_tail(&sk->sk_receive_queue, skb);
  165. sk->sk_data_ready(sk);
  166. err = 0;
  167. }
  168. return err;
  169. }
  170. /* Send SKB to all pfkey sockets matching selected criteria. */
  171. #define BROADCAST_ALL 0
  172. #define BROADCAST_ONE 1
  173. #define BROADCAST_REGISTERED 2
  174. #define BROADCAST_PROMISC_ONLY 4
  175. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  176. int broadcast_flags, struct sock *one_sk,
  177. struct net *net)
  178. {
  179. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  180. struct sock *sk;
  181. int err = -ESRCH;
  182. /* XXX Do we need something like netlink_overrun? I think
  183. * XXX PF_KEY socket apps will not mind current behavior.
  184. */
  185. if (!skb)
  186. return -ENOMEM;
  187. rcu_read_lock();
  188. sk_for_each_rcu(sk, &net_pfkey->table) {
  189. struct pfkey_sock *pfk = pfkey_sk(sk);
  190. int err2;
  191. /* Yes, it means that if you are meant to receive this
  192. * pfkey message you receive it twice as promiscuous
  193. * socket.
  194. */
  195. if (pfk->promisc)
  196. pfkey_broadcast_one(skb, GFP_ATOMIC, sk);
  197. /* the exact target will be processed later */
  198. if (sk == one_sk)
  199. continue;
  200. if (broadcast_flags != BROADCAST_ALL) {
  201. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  202. continue;
  203. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  204. !pfk->registered)
  205. continue;
  206. if (broadcast_flags & BROADCAST_ONE)
  207. continue;
  208. }
  209. err2 = pfkey_broadcast_one(skb, GFP_ATOMIC, sk);
  210. /* Error is cleared after successful sending to at least one
  211. * registered KM */
  212. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  213. err = err2;
  214. }
  215. rcu_read_unlock();
  216. if (one_sk != NULL)
  217. err = pfkey_broadcast_one(skb, allocation, one_sk);
  218. kfree_skb(skb);
  219. return err;
  220. }
  221. static int pfkey_do_dump(struct pfkey_sock *pfk)
  222. {
  223. struct sadb_msg *hdr;
  224. int rc;
  225. mutex_lock(&pfk->dump_lock);
  226. if (!pfk->dump.dump) {
  227. rc = 0;
  228. goto out;
  229. }
  230. rc = pfk->dump.dump(pfk);
  231. if (rc == -ENOBUFS) {
  232. rc = 0;
  233. goto out;
  234. }
  235. if (pfk->dump.skb) {
  236. if (!pfkey_can_dump(&pfk->sk)) {
  237. rc = 0;
  238. goto out;
  239. }
  240. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  241. hdr->sadb_msg_seq = 0;
  242. hdr->sadb_msg_errno = rc;
  243. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  244. &pfk->sk, sock_net(&pfk->sk));
  245. pfk->dump.skb = NULL;
  246. }
  247. pfkey_terminate_dump(pfk);
  248. out:
  249. mutex_unlock(&pfk->dump_lock);
  250. return rc;
  251. }
  252. static inline void pfkey_hdr_dup(struct sadb_msg *new,
  253. const struct sadb_msg *orig)
  254. {
  255. *new = *orig;
  256. }
  257. static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
  258. {
  259. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  260. struct sadb_msg *hdr;
  261. if (!skb)
  262. return -ENOBUFS;
  263. /* Woe be to the platform trying to support PFKEY yet
  264. * having normal errnos outside the 1-255 range, inclusive.
  265. */
  266. err = -err;
  267. if (err == ERESTARTSYS ||
  268. err == ERESTARTNOHAND ||
  269. err == ERESTARTNOINTR)
  270. err = EINTR;
  271. if (err >= 512)
  272. err = EINVAL;
  273. BUG_ON(err <= 0 || err >= 256);
  274. hdr = skb_put(skb, sizeof(struct sadb_msg));
  275. pfkey_hdr_dup(hdr, orig);
  276. hdr->sadb_msg_errno = (uint8_t) err;
  277. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  278. sizeof(uint64_t));
  279. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  280. return 0;
  281. }
  282. static const u8 sadb_ext_min_len[] = {
  283. [SADB_EXT_RESERVED] = (u8) 0,
  284. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  285. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  286. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  287. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  288. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  289. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  290. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  291. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  292. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  293. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  294. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  295. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  296. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  297. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  298. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  299. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  300. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  301. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  302. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  303. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  304. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  305. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  306. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  307. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  308. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  309. [SADB_X_EXT_FILTER] = (u8) sizeof(struct sadb_x_filter),
  310. };
  311. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  312. static int verify_address_len(const void *p)
  313. {
  314. const struct sadb_address *sp = p;
  315. const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
  316. const struct sockaddr_in *sin;
  317. #if IS_ENABLED(CONFIG_IPV6)
  318. const struct sockaddr_in6 *sin6;
  319. #endif
  320. int len;
  321. if (sp->sadb_address_len <
  322. DIV_ROUND_UP(sizeof(*sp) + offsetofend(typeof(*addr), sa_family),
  323. sizeof(uint64_t)))
  324. return -EINVAL;
  325. switch (addr->sa_family) {
  326. case AF_INET:
  327. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  328. if (sp->sadb_address_len != len ||
  329. sp->sadb_address_prefixlen > 32)
  330. return -EINVAL;
  331. break;
  332. #if IS_ENABLED(CONFIG_IPV6)
  333. case AF_INET6:
  334. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  335. if (sp->sadb_address_len != len ||
  336. sp->sadb_address_prefixlen > 128)
  337. return -EINVAL;
  338. break;
  339. #endif
  340. default:
  341. /* It is user using kernel to keep track of security
  342. * associations for another protocol, such as
  343. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  344. * lengths.
  345. *
  346. * XXX Actually, association/policy database is not yet
  347. * XXX able to cope with arbitrary sockaddr families.
  348. * XXX When it can, remove this -EINVAL. -DaveM
  349. */
  350. return -EINVAL;
  351. }
  352. return 0;
  353. }
  354. static inline int sadb_key_len(const struct sadb_key *key)
  355. {
  356. int key_bytes = DIV_ROUND_UP(key->sadb_key_bits, 8);
  357. return DIV_ROUND_UP(sizeof(struct sadb_key) + key_bytes,
  358. sizeof(uint64_t));
  359. }
  360. static int verify_key_len(const void *p)
  361. {
  362. const struct sadb_key *key = p;
  363. if (sadb_key_len(key) > key->sadb_key_len)
  364. return -EINVAL;
  365. return 0;
  366. }
  367. static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
  368. {
  369. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  370. sec_ctx->sadb_x_ctx_len,
  371. sizeof(uint64_t));
  372. }
  373. static inline int verify_sec_ctx_len(const void *p)
  374. {
  375. const struct sadb_x_sec_ctx *sec_ctx = p;
  376. int len = sec_ctx->sadb_x_ctx_len;
  377. if (len > PAGE_SIZE)
  378. return -EINVAL;
  379. len = pfkey_sec_ctx_len(sec_ctx);
  380. if (sec_ctx->sadb_x_sec_len != len)
  381. return -EINVAL;
  382. return 0;
  383. }
  384. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx,
  385. gfp_t gfp)
  386. {
  387. struct xfrm_user_sec_ctx *uctx = NULL;
  388. int ctx_size = sec_ctx->sadb_x_ctx_len;
  389. uctx = kmalloc((sizeof(*uctx)+ctx_size), gfp);
  390. if (!uctx)
  391. return NULL;
  392. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  393. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  394. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  395. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  396. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  397. memcpy(uctx + 1, sec_ctx + 1,
  398. uctx->ctx_len);
  399. return uctx;
  400. }
  401. static int present_and_same_family(const struct sadb_address *src,
  402. const struct sadb_address *dst)
  403. {
  404. const struct sockaddr *s_addr, *d_addr;
  405. if (!src || !dst)
  406. return 0;
  407. s_addr = (const struct sockaddr *)(src + 1);
  408. d_addr = (const struct sockaddr *)(dst + 1);
  409. if (s_addr->sa_family != d_addr->sa_family)
  410. return 0;
  411. if (s_addr->sa_family != AF_INET
  412. #if IS_ENABLED(CONFIG_IPV6)
  413. && s_addr->sa_family != AF_INET6
  414. #endif
  415. )
  416. return 0;
  417. return 1;
  418. }
  419. static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
  420. {
  421. const char *p = (char *) hdr;
  422. int len = skb->len;
  423. len -= sizeof(*hdr);
  424. p += sizeof(*hdr);
  425. while (len > 0) {
  426. const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
  427. uint16_t ext_type;
  428. int ext_len;
  429. if (len < sizeof(*ehdr))
  430. return -EINVAL;
  431. ext_len = ehdr->sadb_ext_len;
  432. ext_len *= sizeof(uint64_t);
  433. ext_type = ehdr->sadb_ext_type;
  434. if (ext_len < sizeof(uint64_t) ||
  435. ext_len > len ||
  436. ext_type == SADB_EXT_RESERVED)
  437. return -EINVAL;
  438. if (ext_type <= SADB_EXT_MAX) {
  439. int min = (int) sadb_ext_min_len[ext_type];
  440. if (ext_len < min)
  441. return -EINVAL;
  442. if (ext_hdrs[ext_type-1] != NULL)
  443. return -EINVAL;
  444. switch (ext_type) {
  445. case SADB_EXT_ADDRESS_SRC:
  446. case SADB_EXT_ADDRESS_DST:
  447. case SADB_EXT_ADDRESS_PROXY:
  448. case SADB_X_EXT_NAT_T_OA:
  449. if (verify_address_len(p))
  450. return -EINVAL;
  451. break;
  452. case SADB_X_EXT_SEC_CTX:
  453. if (verify_sec_ctx_len(p))
  454. return -EINVAL;
  455. break;
  456. case SADB_EXT_KEY_AUTH:
  457. case SADB_EXT_KEY_ENCRYPT:
  458. if (verify_key_len(p))
  459. return -EINVAL;
  460. break;
  461. default:
  462. break;
  463. }
  464. ext_hdrs[ext_type-1] = (void *) p;
  465. }
  466. p += ext_len;
  467. len -= ext_len;
  468. }
  469. return 0;
  470. }
  471. static uint16_t
  472. pfkey_satype2proto(uint8_t satype)
  473. {
  474. switch (satype) {
  475. case SADB_SATYPE_UNSPEC:
  476. return IPSEC_PROTO_ANY;
  477. case SADB_SATYPE_AH:
  478. return IPPROTO_AH;
  479. case SADB_SATYPE_ESP:
  480. return IPPROTO_ESP;
  481. case SADB_X_SATYPE_IPCOMP:
  482. return IPPROTO_COMP;
  483. default:
  484. return 0;
  485. }
  486. /* NOTREACHED */
  487. }
  488. static uint8_t
  489. pfkey_proto2satype(uint16_t proto)
  490. {
  491. switch (proto) {
  492. case IPPROTO_AH:
  493. return SADB_SATYPE_AH;
  494. case IPPROTO_ESP:
  495. return SADB_SATYPE_ESP;
  496. case IPPROTO_COMP:
  497. return SADB_X_SATYPE_IPCOMP;
  498. default:
  499. return 0;
  500. }
  501. /* NOTREACHED */
  502. }
  503. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  504. * say specifically 'just raw sockets' as we encode them as 255.
  505. */
  506. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  507. {
  508. return proto == IPSEC_PROTO_ANY ? 0 : proto;
  509. }
  510. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  511. {
  512. return proto ? proto : IPSEC_PROTO_ANY;
  513. }
  514. static inline int pfkey_sockaddr_len(sa_family_t family)
  515. {
  516. switch (family) {
  517. case AF_INET:
  518. return sizeof(struct sockaddr_in);
  519. #if IS_ENABLED(CONFIG_IPV6)
  520. case AF_INET6:
  521. return sizeof(struct sockaddr_in6);
  522. #endif
  523. }
  524. return 0;
  525. }
  526. static
  527. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  528. {
  529. switch (sa->sa_family) {
  530. case AF_INET:
  531. xaddr->a4 =
  532. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  533. return AF_INET;
  534. #if IS_ENABLED(CONFIG_IPV6)
  535. case AF_INET6:
  536. memcpy(xaddr->a6,
  537. &((struct sockaddr_in6 *)sa)->sin6_addr,
  538. sizeof(struct in6_addr));
  539. return AF_INET6;
  540. #endif
  541. }
  542. return 0;
  543. }
  544. static
  545. int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
  546. {
  547. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  548. xaddr);
  549. }
  550. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
  551. {
  552. const struct sadb_sa *sa;
  553. const struct sadb_address *addr;
  554. uint16_t proto;
  555. unsigned short family;
  556. xfrm_address_t *xaddr;
  557. sa = ext_hdrs[SADB_EXT_SA - 1];
  558. if (sa == NULL)
  559. return NULL;
  560. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  561. if (proto == 0)
  562. return NULL;
  563. /* sadb_address_len should be checked by caller */
  564. addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  565. if (addr == NULL)
  566. return NULL;
  567. family = ((const struct sockaddr *)(addr + 1))->sa_family;
  568. switch (family) {
  569. case AF_INET:
  570. xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
  571. break;
  572. #if IS_ENABLED(CONFIG_IPV6)
  573. case AF_INET6:
  574. xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  575. break;
  576. #endif
  577. default:
  578. xaddr = NULL;
  579. }
  580. if (!xaddr)
  581. return NULL;
  582. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  583. }
  584. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  585. static int
  586. pfkey_sockaddr_size(sa_family_t family)
  587. {
  588. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  589. }
  590. static inline int pfkey_mode_from_xfrm(int mode)
  591. {
  592. switch(mode) {
  593. case XFRM_MODE_TRANSPORT:
  594. return IPSEC_MODE_TRANSPORT;
  595. case XFRM_MODE_TUNNEL:
  596. return IPSEC_MODE_TUNNEL;
  597. case XFRM_MODE_BEET:
  598. return IPSEC_MODE_BEET;
  599. default:
  600. return -1;
  601. }
  602. }
  603. static inline int pfkey_mode_to_xfrm(int mode)
  604. {
  605. switch(mode) {
  606. case IPSEC_MODE_ANY: /*XXX*/
  607. case IPSEC_MODE_TRANSPORT:
  608. return XFRM_MODE_TRANSPORT;
  609. case IPSEC_MODE_TUNNEL:
  610. return XFRM_MODE_TUNNEL;
  611. case IPSEC_MODE_BEET:
  612. return XFRM_MODE_BEET;
  613. default:
  614. return -1;
  615. }
  616. }
  617. static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
  618. struct sockaddr *sa,
  619. unsigned short family)
  620. {
  621. switch (family) {
  622. case AF_INET:
  623. {
  624. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  625. sin->sin_family = AF_INET;
  626. sin->sin_port = port;
  627. sin->sin_addr.s_addr = xaddr->a4;
  628. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  629. return 32;
  630. }
  631. #if IS_ENABLED(CONFIG_IPV6)
  632. case AF_INET6:
  633. {
  634. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  635. sin6->sin6_family = AF_INET6;
  636. sin6->sin6_port = port;
  637. sin6->sin6_flowinfo = 0;
  638. sin6->sin6_addr = xaddr->in6;
  639. sin6->sin6_scope_id = 0;
  640. return 128;
  641. }
  642. #endif
  643. }
  644. return 0;
  645. }
  646. static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
  647. int add_keys, int hsc)
  648. {
  649. struct sk_buff *skb;
  650. struct sadb_msg *hdr;
  651. struct sadb_sa *sa;
  652. struct sadb_lifetime *lifetime;
  653. struct sadb_address *addr;
  654. struct sadb_key *key;
  655. struct sadb_x_sa2 *sa2;
  656. struct sadb_x_sec_ctx *sec_ctx;
  657. struct xfrm_sec_ctx *xfrm_ctx;
  658. int ctx_size = 0;
  659. int size;
  660. int auth_key_size = 0;
  661. int encrypt_key_size = 0;
  662. int sockaddr_size;
  663. struct xfrm_encap_tmpl *natt = NULL;
  664. int mode;
  665. /* address family check */
  666. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  667. if (!sockaddr_size)
  668. return ERR_PTR(-EINVAL);
  669. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  670. key(AE), (identity(SD),) (sensitivity)> */
  671. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  672. sizeof(struct sadb_lifetime) +
  673. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  674. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  675. sizeof(struct sadb_address)*2 +
  676. sockaddr_size*2 +
  677. sizeof(struct sadb_x_sa2);
  678. if ((xfrm_ctx = x->security)) {
  679. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  680. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  681. }
  682. /* identity & sensitivity */
  683. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family))
  684. size += sizeof(struct sadb_address) + sockaddr_size;
  685. if (add_keys) {
  686. if (x->aalg && x->aalg->alg_key_len) {
  687. auth_key_size =
  688. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  689. size += sizeof(struct sadb_key) + auth_key_size;
  690. }
  691. if (x->ealg && x->ealg->alg_key_len) {
  692. encrypt_key_size =
  693. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  694. size += sizeof(struct sadb_key) + encrypt_key_size;
  695. }
  696. }
  697. if (x->encap)
  698. natt = x->encap;
  699. if (natt && natt->encap_type) {
  700. size += sizeof(struct sadb_x_nat_t_type);
  701. size += sizeof(struct sadb_x_nat_t_port);
  702. size += sizeof(struct sadb_x_nat_t_port);
  703. }
  704. skb = alloc_skb(size + 16, GFP_ATOMIC);
  705. if (skb == NULL)
  706. return ERR_PTR(-ENOBUFS);
  707. /* call should fill header later */
  708. hdr = skb_put(skb, sizeof(struct sadb_msg));
  709. memset(hdr, 0, size); /* XXX do we need this ? */
  710. hdr->sadb_msg_len = size / sizeof(uint64_t);
  711. /* sa */
  712. sa = skb_put(skb, sizeof(struct sadb_sa));
  713. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  714. sa->sadb_sa_exttype = SADB_EXT_SA;
  715. sa->sadb_sa_spi = x->id.spi;
  716. sa->sadb_sa_replay = x->props.replay_window;
  717. switch (x->km.state) {
  718. case XFRM_STATE_VALID:
  719. sa->sadb_sa_state = x->km.dying ?
  720. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  721. break;
  722. case XFRM_STATE_ACQ:
  723. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  724. break;
  725. default:
  726. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  727. break;
  728. }
  729. sa->sadb_sa_auth = 0;
  730. if (x->aalg) {
  731. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  732. sa->sadb_sa_auth = (a && a->pfkey_supported) ?
  733. a->desc.sadb_alg_id : 0;
  734. }
  735. sa->sadb_sa_encrypt = 0;
  736. BUG_ON(x->ealg && x->calg);
  737. if (x->ealg) {
  738. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  739. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  740. a->desc.sadb_alg_id : 0;
  741. }
  742. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  743. if (x->calg) {
  744. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  745. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  746. a->desc.sadb_alg_id : 0;
  747. }
  748. sa->sadb_sa_flags = 0;
  749. if (x->props.flags & XFRM_STATE_NOECN)
  750. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  751. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  752. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  753. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  754. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  755. /* hard time */
  756. if (hsc & 2) {
  757. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  758. lifetime->sadb_lifetime_len =
  759. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  760. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  761. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  762. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  763. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  764. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  765. }
  766. /* soft time */
  767. if (hsc & 1) {
  768. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  769. lifetime->sadb_lifetime_len =
  770. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  771. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  772. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  773. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  774. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  775. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  776. }
  777. /* current time */
  778. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  779. lifetime->sadb_lifetime_len =
  780. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  781. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  782. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  783. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  784. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  785. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  786. /* src address */
  787. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  788. addr->sadb_address_len =
  789. (sizeof(struct sadb_address)+sockaddr_size)/
  790. sizeof(uint64_t);
  791. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  792. /* "if the ports are non-zero, then the sadb_address_proto field,
  793. normally zero, MUST be filled in with the transport
  794. protocol's number." - RFC2367 */
  795. addr->sadb_address_proto = 0;
  796. addr->sadb_address_reserved = 0;
  797. addr->sadb_address_prefixlen =
  798. pfkey_sockaddr_fill(&x->props.saddr, 0,
  799. (struct sockaddr *) (addr + 1),
  800. x->props.family);
  801. BUG_ON(!addr->sadb_address_prefixlen);
  802. /* dst address */
  803. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  804. addr->sadb_address_len =
  805. (sizeof(struct sadb_address)+sockaddr_size)/
  806. sizeof(uint64_t);
  807. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  808. addr->sadb_address_proto = 0;
  809. addr->sadb_address_reserved = 0;
  810. addr->sadb_address_prefixlen =
  811. pfkey_sockaddr_fill(&x->id.daddr, 0,
  812. (struct sockaddr *) (addr + 1),
  813. x->props.family);
  814. BUG_ON(!addr->sadb_address_prefixlen);
  815. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr,
  816. x->props.family)) {
  817. addr = skb_put(skb,
  818. sizeof(struct sadb_address) + sockaddr_size);
  819. addr->sadb_address_len =
  820. (sizeof(struct sadb_address)+sockaddr_size)/
  821. sizeof(uint64_t);
  822. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  823. addr->sadb_address_proto =
  824. pfkey_proto_from_xfrm(x->sel.proto);
  825. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  826. addr->sadb_address_reserved = 0;
  827. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  828. (struct sockaddr *) (addr + 1),
  829. x->props.family);
  830. }
  831. /* auth key */
  832. if (add_keys && auth_key_size) {
  833. key = skb_put(skb, sizeof(struct sadb_key) + auth_key_size);
  834. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  835. sizeof(uint64_t);
  836. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  837. key->sadb_key_bits = x->aalg->alg_key_len;
  838. key->sadb_key_reserved = 0;
  839. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  840. }
  841. /* encrypt key */
  842. if (add_keys && encrypt_key_size) {
  843. key = skb_put(skb, sizeof(struct sadb_key) + encrypt_key_size);
  844. key->sadb_key_len = (sizeof(struct sadb_key) +
  845. encrypt_key_size) / sizeof(uint64_t);
  846. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  847. key->sadb_key_bits = x->ealg->alg_key_len;
  848. key->sadb_key_reserved = 0;
  849. memcpy(key + 1, x->ealg->alg_key,
  850. (x->ealg->alg_key_len+7)/8);
  851. }
  852. /* sa */
  853. sa2 = skb_put(skb, sizeof(struct sadb_x_sa2));
  854. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  855. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  856. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  857. kfree_skb(skb);
  858. return ERR_PTR(-EINVAL);
  859. }
  860. sa2->sadb_x_sa2_mode = mode;
  861. sa2->sadb_x_sa2_reserved1 = 0;
  862. sa2->sadb_x_sa2_reserved2 = 0;
  863. sa2->sadb_x_sa2_sequence = 0;
  864. sa2->sadb_x_sa2_reqid = x->props.reqid;
  865. if (natt && natt->encap_type) {
  866. struct sadb_x_nat_t_type *n_type;
  867. struct sadb_x_nat_t_port *n_port;
  868. /* type */
  869. n_type = skb_put(skb, sizeof(*n_type));
  870. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  871. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  872. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  873. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  874. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  875. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  876. /* source port */
  877. n_port = skb_put(skb, sizeof(*n_port));
  878. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  879. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  880. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  881. n_port->sadb_x_nat_t_port_reserved = 0;
  882. /* dest port */
  883. n_port = skb_put(skb, sizeof(*n_port));
  884. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  885. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  886. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  887. n_port->sadb_x_nat_t_port_reserved = 0;
  888. }
  889. /* security context */
  890. if (xfrm_ctx) {
  891. sec_ctx = skb_put(skb,
  892. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  893. sec_ctx->sadb_x_sec_len =
  894. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  895. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  896. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  897. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  898. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  899. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  900. xfrm_ctx->ctx_len);
  901. }
  902. return skb;
  903. }
  904. static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
  905. {
  906. struct sk_buff *skb;
  907. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  908. return skb;
  909. }
  910. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
  911. int hsc)
  912. {
  913. return __pfkey_xfrm_state2msg(x, 0, hsc);
  914. }
  915. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  916. const struct sadb_msg *hdr,
  917. void * const *ext_hdrs)
  918. {
  919. struct xfrm_state *x;
  920. const struct sadb_lifetime *lifetime;
  921. const struct sadb_sa *sa;
  922. const struct sadb_key *key;
  923. const struct sadb_x_sec_ctx *sec_ctx;
  924. uint16_t proto;
  925. int err;
  926. sa = ext_hdrs[SADB_EXT_SA - 1];
  927. if (!sa ||
  928. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  929. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  930. return ERR_PTR(-EINVAL);
  931. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  932. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  933. return ERR_PTR(-EINVAL);
  934. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  935. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  936. return ERR_PTR(-EINVAL);
  937. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  938. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  939. return ERR_PTR(-EINVAL);
  940. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  941. if (proto == 0)
  942. return ERR_PTR(-EINVAL);
  943. /* default error is no buffer space */
  944. err = -ENOBUFS;
  945. /* RFC2367:
  946. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  947. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  948. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  949. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  950. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  951. not true.
  952. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  953. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  954. */
  955. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  956. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  957. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  958. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  959. return ERR_PTR(-EINVAL);
  960. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  961. if (key != NULL &&
  962. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  963. key->sadb_key_bits == 0)
  964. return ERR_PTR(-EINVAL);
  965. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  966. if (key != NULL &&
  967. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  968. key->sadb_key_bits == 0)
  969. return ERR_PTR(-EINVAL);
  970. x = xfrm_state_alloc(net);
  971. if (x == NULL)
  972. return ERR_PTR(-ENOBUFS);
  973. x->id.proto = proto;
  974. x->id.spi = sa->sadb_sa_spi;
  975. x->props.replay_window = min_t(unsigned int, sa->sadb_sa_replay,
  976. (sizeof(x->replay.bitmap) * 8));
  977. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  978. x->props.flags |= XFRM_STATE_NOECN;
  979. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  980. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  981. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  982. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  983. lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
  984. if (lifetime != NULL) {
  985. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  986. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  987. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  988. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  989. }
  990. lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
  991. if (lifetime != NULL) {
  992. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  993. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  994. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  995. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  996. }
  997. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  998. if (sec_ctx != NULL) {
  999. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  1000. if (!uctx)
  1001. goto out;
  1002. err = security_xfrm_state_alloc(x, uctx);
  1003. kfree(uctx);
  1004. if (err)
  1005. goto out;
  1006. }
  1007. err = -ENOBUFS;
  1008. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  1009. if (sa->sadb_sa_auth) {
  1010. int keysize = 0;
  1011. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1012. if (!a || !a->pfkey_supported) {
  1013. err = -ENOSYS;
  1014. goto out;
  1015. }
  1016. if (key)
  1017. keysize = (key->sadb_key_bits + 7) / 8;
  1018. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1019. if (!x->aalg) {
  1020. err = -ENOMEM;
  1021. goto out;
  1022. }
  1023. strcpy(x->aalg->alg_name, a->name);
  1024. x->aalg->alg_key_len = 0;
  1025. if (key) {
  1026. x->aalg->alg_key_len = key->sadb_key_bits;
  1027. memcpy(x->aalg->alg_key, key+1, keysize);
  1028. }
  1029. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1030. x->props.aalgo = sa->sadb_sa_auth;
  1031. /* x->algo.flags = sa->sadb_sa_flags; */
  1032. }
  1033. if (sa->sadb_sa_encrypt) {
  1034. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1035. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1036. if (!a || !a->pfkey_supported) {
  1037. err = -ENOSYS;
  1038. goto out;
  1039. }
  1040. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1041. if (!x->calg) {
  1042. err = -ENOMEM;
  1043. goto out;
  1044. }
  1045. strcpy(x->calg->alg_name, a->name);
  1046. x->props.calgo = sa->sadb_sa_encrypt;
  1047. } else {
  1048. int keysize = 0;
  1049. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1050. if (!a || !a->pfkey_supported) {
  1051. err = -ENOSYS;
  1052. goto out;
  1053. }
  1054. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1055. if (key)
  1056. keysize = (key->sadb_key_bits + 7) / 8;
  1057. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1058. if (!x->ealg) {
  1059. err = -ENOMEM;
  1060. goto out;
  1061. }
  1062. strcpy(x->ealg->alg_name, a->name);
  1063. x->ealg->alg_key_len = 0;
  1064. if (key) {
  1065. x->ealg->alg_key_len = key->sadb_key_bits;
  1066. memcpy(x->ealg->alg_key, key+1, keysize);
  1067. }
  1068. x->props.ealgo = sa->sadb_sa_encrypt;
  1069. x->geniv = a->uinfo.encr.geniv;
  1070. }
  1071. }
  1072. /* x->algo.flags = sa->sadb_sa_flags; */
  1073. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1074. &x->props.saddr);
  1075. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1076. &x->id.daddr);
  1077. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1078. const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
  1079. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1080. if (mode < 0) {
  1081. err = -EINVAL;
  1082. goto out;
  1083. }
  1084. x->props.mode = mode;
  1085. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1086. }
  1087. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1088. const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1089. /* Nobody uses this, but we try. */
  1090. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1091. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1092. }
  1093. if (!x->sel.family)
  1094. x->sel.family = x->props.family;
  1095. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1096. const struct sadb_x_nat_t_type* n_type;
  1097. struct xfrm_encap_tmpl *natt;
  1098. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1099. if (!x->encap) {
  1100. err = -ENOMEM;
  1101. goto out;
  1102. }
  1103. natt = x->encap;
  1104. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1105. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1106. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1107. const struct sadb_x_nat_t_port *n_port =
  1108. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1109. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1110. }
  1111. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1112. const struct sadb_x_nat_t_port *n_port =
  1113. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1114. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1115. }
  1116. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1117. }
  1118. err = xfrm_init_state(x);
  1119. if (err)
  1120. goto out;
  1121. x->km.seq = hdr->sadb_msg_seq;
  1122. return x;
  1123. out:
  1124. x->km.state = XFRM_STATE_DEAD;
  1125. xfrm_state_put(x);
  1126. return ERR_PTR(err);
  1127. }
  1128. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1129. {
  1130. return -EOPNOTSUPP;
  1131. }
  1132. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1133. {
  1134. struct net *net = sock_net(sk);
  1135. struct sk_buff *resp_skb;
  1136. struct sadb_x_sa2 *sa2;
  1137. struct sadb_address *saddr, *daddr;
  1138. struct sadb_msg *out_hdr;
  1139. struct sadb_spirange *range;
  1140. struct xfrm_state *x = NULL;
  1141. int mode;
  1142. int err;
  1143. u32 min_spi, max_spi;
  1144. u32 reqid;
  1145. u8 proto;
  1146. unsigned short family;
  1147. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1148. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1149. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1150. return -EINVAL;
  1151. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1152. if (proto == 0)
  1153. return -EINVAL;
  1154. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1155. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1156. if (mode < 0)
  1157. return -EINVAL;
  1158. reqid = sa2->sadb_x_sa2_reqid;
  1159. } else {
  1160. mode = 0;
  1161. reqid = 0;
  1162. }
  1163. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1164. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1165. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1166. switch (family) {
  1167. case AF_INET:
  1168. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1169. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1170. break;
  1171. #if IS_ENABLED(CONFIG_IPV6)
  1172. case AF_INET6:
  1173. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1174. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1175. break;
  1176. #endif
  1177. }
  1178. if (hdr->sadb_msg_seq) {
  1179. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1180. if (x && !xfrm_addr_equal(&x->id.daddr, xdaddr, family)) {
  1181. xfrm_state_put(x);
  1182. x = NULL;
  1183. }
  1184. }
  1185. if (!x)
  1186. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, 0, proto, xdaddr, xsaddr, 1, family);
  1187. if (x == NULL)
  1188. return -ENOENT;
  1189. min_spi = 0x100;
  1190. max_spi = 0x0fffffff;
  1191. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1192. if (range) {
  1193. min_spi = range->sadb_spirange_min;
  1194. max_spi = range->sadb_spirange_max;
  1195. }
  1196. err = verify_spi_info(x->id.proto, min_spi, max_spi);
  1197. if (err) {
  1198. xfrm_state_put(x);
  1199. return err;
  1200. }
  1201. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1202. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1203. if (IS_ERR(resp_skb)) {
  1204. xfrm_state_put(x);
  1205. return PTR_ERR(resp_skb);
  1206. }
  1207. out_hdr = (struct sadb_msg *) resp_skb->data;
  1208. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1209. out_hdr->sadb_msg_type = SADB_GETSPI;
  1210. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1211. out_hdr->sadb_msg_errno = 0;
  1212. out_hdr->sadb_msg_reserved = 0;
  1213. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1214. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1215. xfrm_state_put(x);
  1216. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1217. return 0;
  1218. }
  1219. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1220. {
  1221. struct net *net = sock_net(sk);
  1222. struct xfrm_state *x;
  1223. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1224. return -EOPNOTSUPP;
  1225. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1226. return 0;
  1227. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1228. if (x == NULL)
  1229. return 0;
  1230. spin_lock_bh(&x->lock);
  1231. if (x->km.state == XFRM_STATE_ACQ)
  1232. x->km.state = XFRM_STATE_ERROR;
  1233. spin_unlock_bh(&x->lock);
  1234. xfrm_state_put(x);
  1235. return 0;
  1236. }
  1237. static inline int event2poltype(int event)
  1238. {
  1239. switch (event) {
  1240. case XFRM_MSG_DELPOLICY:
  1241. return SADB_X_SPDDELETE;
  1242. case XFRM_MSG_NEWPOLICY:
  1243. return SADB_X_SPDADD;
  1244. case XFRM_MSG_UPDPOLICY:
  1245. return SADB_X_SPDUPDATE;
  1246. case XFRM_MSG_POLEXPIRE:
  1247. // return SADB_X_SPDEXPIRE;
  1248. default:
  1249. pr_err("pfkey: Unknown policy event %d\n", event);
  1250. break;
  1251. }
  1252. return 0;
  1253. }
  1254. static inline int event2keytype(int event)
  1255. {
  1256. switch (event) {
  1257. case XFRM_MSG_DELSA:
  1258. return SADB_DELETE;
  1259. case XFRM_MSG_NEWSA:
  1260. return SADB_ADD;
  1261. case XFRM_MSG_UPDSA:
  1262. return SADB_UPDATE;
  1263. case XFRM_MSG_EXPIRE:
  1264. return SADB_EXPIRE;
  1265. default:
  1266. pr_err("pfkey: Unknown SA event %d\n", event);
  1267. break;
  1268. }
  1269. return 0;
  1270. }
  1271. /* ADD/UPD/DEL */
  1272. static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
  1273. {
  1274. struct sk_buff *skb;
  1275. struct sadb_msg *hdr;
  1276. skb = pfkey_xfrm_state2msg(x);
  1277. if (IS_ERR(skb))
  1278. return PTR_ERR(skb);
  1279. hdr = (struct sadb_msg *) skb->data;
  1280. hdr->sadb_msg_version = PF_KEY_V2;
  1281. hdr->sadb_msg_type = event2keytype(c->event);
  1282. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1283. hdr->sadb_msg_errno = 0;
  1284. hdr->sadb_msg_reserved = 0;
  1285. hdr->sadb_msg_seq = c->seq;
  1286. hdr->sadb_msg_pid = c->portid;
  1287. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1288. return 0;
  1289. }
  1290. static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1291. {
  1292. struct net *net = sock_net(sk);
  1293. struct xfrm_state *x;
  1294. int err;
  1295. struct km_event c;
  1296. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1297. if (IS_ERR(x))
  1298. return PTR_ERR(x);
  1299. xfrm_state_hold(x);
  1300. if (hdr->sadb_msg_type == SADB_ADD)
  1301. err = xfrm_state_add(x);
  1302. else
  1303. err = xfrm_state_update(x);
  1304. xfrm_audit_state_add(x, err ? 0 : 1, true);
  1305. if (err < 0) {
  1306. x->km.state = XFRM_STATE_DEAD;
  1307. __xfrm_state_put(x);
  1308. goto out;
  1309. }
  1310. if (hdr->sadb_msg_type == SADB_ADD)
  1311. c.event = XFRM_MSG_NEWSA;
  1312. else
  1313. c.event = XFRM_MSG_UPDSA;
  1314. c.seq = hdr->sadb_msg_seq;
  1315. c.portid = hdr->sadb_msg_pid;
  1316. km_state_notify(x, &c);
  1317. out:
  1318. xfrm_state_put(x);
  1319. return err;
  1320. }
  1321. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1322. {
  1323. struct net *net = sock_net(sk);
  1324. struct xfrm_state *x;
  1325. struct km_event c;
  1326. int err;
  1327. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1328. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1329. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1330. return -EINVAL;
  1331. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1332. if (x == NULL)
  1333. return -ESRCH;
  1334. if ((err = security_xfrm_state_delete(x)))
  1335. goto out;
  1336. if (xfrm_state_kern(x)) {
  1337. err = -EPERM;
  1338. goto out;
  1339. }
  1340. err = xfrm_state_delete(x);
  1341. if (err < 0)
  1342. goto out;
  1343. c.seq = hdr->sadb_msg_seq;
  1344. c.portid = hdr->sadb_msg_pid;
  1345. c.event = XFRM_MSG_DELSA;
  1346. km_state_notify(x, &c);
  1347. out:
  1348. xfrm_audit_state_delete(x, err ? 0 : 1, true);
  1349. xfrm_state_put(x);
  1350. return err;
  1351. }
  1352. static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1353. {
  1354. struct net *net = sock_net(sk);
  1355. __u8 proto;
  1356. struct sk_buff *out_skb;
  1357. struct sadb_msg *out_hdr;
  1358. struct xfrm_state *x;
  1359. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1360. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1361. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1362. return -EINVAL;
  1363. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1364. if (x == NULL)
  1365. return -ESRCH;
  1366. out_skb = pfkey_xfrm_state2msg(x);
  1367. proto = x->id.proto;
  1368. xfrm_state_put(x);
  1369. if (IS_ERR(out_skb))
  1370. return PTR_ERR(out_skb);
  1371. out_hdr = (struct sadb_msg *) out_skb->data;
  1372. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1373. out_hdr->sadb_msg_type = SADB_GET;
  1374. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1375. out_hdr->sadb_msg_errno = 0;
  1376. out_hdr->sadb_msg_reserved = 0;
  1377. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1378. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1379. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1380. return 0;
  1381. }
  1382. static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
  1383. gfp_t allocation)
  1384. {
  1385. struct sk_buff *skb;
  1386. struct sadb_msg *hdr;
  1387. int len, auth_len, enc_len, i;
  1388. auth_len = xfrm_count_pfkey_auth_supported();
  1389. if (auth_len) {
  1390. auth_len *= sizeof(struct sadb_alg);
  1391. auth_len += sizeof(struct sadb_supported);
  1392. }
  1393. enc_len = xfrm_count_pfkey_enc_supported();
  1394. if (enc_len) {
  1395. enc_len *= sizeof(struct sadb_alg);
  1396. enc_len += sizeof(struct sadb_supported);
  1397. }
  1398. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1399. skb = alloc_skb(len + 16, allocation);
  1400. if (!skb)
  1401. goto out_put_algs;
  1402. hdr = skb_put(skb, sizeof(*hdr));
  1403. pfkey_hdr_dup(hdr, orig);
  1404. hdr->sadb_msg_errno = 0;
  1405. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1406. if (auth_len) {
  1407. struct sadb_supported *sp;
  1408. struct sadb_alg *ap;
  1409. sp = skb_put(skb, auth_len);
  1410. ap = (struct sadb_alg *) (sp + 1);
  1411. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1412. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1413. for (i = 0; ; i++) {
  1414. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1415. if (!aalg)
  1416. break;
  1417. if (!aalg->pfkey_supported)
  1418. continue;
  1419. if (aalg->available)
  1420. *ap++ = aalg->desc;
  1421. }
  1422. }
  1423. if (enc_len) {
  1424. struct sadb_supported *sp;
  1425. struct sadb_alg *ap;
  1426. sp = skb_put(skb, enc_len);
  1427. ap = (struct sadb_alg *) (sp + 1);
  1428. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1429. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1430. for (i = 0; ; i++) {
  1431. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1432. if (!ealg)
  1433. break;
  1434. if (!ealg->pfkey_supported)
  1435. continue;
  1436. if (ealg->available)
  1437. *ap++ = ealg->desc;
  1438. }
  1439. }
  1440. out_put_algs:
  1441. return skb;
  1442. }
  1443. static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1444. {
  1445. struct pfkey_sock *pfk = pfkey_sk(sk);
  1446. struct sk_buff *supp_skb;
  1447. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1448. return -EINVAL;
  1449. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1450. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1451. return -EEXIST;
  1452. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1453. }
  1454. mutex_lock(&pfkey_mutex);
  1455. xfrm_probe_algs();
  1456. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL | __GFP_ZERO);
  1457. mutex_unlock(&pfkey_mutex);
  1458. if (!supp_skb) {
  1459. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1460. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1461. return -ENOBUFS;
  1462. }
  1463. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk,
  1464. sock_net(sk));
  1465. return 0;
  1466. }
  1467. static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
  1468. {
  1469. struct sk_buff *skb;
  1470. struct sadb_msg *hdr;
  1471. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1472. if (!skb)
  1473. return -ENOBUFS;
  1474. hdr = skb_put_data(skb, ihdr, sizeof(struct sadb_msg));
  1475. hdr->sadb_msg_errno = (uint8_t) 0;
  1476. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1477. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk,
  1478. sock_net(sk));
  1479. }
  1480. static int key_notify_sa_flush(const struct km_event *c)
  1481. {
  1482. struct sk_buff *skb;
  1483. struct sadb_msg *hdr;
  1484. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1485. if (!skb)
  1486. return -ENOBUFS;
  1487. hdr = skb_put(skb, sizeof(struct sadb_msg));
  1488. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1489. hdr->sadb_msg_type = SADB_FLUSH;
  1490. hdr->sadb_msg_seq = c->seq;
  1491. hdr->sadb_msg_pid = c->portid;
  1492. hdr->sadb_msg_version = PF_KEY_V2;
  1493. hdr->sadb_msg_errno = (uint8_t) 0;
  1494. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1495. hdr->sadb_msg_reserved = 0;
  1496. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1497. return 0;
  1498. }
  1499. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1500. {
  1501. struct net *net = sock_net(sk);
  1502. unsigned int proto;
  1503. struct km_event c;
  1504. int err, err2;
  1505. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1506. if (proto == 0)
  1507. return -EINVAL;
  1508. err = xfrm_state_flush(net, proto, true, false);
  1509. err2 = unicast_flush_resp(sk, hdr);
  1510. if (err || err2) {
  1511. if (err == -ESRCH) /* empty table - go quietly */
  1512. err = 0;
  1513. return err ? err : err2;
  1514. }
  1515. c.data.proto = proto;
  1516. c.seq = hdr->sadb_msg_seq;
  1517. c.portid = hdr->sadb_msg_pid;
  1518. c.event = XFRM_MSG_FLUSHSA;
  1519. c.net = net;
  1520. km_state_notify(NULL, &c);
  1521. return 0;
  1522. }
  1523. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1524. {
  1525. struct pfkey_sock *pfk = ptr;
  1526. struct sk_buff *out_skb;
  1527. struct sadb_msg *out_hdr;
  1528. if (!pfkey_can_dump(&pfk->sk))
  1529. return -ENOBUFS;
  1530. out_skb = pfkey_xfrm_state2msg(x);
  1531. if (IS_ERR(out_skb))
  1532. return PTR_ERR(out_skb);
  1533. out_hdr = (struct sadb_msg *) out_skb->data;
  1534. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1535. out_hdr->sadb_msg_type = SADB_DUMP;
  1536. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1537. out_hdr->sadb_msg_errno = 0;
  1538. out_hdr->sadb_msg_reserved = 0;
  1539. out_hdr->sadb_msg_seq = count + 1;
  1540. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  1541. if (pfk->dump.skb)
  1542. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1543. &pfk->sk, sock_net(&pfk->sk));
  1544. pfk->dump.skb = out_skb;
  1545. return 0;
  1546. }
  1547. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1548. {
  1549. struct net *net = sock_net(&pfk->sk);
  1550. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1551. }
  1552. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1553. {
  1554. struct net *net = sock_net(&pfk->sk);
  1555. xfrm_state_walk_done(&pfk->dump.u.state, net);
  1556. }
  1557. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1558. {
  1559. u8 proto;
  1560. struct xfrm_address_filter *filter = NULL;
  1561. struct pfkey_sock *pfk = pfkey_sk(sk);
  1562. mutex_lock(&pfk->dump_lock);
  1563. if (pfk->dump.dump != NULL) {
  1564. mutex_unlock(&pfk->dump_lock);
  1565. return -EBUSY;
  1566. }
  1567. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1568. if (proto == 0) {
  1569. mutex_unlock(&pfk->dump_lock);
  1570. return -EINVAL;
  1571. }
  1572. if (ext_hdrs[SADB_X_EXT_FILTER - 1]) {
  1573. struct sadb_x_filter *xfilter = ext_hdrs[SADB_X_EXT_FILTER - 1];
  1574. if ((xfilter->sadb_x_filter_splen >
  1575. (sizeof(xfrm_address_t) << 3)) ||
  1576. (xfilter->sadb_x_filter_dplen >
  1577. (sizeof(xfrm_address_t) << 3))) {
  1578. mutex_unlock(&pfk->dump_lock);
  1579. return -EINVAL;
  1580. }
  1581. filter = kmalloc(sizeof(*filter), GFP_KERNEL);
  1582. if (filter == NULL) {
  1583. mutex_unlock(&pfk->dump_lock);
  1584. return -ENOMEM;
  1585. }
  1586. memcpy(&filter->saddr, &xfilter->sadb_x_filter_saddr,
  1587. sizeof(xfrm_address_t));
  1588. memcpy(&filter->daddr, &xfilter->sadb_x_filter_daddr,
  1589. sizeof(xfrm_address_t));
  1590. filter->family = xfilter->sadb_x_filter_family;
  1591. filter->splen = xfilter->sadb_x_filter_splen;
  1592. filter->dplen = xfilter->sadb_x_filter_dplen;
  1593. }
  1594. pfk->dump.msg_version = hdr->sadb_msg_version;
  1595. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  1596. pfk->dump.dump = pfkey_dump_sa;
  1597. pfk->dump.done = pfkey_dump_sa_done;
  1598. xfrm_state_walk_init(&pfk->dump.u.state, proto, filter);
  1599. mutex_unlock(&pfk->dump_lock);
  1600. return pfkey_do_dump(pfk);
  1601. }
  1602. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1603. {
  1604. struct pfkey_sock *pfk = pfkey_sk(sk);
  1605. int satype = hdr->sadb_msg_satype;
  1606. bool reset_errno = false;
  1607. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1608. reset_errno = true;
  1609. if (satype != 0 && satype != 1)
  1610. return -EINVAL;
  1611. pfk->promisc = satype;
  1612. }
  1613. if (reset_errno && skb_cloned(skb))
  1614. skb = skb_copy(skb, GFP_KERNEL);
  1615. else
  1616. skb = skb_clone(skb, GFP_KERNEL);
  1617. if (reset_errno && skb) {
  1618. struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
  1619. new_hdr->sadb_msg_errno = 0;
  1620. }
  1621. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1622. return 0;
  1623. }
  1624. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1625. {
  1626. int i;
  1627. u32 reqid = *(u32*)ptr;
  1628. for (i=0; i<xp->xfrm_nr; i++) {
  1629. if (xp->xfrm_vec[i].reqid == reqid)
  1630. return -EEXIST;
  1631. }
  1632. return 0;
  1633. }
  1634. static u32 gen_reqid(struct net *net)
  1635. {
  1636. struct xfrm_policy_walk walk;
  1637. u32 start;
  1638. int rc;
  1639. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1640. start = reqid;
  1641. do {
  1642. ++reqid;
  1643. if (reqid == 0)
  1644. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1645. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1646. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1647. xfrm_policy_walk_done(&walk, net);
  1648. if (rc != -EEXIST)
  1649. return reqid;
  1650. } while (reqid != start);
  1651. return 0;
  1652. }
  1653. static int
  1654. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_policy *pol,
  1655. struct sadb_x_ipsecrequest *rq)
  1656. {
  1657. struct net *net = xp_net(xp);
  1658. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1659. int mode;
  1660. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1661. return -ELOOP;
  1662. if (rq->sadb_x_ipsecrequest_mode == 0)
  1663. return -EINVAL;
  1664. if (!xfrm_id_proto_valid(rq->sadb_x_ipsecrequest_proto))
  1665. return -EINVAL;
  1666. t->id.proto = rq->sadb_x_ipsecrequest_proto;
  1667. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1668. return -EINVAL;
  1669. t->mode = mode;
  1670. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE) {
  1671. if ((mode == XFRM_MODE_TUNNEL || mode == XFRM_MODE_BEET) &&
  1672. pol->sadb_x_policy_dir == IPSEC_DIR_OUTBOUND)
  1673. return -EINVAL;
  1674. t->optional = 1;
  1675. } else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1676. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1677. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1678. t->reqid = 0;
  1679. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1680. return -ENOBUFS;
  1681. }
  1682. /* addresses present only in tunnel mode */
  1683. if (t->mode == XFRM_MODE_TUNNEL) {
  1684. int err;
  1685. err = parse_sockaddr_pair(
  1686. (struct sockaddr *)(rq + 1),
  1687. rq->sadb_x_ipsecrequest_len - sizeof(*rq),
  1688. &t->saddr, &t->id.daddr, &t->encap_family);
  1689. if (err)
  1690. return err;
  1691. } else
  1692. t->encap_family = xp->family;
  1693. /* No way to set this via kame pfkey */
  1694. t->allalgs = 1;
  1695. xp->xfrm_nr++;
  1696. return 0;
  1697. }
  1698. static int
  1699. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1700. {
  1701. int err;
  1702. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1703. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1704. if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy))
  1705. return -EINVAL;
  1706. while (len >= sizeof(*rq)) {
  1707. if (len < rq->sadb_x_ipsecrequest_len ||
  1708. rq->sadb_x_ipsecrequest_len < sizeof(*rq))
  1709. return -EINVAL;
  1710. if ((err = parse_ipsecrequest(xp, pol, rq)) < 0)
  1711. return err;
  1712. len -= rq->sadb_x_ipsecrequest_len;
  1713. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1714. }
  1715. return 0;
  1716. }
  1717. static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
  1718. {
  1719. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1720. if (xfrm_ctx) {
  1721. int len = sizeof(struct sadb_x_sec_ctx);
  1722. len += xfrm_ctx->ctx_len;
  1723. return PFKEY_ALIGN8(len);
  1724. }
  1725. return 0;
  1726. }
  1727. static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
  1728. {
  1729. const struct xfrm_tmpl *t;
  1730. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1731. int socklen = 0;
  1732. int i;
  1733. for (i=0; i<xp->xfrm_nr; i++) {
  1734. t = xp->xfrm_vec + i;
  1735. socklen += pfkey_sockaddr_len(t->encap_family);
  1736. }
  1737. return sizeof(struct sadb_msg) +
  1738. (sizeof(struct sadb_lifetime) * 3) +
  1739. (sizeof(struct sadb_address) * 2) +
  1740. (sockaddr_size * 2) +
  1741. sizeof(struct sadb_x_policy) +
  1742. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1743. (socklen * 2) +
  1744. pfkey_xfrm_policy2sec_ctx_size(xp);
  1745. }
  1746. static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
  1747. {
  1748. struct sk_buff *skb;
  1749. int size;
  1750. size = pfkey_xfrm_policy2msg_size(xp);
  1751. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1752. if (skb == NULL)
  1753. return ERR_PTR(-ENOBUFS);
  1754. return skb;
  1755. }
  1756. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
  1757. {
  1758. struct sadb_msg *hdr;
  1759. struct sadb_address *addr;
  1760. struct sadb_lifetime *lifetime;
  1761. struct sadb_x_policy *pol;
  1762. struct sadb_x_sec_ctx *sec_ctx;
  1763. struct xfrm_sec_ctx *xfrm_ctx;
  1764. int i;
  1765. int size;
  1766. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1767. int socklen = pfkey_sockaddr_len(xp->family);
  1768. size = pfkey_xfrm_policy2msg_size(xp);
  1769. /* call should fill header later */
  1770. hdr = skb_put(skb, sizeof(struct sadb_msg));
  1771. memset(hdr, 0, size); /* XXX do we need this ? */
  1772. /* src address */
  1773. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  1774. addr->sadb_address_len =
  1775. (sizeof(struct sadb_address)+sockaddr_size)/
  1776. sizeof(uint64_t);
  1777. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1778. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1779. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1780. addr->sadb_address_reserved = 0;
  1781. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1782. xp->selector.sport,
  1783. (struct sockaddr *) (addr + 1),
  1784. xp->family))
  1785. BUG();
  1786. /* dst address */
  1787. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  1788. addr->sadb_address_len =
  1789. (sizeof(struct sadb_address)+sockaddr_size)/
  1790. sizeof(uint64_t);
  1791. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1792. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1793. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1794. addr->sadb_address_reserved = 0;
  1795. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1796. (struct sockaddr *) (addr + 1),
  1797. xp->family);
  1798. /* hard time */
  1799. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1800. lifetime->sadb_lifetime_len =
  1801. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1802. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1803. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1804. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1805. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1806. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1807. /* soft time */
  1808. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1809. lifetime->sadb_lifetime_len =
  1810. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1811. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1812. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1813. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1814. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1815. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1816. /* current time */
  1817. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1818. lifetime->sadb_lifetime_len =
  1819. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1820. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1821. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1822. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1823. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1824. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1825. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  1826. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1827. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1828. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1829. if (xp->action == XFRM_POLICY_ALLOW) {
  1830. if (xp->xfrm_nr)
  1831. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1832. else
  1833. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1834. }
  1835. pol->sadb_x_policy_dir = dir+1;
  1836. pol->sadb_x_policy_reserved = 0;
  1837. pol->sadb_x_policy_id = xp->index;
  1838. pol->sadb_x_policy_priority = xp->priority;
  1839. for (i=0; i<xp->xfrm_nr; i++) {
  1840. const struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1841. struct sadb_x_ipsecrequest *rq;
  1842. int req_size;
  1843. int mode;
  1844. req_size = sizeof(struct sadb_x_ipsecrequest);
  1845. if (t->mode == XFRM_MODE_TUNNEL) {
  1846. socklen = pfkey_sockaddr_len(t->encap_family);
  1847. req_size += socklen * 2;
  1848. } else {
  1849. size -= 2*socklen;
  1850. }
  1851. rq = skb_put(skb, req_size);
  1852. pol->sadb_x_policy_len += req_size/8;
  1853. memset(rq, 0, sizeof(*rq));
  1854. rq->sadb_x_ipsecrequest_len = req_size;
  1855. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1856. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1857. return -EINVAL;
  1858. rq->sadb_x_ipsecrequest_mode = mode;
  1859. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1860. if (t->reqid)
  1861. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1862. if (t->optional)
  1863. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1864. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1865. if (t->mode == XFRM_MODE_TUNNEL) {
  1866. u8 *sa = (void *)(rq + 1);
  1867. pfkey_sockaddr_fill(&t->saddr, 0,
  1868. (struct sockaddr *)sa,
  1869. t->encap_family);
  1870. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1871. (struct sockaddr *) (sa + socklen),
  1872. t->encap_family);
  1873. }
  1874. }
  1875. /* security context */
  1876. if ((xfrm_ctx = xp->security)) {
  1877. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1878. sec_ctx = skb_put(skb, ctx_size);
  1879. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1880. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1881. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1882. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1883. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1884. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1885. xfrm_ctx->ctx_len);
  1886. }
  1887. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1888. hdr->sadb_msg_reserved = refcount_read(&xp->refcnt);
  1889. return 0;
  1890. }
  1891. static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1892. {
  1893. struct sk_buff *out_skb;
  1894. struct sadb_msg *out_hdr;
  1895. int err;
  1896. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1897. if (IS_ERR(out_skb))
  1898. return PTR_ERR(out_skb);
  1899. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1900. if (err < 0) {
  1901. kfree_skb(out_skb);
  1902. return err;
  1903. }
  1904. out_hdr = (struct sadb_msg *) out_skb->data;
  1905. out_hdr->sadb_msg_version = PF_KEY_V2;
  1906. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1907. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1908. else
  1909. out_hdr->sadb_msg_type = event2poltype(c->event);
  1910. out_hdr->sadb_msg_errno = 0;
  1911. out_hdr->sadb_msg_seq = c->seq;
  1912. out_hdr->sadb_msg_pid = c->portid;
  1913. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1914. return 0;
  1915. }
  1916. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1917. {
  1918. struct net *net = sock_net(sk);
  1919. int err = 0;
  1920. struct sadb_lifetime *lifetime;
  1921. struct sadb_address *sa;
  1922. struct sadb_x_policy *pol;
  1923. struct xfrm_policy *xp;
  1924. struct km_event c;
  1925. struct sadb_x_sec_ctx *sec_ctx;
  1926. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1927. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1928. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1929. return -EINVAL;
  1930. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1931. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1932. return -EINVAL;
  1933. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1934. return -EINVAL;
  1935. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1936. if (xp == NULL)
  1937. return -ENOBUFS;
  1938. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1939. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1940. xp->priority = pol->sadb_x_policy_priority;
  1941. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1942. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1943. xp->selector.family = xp->family;
  1944. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1945. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1946. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1947. if (xp->selector.sport)
  1948. xp->selector.sport_mask = htons(0xffff);
  1949. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1950. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1951. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1952. /* Amusing, we set this twice. KAME apps appear to set same value
  1953. * in both addresses.
  1954. */
  1955. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1956. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1957. if (xp->selector.dport)
  1958. xp->selector.dport_mask = htons(0xffff);
  1959. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1960. if (sec_ctx != NULL) {
  1961. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  1962. if (!uctx) {
  1963. err = -ENOBUFS;
  1964. goto out;
  1965. }
  1966. err = security_xfrm_policy_alloc(&xp->security, uctx, GFP_KERNEL);
  1967. kfree(uctx);
  1968. if (err)
  1969. goto out;
  1970. }
  1971. xp->lft.soft_byte_limit = XFRM_INF;
  1972. xp->lft.hard_byte_limit = XFRM_INF;
  1973. xp->lft.soft_packet_limit = XFRM_INF;
  1974. xp->lft.hard_packet_limit = XFRM_INF;
  1975. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1976. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1977. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1978. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1979. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1980. }
  1981. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1982. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1983. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1984. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1985. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1986. }
  1987. xp->xfrm_nr = 0;
  1988. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1989. (err = parse_ipsecrequests(xp, pol)) < 0)
  1990. goto out;
  1991. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1992. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1993. xfrm_audit_policy_add(xp, err ? 0 : 1, true);
  1994. if (err)
  1995. goto out;
  1996. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1997. c.event = XFRM_MSG_UPDPOLICY;
  1998. else
  1999. c.event = XFRM_MSG_NEWPOLICY;
  2000. c.seq = hdr->sadb_msg_seq;
  2001. c.portid = hdr->sadb_msg_pid;
  2002. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2003. xfrm_pol_put(xp);
  2004. return 0;
  2005. out:
  2006. xp->walk.dead = 1;
  2007. xfrm_policy_destroy(xp);
  2008. return err;
  2009. }
  2010. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2011. {
  2012. struct net *net = sock_net(sk);
  2013. int err;
  2014. struct sadb_address *sa;
  2015. struct sadb_x_policy *pol;
  2016. struct xfrm_policy *xp;
  2017. struct xfrm_selector sel;
  2018. struct km_event c;
  2019. struct sadb_x_sec_ctx *sec_ctx;
  2020. struct xfrm_sec_ctx *pol_ctx = NULL;
  2021. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2022. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  2023. !ext_hdrs[SADB_X_EXT_POLICY-1])
  2024. return -EINVAL;
  2025. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  2026. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  2027. return -EINVAL;
  2028. memset(&sel, 0, sizeof(sel));
  2029. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  2030. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2031. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2032. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2033. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2034. if (sel.sport)
  2035. sel.sport_mask = htons(0xffff);
  2036. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  2037. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2038. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2039. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2040. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2041. if (sel.dport)
  2042. sel.dport_mask = htons(0xffff);
  2043. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  2044. if (sec_ctx != NULL) {
  2045. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  2046. if (!uctx)
  2047. return -ENOMEM;
  2048. err = security_xfrm_policy_alloc(&pol_ctx, uctx, GFP_KERNEL);
  2049. kfree(uctx);
  2050. if (err)
  2051. return err;
  2052. }
  2053. xp = xfrm_policy_bysel_ctx(net, &dummy_mark, 0, XFRM_POLICY_TYPE_MAIN,
  2054. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2055. 1, &err);
  2056. security_xfrm_policy_free(pol_ctx);
  2057. if (xp == NULL)
  2058. return -ENOENT;
  2059. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2060. if (err)
  2061. goto out;
  2062. c.seq = hdr->sadb_msg_seq;
  2063. c.portid = hdr->sadb_msg_pid;
  2064. c.data.byid = 0;
  2065. c.event = XFRM_MSG_DELPOLICY;
  2066. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2067. out:
  2068. xfrm_pol_put(xp);
  2069. return err;
  2070. }
  2071. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
  2072. {
  2073. int err;
  2074. struct sk_buff *out_skb;
  2075. struct sadb_msg *out_hdr;
  2076. err = 0;
  2077. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2078. if (IS_ERR(out_skb)) {
  2079. err = PTR_ERR(out_skb);
  2080. goto out;
  2081. }
  2082. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2083. if (err < 0) {
  2084. kfree_skb(out_skb);
  2085. goto out;
  2086. }
  2087. out_hdr = (struct sadb_msg *) out_skb->data;
  2088. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2089. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2090. out_hdr->sadb_msg_satype = 0;
  2091. out_hdr->sadb_msg_errno = 0;
  2092. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2093. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2094. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2095. err = 0;
  2096. out:
  2097. return err;
  2098. }
  2099. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2100. {
  2101. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2102. }
  2103. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2104. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2105. u16 *family)
  2106. {
  2107. int af, socklen;
  2108. if (ext_len < 2 || ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2109. return -EINVAL;
  2110. af = pfkey_sockaddr_extract(sa, saddr);
  2111. if (!af)
  2112. return -EINVAL;
  2113. socklen = pfkey_sockaddr_len(af);
  2114. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2115. daddr) != af)
  2116. return -EINVAL;
  2117. *family = af;
  2118. return 0;
  2119. }
  2120. #ifdef CONFIG_NET_KEY_MIGRATE
  2121. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2122. struct xfrm_migrate *m)
  2123. {
  2124. int err;
  2125. struct sadb_x_ipsecrequest *rq2;
  2126. int mode;
  2127. if (len < sizeof(*rq1) ||
  2128. len < rq1->sadb_x_ipsecrequest_len ||
  2129. rq1->sadb_x_ipsecrequest_len < sizeof(*rq1))
  2130. return -EINVAL;
  2131. /* old endoints */
  2132. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2133. rq1->sadb_x_ipsecrequest_len - sizeof(*rq1),
  2134. &m->old_saddr, &m->old_daddr,
  2135. &m->old_family);
  2136. if (err)
  2137. return err;
  2138. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2139. len -= rq1->sadb_x_ipsecrequest_len;
  2140. if (len <= sizeof(*rq2) ||
  2141. len < rq2->sadb_x_ipsecrequest_len ||
  2142. rq2->sadb_x_ipsecrequest_len < sizeof(*rq2))
  2143. return -EINVAL;
  2144. /* new endpoints */
  2145. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2146. rq2->sadb_x_ipsecrequest_len - sizeof(*rq2),
  2147. &m->new_saddr, &m->new_daddr,
  2148. &m->new_family);
  2149. if (err)
  2150. return err;
  2151. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2152. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2153. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2154. return -EINVAL;
  2155. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2156. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2157. return -EINVAL;
  2158. m->mode = mode;
  2159. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2160. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2161. rq2->sadb_x_ipsecrequest_len));
  2162. }
  2163. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2164. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2165. {
  2166. int i, len, ret, err = -EINVAL;
  2167. u8 dir;
  2168. struct sadb_address *sa;
  2169. struct sadb_x_kmaddress *kma;
  2170. struct sadb_x_policy *pol;
  2171. struct sadb_x_ipsecrequest *rq;
  2172. struct xfrm_selector sel;
  2173. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2174. struct xfrm_kmaddress k;
  2175. struct net *net = sock_net(sk);
  2176. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2177. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2178. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2179. err = -EINVAL;
  2180. goto out;
  2181. }
  2182. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2183. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2184. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2185. err = -EINVAL;
  2186. goto out;
  2187. }
  2188. if (kma) {
  2189. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2190. k.reserved = kma->sadb_x_kmaddress_reserved;
  2191. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2192. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2193. &k.local, &k.remote, &k.family);
  2194. if (ret < 0) {
  2195. err = ret;
  2196. goto out;
  2197. }
  2198. }
  2199. dir = pol->sadb_x_policy_dir - 1;
  2200. memset(&sel, 0, sizeof(sel));
  2201. /* set source address info of selector */
  2202. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2203. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2204. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2205. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2206. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2207. if (sel.sport)
  2208. sel.sport_mask = htons(0xffff);
  2209. /* set destination address info of selector */
  2210. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  2211. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2212. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2213. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2214. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2215. if (sel.dport)
  2216. sel.dport_mask = htons(0xffff);
  2217. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2218. /* extract ipsecrequests */
  2219. i = 0;
  2220. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2221. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2222. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2223. if (ret < 0) {
  2224. err = ret;
  2225. goto out;
  2226. } else {
  2227. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2228. len -= ret;
  2229. i++;
  2230. }
  2231. }
  2232. if (!i || len > 0) {
  2233. err = -EINVAL;
  2234. goto out;
  2235. }
  2236. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2237. kma ? &k : NULL, net, NULL, 0);
  2238. out:
  2239. return err;
  2240. }
  2241. #else
  2242. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2243. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2244. {
  2245. return -ENOPROTOOPT;
  2246. }
  2247. #endif
  2248. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2249. {
  2250. struct net *net = sock_net(sk);
  2251. unsigned int dir;
  2252. int err = 0, delete;
  2253. struct sadb_x_policy *pol;
  2254. struct xfrm_policy *xp;
  2255. struct km_event c;
  2256. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2257. return -EINVAL;
  2258. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2259. if (dir >= XFRM_POLICY_MAX)
  2260. return -EINVAL;
  2261. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2262. xp = xfrm_policy_byid(net, &dummy_mark, 0, XFRM_POLICY_TYPE_MAIN,
  2263. dir, pol->sadb_x_policy_id, delete, &err);
  2264. if (xp == NULL)
  2265. return -ENOENT;
  2266. if (delete) {
  2267. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2268. if (err)
  2269. goto out;
  2270. c.seq = hdr->sadb_msg_seq;
  2271. c.portid = hdr->sadb_msg_pid;
  2272. c.data.byid = 1;
  2273. c.event = XFRM_MSG_DELPOLICY;
  2274. km_policy_notify(xp, dir, &c);
  2275. } else {
  2276. err = key_pol_get_resp(sk, xp, hdr, dir);
  2277. }
  2278. out:
  2279. xfrm_pol_put(xp);
  2280. return err;
  2281. }
  2282. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2283. {
  2284. struct pfkey_sock *pfk = ptr;
  2285. struct sk_buff *out_skb;
  2286. struct sadb_msg *out_hdr;
  2287. int err;
  2288. if (!pfkey_can_dump(&pfk->sk))
  2289. return -ENOBUFS;
  2290. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2291. if (IS_ERR(out_skb))
  2292. return PTR_ERR(out_skb);
  2293. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2294. if (err < 0) {
  2295. kfree_skb(out_skb);
  2296. return err;
  2297. }
  2298. out_hdr = (struct sadb_msg *) out_skb->data;
  2299. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2300. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2301. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2302. out_hdr->sadb_msg_errno = 0;
  2303. out_hdr->sadb_msg_seq = count + 1;
  2304. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  2305. if (pfk->dump.skb)
  2306. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2307. &pfk->sk, sock_net(&pfk->sk));
  2308. pfk->dump.skb = out_skb;
  2309. return 0;
  2310. }
  2311. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2312. {
  2313. struct net *net = sock_net(&pfk->sk);
  2314. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2315. }
  2316. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2317. {
  2318. struct net *net = sock_net((struct sock *)pfk);
  2319. xfrm_policy_walk_done(&pfk->dump.u.policy, net);
  2320. }
  2321. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2322. {
  2323. struct pfkey_sock *pfk = pfkey_sk(sk);
  2324. mutex_lock(&pfk->dump_lock);
  2325. if (pfk->dump.dump != NULL) {
  2326. mutex_unlock(&pfk->dump_lock);
  2327. return -EBUSY;
  2328. }
  2329. pfk->dump.msg_version = hdr->sadb_msg_version;
  2330. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  2331. pfk->dump.dump = pfkey_dump_sp;
  2332. pfk->dump.done = pfkey_dump_sp_done;
  2333. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2334. mutex_unlock(&pfk->dump_lock);
  2335. return pfkey_do_dump(pfk);
  2336. }
  2337. static int key_notify_policy_flush(const struct km_event *c)
  2338. {
  2339. struct sk_buff *skb_out;
  2340. struct sadb_msg *hdr;
  2341. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2342. if (!skb_out)
  2343. return -ENOBUFS;
  2344. hdr = skb_put(skb_out, sizeof(struct sadb_msg));
  2345. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2346. hdr->sadb_msg_seq = c->seq;
  2347. hdr->sadb_msg_pid = c->portid;
  2348. hdr->sadb_msg_version = PF_KEY_V2;
  2349. hdr->sadb_msg_errno = (uint8_t) 0;
  2350. hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2351. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2352. hdr->sadb_msg_reserved = 0;
  2353. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2354. return 0;
  2355. }
  2356. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2357. {
  2358. struct net *net = sock_net(sk);
  2359. struct km_event c;
  2360. int err, err2;
  2361. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, true);
  2362. err2 = unicast_flush_resp(sk, hdr);
  2363. if (err || err2) {
  2364. if (err == -ESRCH) /* empty table - old silent behavior */
  2365. return 0;
  2366. return err;
  2367. }
  2368. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2369. c.event = XFRM_MSG_FLUSHPOLICY;
  2370. c.portid = hdr->sadb_msg_pid;
  2371. c.seq = hdr->sadb_msg_seq;
  2372. c.net = net;
  2373. km_policy_notify(NULL, 0, &c);
  2374. return 0;
  2375. }
  2376. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2377. const struct sadb_msg *hdr, void * const *ext_hdrs);
  2378. static const pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2379. [SADB_RESERVED] = pfkey_reserved,
  2380. [SADB_GETSPI] = pfkey_getspi,
  2381. [SADB_UPDATE] = pfkey_add,
  2382. [SADB_ADD] = pfkey_add,
  2383. [SADB_DELETE] = pfkey_delete,
  2384. [SADB_GET] = pfkey_get,
  2385. [SADB_ACQUIRE] = pfkey_acquire,
  2386. [SADB_REGISTER] = pfkey_register,
  2387. [SADB_EXPIRE] = NULL,
  2388. [SADB_FLUSH] = pfkey_flush,
  2389. [SADB_DUMP] = pfkey_dump,
  2390. [SADB_X_PROMISC] = pfkey_promisc,
  2391. [SADB_X_PCHANGE] = NULL,
  2392. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2393. [SADB_X_SPDADD] = pfkey_spdadd,
  2394. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2395. [SADB_X_SPDGET] = pfkey_spdget,
  2396. [SADB_X_SPDACQUIRE] = NULL,
  2397. [SADB_X_SPDDUMP] = pfkey_spddump,
  2398. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2399. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2400. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2401. [SADB_X_MIGRATE] = pfkey_migrate,
  2402. };
  2403. static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr)
  2404. {
  2405. void *ext_hdrs[SADB_EXT_MAX];
  2406. int err;
  2407. /* Non-zero return value of pfkey_broadcast() does not always signal
  2408. * an error and even on an actual error we may still want to process
  2409. * the message so rather ignore the return value.
  2410. */
  2411. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2412. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2413. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2414. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2415. if (!err) {
  2416. err = -EOPNOTSUPP;
  2417. if (pfkey_funcs[hdr->sadb_msg_type])
  2418. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2419. }
  2420. return err;
  2421. }
  2422. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2423. {
  2424. struct sadb_msg *hdr = NULL;
  2425. if (skb->len < sizeof(*hdr)) {
  2426. *errp = -EMSGSIZE;
  2427. } else {
  2428. hdr = (struct sadb_msg *) skb->data;
  2429. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2430. hdr->sadb_msg_reserved != 0 ||
  2431. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2432. hdr->sadb_msg_type > SADB_MAX)) {
  2433. hdr = NULL;
  2434. *errp = -EINVAL;
  2435. } else if (hdr->sadb_msg_len != (skb->len /
  2436. sizeof(uint64_t)) ||
  2437. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2438. sizeof(uint64_t))) {
  2439. hdr = NULL;
  2440. *errp = -EMSGSIZE;
  2441. } else {
  2442. *errp = 0;
  2443. }
  2444. }
  2445. return hdr;
  2446. }
  2447. static inline int aalg_tmpl_set(const struct xfrm_tmpl *t,
  2448. const struct xfrm_algo_desc *d)
  2449. {
  2450. unsigned int id = d->desc.sadb_alg_id;
  2451. if (id >= sizeof(t->aalgos) * 8)
  2452. return 0;
  2453. return (t->aalgos >> id) & 1;
  2454. }
  2455. static inline int ealg_tmpl_set(const struct xfrm_tmpl *t,
  2456. const struct xfrm_algo_desc *d)
  2457. {
  2458. unsigned int id = d->desc.sadb_alg_id;
  2459. if (id >= sizeof(t->ealgos) * 8)
  2460. return 0;
  2461. return (t->ealgos >> id) & 1;
  2462. }
  2463. static int count_ah_combs(const struct xfrm_tmpl *t)
  2464. {
  2465. int i, sz = 0;
  2466. for (i = 0; ; i++) {
  2467. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2468. if (!aalg)
  2469. break;
  2470. if (!aalg->pfkey_supported)
  2471. continue;
  2472. if (aalg_tmpl_set(t, aalg))
  2473. sz += sizeof(struct sadb_comb);
  2474. }
  2475. return sz + sizeof(struct sadb_prop);
  2476. }
  2477. static int count_esp_combs(const struct xfrm_tmpl *t)
  2478. {
  2479. int i, k, sz = 0;
  2480. for (i = 0; ; i++) {
  2481. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2482. if (!ealg)
  2483. break;
  2484. if (!ealg->pfkey_supported)
  2485. continue;
  2486. if (!(ealg_tmpl_set(t, ealg)))
  2487. continue;
  2488. for (k = 1; ; k++) {
  2489. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2490. if (!aalg)
  2491. break;
  2492. if (!aalg->pfkey_supported)
  2493. continue;
  2494. if (aalg_tmpl_set(t, aalg))
  2495. sz += sizeof(struct sadb_comb);
  2496. }
  2497. }
  2498. return sz + sizeof(struct sadb_prop);
  2499. }
  2500. static int dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2501. {
  2502. struct sadb_prop *p;
  2503. int sz = 0;
  2504. int i;
  2505. p = skb_put(skb, sizeof(struct sadb_prop));
  2506. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2507. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2508. p->sadb_prop_replay = 32;
  2509. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2510. for (i = 0; ; i++) {
  2511. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2512. if (!aalg)
  2513. break;
  2514. if (!aalg->pfkey_supported)
  2515. continue;
  2516. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2517. struct sadb_comb *c;
  2518. c = skb_put_zero(skb, sizeof(struct sadb_comb));
  2519. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2520. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2521. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2522. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2523. c->sadb_comb_hard_addtime = 24*60*60;
  2524. c->sadb_comb_soft_addtime = 20*60*60;
  2525. c->sadb_comb_hard_usetime = 8*60*60;
  2526. c->sadb_comb_soft_usetime = 7*60*60;
  2527. sz += sizeof(*c);
  2528. }
  2529. }
  2530. return sz + sizeof(*p);
  2531. }
  2532. static int dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2533. {
  2534. struct sadb_prop *p;
  2535. int sz = 0;
  2536. int i, k;
  2537. p = skb_put(skb, sizeof(struct sadb_prop));
  2538. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2539. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2540. p->sadb_prop_replay = 32;
  2541. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2542. for (i=0; ; i++) {
  2543. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2544. if (!ealg)
  2545. break;
  2546. if (!ealg->pfkey_supported)
  2547. continue;
  2548. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2549. continue;
  2550. for (k = 1; ; k++) {
  2551. struct sadb_comb *c;
  2552. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2553. if (!aalg)
  2554. break;
  2555. if (!aalg->pfkey_supported)
  2556. continue;
  2557. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2558. continue;
  2559. c = skb_put(skb, sizeof(struct sadb_comb));
  2560. memset(c, 0, sizeof(*c));
  2561. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2562. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2563. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2564. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2565. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2566. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2567. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2568. c->sadb_comb_hard_addtime = 24*60*60;
  2569. c->sadb_comb_soft_addtime = 20*60*60;
  2570. c->sadb_comb_hard_usetime = 8*60*60;
  2571. c->sadb_comb_soft_usetime = 7*60*60;
  2572. sz += sizeof(*c);
  2573. }
  2574. }
  2575. return sz + sizeof(*p);
  2576. }
  2577. static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c)
  2578. {
  2579. return 0;
  2580. }
  2581. static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c)
  2582. {
  2583. struct sk_buff *out_skb;
  2584. struct sadb_msg *out_hdr;
  2585. int hard;
  2586. int hsc;
  2587. hard = c->data.hard;
  2588. if (hard)
  2589. hsc = 2;
  2590. else
  2591. hsc = 1;
  2592. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2593. if (IS_ERR(out_skb))
  2594. return PTR_ERR(out_skb);
  2595. out_hdr = (struct sadb_msg *) out_skb->data;
  2596. out_hdr->sadb_msg_version = PF_KEY_V2;
  2597. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2598. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2599. out_hdr->sadb_msg_errno = 0;
  2600. out_hdr->sadb_msg_reserved = 0;
  2601. out_hdr->sadb_msg_seq = 0;
  2602. out_hdr->sadb_msg_pid = 0;
  2603. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2604. xs_net(x));
  2605. return 0;
  2606. }
  2607. static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c)
  2608. {
  2609. struct net *net = x ? xs_net(x) : c->net;
  2610. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2611. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2612. return 0;
  2613. switch (c->event) {
  2614. case XFRM_MSG_EXPIRE:
  2615. return key_notify_sa_expire(x, c);
  2616. case XFRM_MSG_DELSA:
  2617. case XFRM_MSG_NEWSA:
  2618. case XFRM_MSG_UPDSA:
  2619. return key_notify_sa(x, c);
  2620. case XFRM_MSG_FLUSHSA:
  2621. return key_notify_sa_flush(c);
  2622. case XFRM_MSG_NEWAE: /* not yet supported */
  2623. break;
  2624. default:
  2625. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2626. break;
  2627. }
  2628. return 0;
  2629. }
  2630. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  2631. {
  2632. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2633. return 0;
  2634. switch (c->event) {
  2635. case XFRM_MSG_POLEXPIRE:
  2636. return key_notify_policy_expire(xp, c);
  2637. case XFRM_MSG_DELPOLICY:
  2638. case XFRM_MSG_NEWPOLICY:
  2639. case XFRM_MSG_UPDPOLICY:
  2640. return key_notify_policy(xp, dir, c);
  2641. case XFRM_MSG_FLUSHPOLICY:
  2642. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2643. break;
  2644. return key_notify_policy_flush(c);
  2645. default:
  2646. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2647. break;
  2648. }
  2649. return 0;
  2650. }
  2651. static u32 get_acqseq(void)
  2652. {
  2653. u32 res;
  2654. static atomic_t acqseq;
  2655. do {
  2656. res = atomic_inc_return(&acqseq);
  2657. } while (!res);
  2658. return res;
  2659. }
  2660. static bool pfkey_is_alive(const struct km_event *c)
  2661. {
  2662. struct netns_pfkey *net_pfkey = net_generic(c->net, pfkey_net_id);
  2663. struct sock *sk;
  2664. bool is_alive = false;
  2665. rcu_read_lock();
  2666. sk_for_each_rcu(sk, &net_pfkey->table) {
  2667. if (pfkey_sk(sk)->registered) {
  2668. is_alive = true;
  2669. break;
  2670. }
  2671. }
  2672. rcu_read_unlock();
  2673. return is_alive;
  2674. }
  2675. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp)
  2676. {
  2677. struct sk_buff *skb;
  2678. struct sadb_msg *hdr;
  2679. struct sadb_address *addr;
  2680. struct sadb_x_policy *pol;
  2681. int sockaddr_size;
  2682. int size;
  2683. struct sadb_x_sec_ctx *sec_ctx;
  2684. struct xfrm_sec_ctx *xfrm_ctx;
  2685. int ctx_size = 0;
  2686. int alg_size = 0;
  2687. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2688. if (!sockaddr_size)
  2689. return -EINVAL;
  2690. size = sizeof(struct sadb_msg) +
  2691. (sizeof(struct sadb_address) * 2) +
  2692. (sockaddr_size * 2) +
  2693. sizeof(struct sadb_x_policy);
  2694. if (x->id.proto == IPPROTO_AH)
  2695. alg_size = count_ah_combs(t);
  2696. else if (x->id.proto == IPPROTO_ESP)
  2697. alg_size = count_esp_combs(t);
  2698. if ((xfrm_ctx = x->security)) {
  2699. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2700. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2701. }
  2702. skb = alloc_skb(size + alg_size + 16, GFP_ATOMIC);
  2703. if (skb == NULL)
  2704. return -ENOMEM;
  2705. hdr = skb_put(skb, sizeof(struct sadb_msg));
  2706. hdr->sadb_msg_version = PF_KEY_V2;
  2707. hdr->sadb_msg_type = SADB_ACQUIRE;
  2708. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2709. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2710. hdr->sadb_msg_errno = 0;
  2711. hdr->sadb_msg_reserved = 0;
  2712. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2713. hdr->sadb_msg_pid = 0;
  2714. /* src address */
  2715. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2716. addr->sadb_address_len =
  2717. (sizeof(struct sadb_address)+sockaddr_size)/
  2718. sizeof(uint64_t);
  2719. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2720. addr->sadb_address_proto = 0;
  2721. addr->sadb_address_reserved = 0;
  2722. addr->sadb_address_prefixlen =
  2723. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2724. (struct sockaddr *) (addr + 1),
  2725. x->props.family);
  2726. if (!addr->sadb_address_prefixlen)
  2727. BUG();
  2728. /* dst address */
  2729. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2730. addr->sadb_address_len =
  2731. (sizeof(struct sadb_address)+sockaddr_size)/
  2732. sizeof(uint64_t);
  2733. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2734. addr->sadb_address_proto = 0;
  2735. addr->sadb_address_reserved = 0;
  2736. addr->sadb_address_prefixlen =
  2737. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2738. (struct sockaddr *) (addr + 1),
  2739. x->props.family);
  2740. if (!addr->sadb_address_prefixlen)
  2741. BUG();
  2742. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  2743. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2744. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2745. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2746. pol->sadb_x_policy_dir = XFRM_POLICY_OUT + 1;
  2747. pol->sadb_x_policy_reserved = 0;
  2748. pol->sadb_x_policy_id = xp->index;
  2749. pol->sadb_x_policy_priority = xp->priority;
  2750. /* Set sadb_comb's. */
  2751. alg_size = 0;
  2752. if (x->id.proto == IPPROTO_AH)
  2753. alg_size = dump_ah_combs(skb, t);
  2754. else if (x->id.proto == IPPROTO_ESP)
  2755. alg_size = dump_esp_combs(skb, t);
  2756. hdr->sadb_msg_len += alg_size / 8;
  2757. /* security context */
  2758. if (xfrm_ctx) {
  2759. sec_ctx = skb_put(skb,
  2760. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2761. sec_ctx->sadb_x_sec_len =
  2762. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2763. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2764. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2765. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2766. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2767. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2768. xfrm_ctx->ctx_len);
  2769. }
  2770. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2771. xs_net(x));
  2772. }
  2773. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2774. u8 *data, int len, int *dir)
  2775. {
  2776. struct net *net = sock_net(sk);
  2777. struct xfrm_policy *xp;
  2778. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2779. struct sadb_x_sec_ctx *sec_ctx;
  2780. switch (sk->sk_family) {
  2781. case AF_INET:
  2782. if (opt != IP_IPSEC_POLICY) {
  2783. *dir = -EOPNOTSUPP;
  2784. return NULL;
  2785. }
  2786. break;
  2787. #if IS_ENABLED(CONFIG_IPV6)
  2788. case AF_INET6:
  2789. if (opt != IPV6_IPSEC_POLICY) {
  2790. *dir = -EOPNOTSUPP;
  2791. return NULL;
  2792. }
  2793. break;
  2794. #endif
  2795. default:
  2796. *dir = -EINVAL;
  2797. return NULL;
  2798. }
  2799. *dir = -EINVAL;
  2800. if (len < sizeof(struct sadb_x_policy) ||
  2801. pol->sadb_x_policy_len*8 > len ||
  2802. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2803. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2804. return NULL;
  2805. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2806. if (xp == NULL) {
  2807. *dir = -ENOBUFS;
  2808. return NULL;
  2809. }
  2810. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2811. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2812. xp->lft.soft_byte_limit = XFRM_INF;
  2813. xp->lft.hard_byte_limit = XFRM_INF;
  2814. xp->lft.soft_packet_limit = XFRM_INF;
  2815. xp->lft.hard_packet_limit = XFRM_INF;
  2816. xp->family = sk->sk_family;
  2817. xp->xfrm_nr = 0;
  2818. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2819. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2820. goto out;
  2821. /* security context too */
  2822. if (len >= (pol->sadb_x_policy_len*8 +
  2823. sizeof(struct sadb_x_sec_ctx))) {
  2824. char *p = (char *)pol;
  2825. struct xfrm_user_sec_ctx *uctx;
  2826. p += pol->sadb_x_policy_len*8;
  2827. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2828. if (len < pol->sadb_x_policy_len*8 +
  2829. sec_ctx->sadb_x_sec_len*8) {
  2830. *dir = -EINVAL;
  2831. goto out;
  2832. }
  2833. if ((*dir = verify_sec_ctx_len(p)))
  2834. goto out;
  2835. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_ATOMIC);
  2836. *dir = security_xfrm_policy_alloc(&xp->security, uctx, GFP_ATOMIC);
  2837. kfree(uctx);
  2838. if (*dir)
  2839. goto out;
  2840. }
  2841. *dir = pol->sadb_x_policy_dir-1;
  2842. return xp;
  2843. out:
  2844. xp->walk.dead = 1;
  2845. xfrm_policy_destroy(xp);
  2846. return NULL;
  2847. }
  2848. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2849. {
  2850. struct sk_buff *skb;
  2851. struct sadb_msg *hdr;
  2852. struct sadb_sa *sa;
  2853. struct sadb_address *addr;
  2854. struct sadb_x_nat_t_port *n_port;
  2855. int sockaddr_size;
  2856. int size;
  2857. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2858. struct xfrm_encap_tmpl *natt = NULL;
  2859. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2860. if (!sockaddr_size)
  2861. return -EINVAL;
  2862. if (!satype)
  2863. return -EINVAL;
  2864. if (!x->encap)
  2865. return -EINVAL;
  2866. natt = x->encap;
  2867. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2868. *
  2869. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2870. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2871. */
  2872. size = sizeof(struct sadb_msg) +
  2873. sizeof(struct sadb_sa) +
  2874. (sizeof(struct sadb_address) * 2) +
  2875. (sockaddr_size * 2) +
  2876. (sizeof(struct sadb_x_nat_t_port) * 2);
  2877. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2878. if (skb == NULL)
  2879. return -ENOMEM;
  2880. hdr = skb_put(skb, sizeof(struct sadb_msg));
  2881. hdr->sadb_msg_version = PF_KEY_V2;
  2882. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2883. hdr->sadb_msg_satype = satype;
  2884. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2885. hdr->sadb_msg_errno = 0;
  2886. hdr->sadb_msg_reserved = 0;
  2887. hdr->sadb_msg_seq = x->km.seq;
  2888. hdr->sadb_msg_pid = 0;
  2889. /* SA */
  2890. sa = skb_put(skb, sizeof(struct sadb_sa));
  2891. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2892. sa->sadb_sa_exttype = SADB_EXT_SA;
  2893. sa->sadb_sa_spi = x->id.spi;
  2894. sa->sadb_sa_replay = 0;
  2895. sa->sadb_sa_state = 0;
  2896. sa->sadb_sa_auth = 0;
  2897. sa->sadb_sa_encrypt = 0;
  2898. sa->sadb_sa_flags = 0;
  2899. /* ADDRESS_SRC (old addr) */
  2900. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2901. addr->sadb_address_len =
  2902. (sizeof(struct sadb_address)+sockaddr_size)/
  2903. sizeof(uint64_t);
  2904. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2905. addr->sadb_address_proto = 0;
  2906. addr->sadb_address_reserved = 0;
  2907. addr->sadb_address_prefixlen =
  2908. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2909. (struct sockaddr *) (addr + 1),
  2910. x->props.family);
  2911. if (!addr->sadb_address_prefixlen)
  2912. BUG();
  2913. /* NAT_T_SPORT (old port) */
  2914. n_port = skb_put(skb, sizeof(*n_port));
  2915. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2916. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2917. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2918. n_port->sadb_x_nat_t_port_reserved = 0;
  2919. /* ADDRESS_DST (new addr) */
  2920. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2921. addr->sadb_address_len =
  2922. (sizeof(struct sadb_address)+sockaddr_size)/
  2923. sizeof(uint64_t);
  2924. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2925. addr->sadb_address_proto = 0;
  2926. addr->sadb_address_reserved = 0;
  2927. addr->sadb_address_prefixlen =
  2928. pfkey_sockaddr_fill(ipaddr, 0,
  2929. (struct sockaddr *) (addr + 1),
  2930. x->props.family);
  2931. if (!addr->sadb_address_prefixlen)
  2932. BUG();
  2933. /* NAT_T_DPORT (new port) */
  2934. n_port = skb_put(skb, sizeof(*n_port));
  2935. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2936. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2937. n_port->sadb_x_nat_t_port_port = sport;
  2938. n_port->sadb_x_nat_t_port_reserved = 0;
  2939. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2940. xs_net(x));
  2941. }
  2942. #ifdef CONFIG_NET_KEY_MIGRATE
  2943. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2944. const struct xfrm_selector *sel)
  2945. {
  2946. struct sadb_address *addr;
  2947. addr = skb_put(skb, sizeof(struct sadb_address) + sasize);
  2948. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2949. addr->sadb_address_exttype = type;
  2950. addr->sadb_address_proto = sel->proto;
  2951. addr->sadb_address_reserved = 0;
  2952. switch (type) {
  2953. case SADB_EXT_ADDRESS_SRC:
  2954. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2955. pfkey_sockaddr_fill(&sel->saddr, 0,
  2956. (struct sockaddr *)(addr + 1),
  2957. sel->family);
  2958. break;
  2959. case SADB_EXT_ADDRESS_DST:
  2960. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2961. pfkey_sockaddr_fill(&sel->daddr, 0,
  2962. (struct sockaddr *)(addr + 1),
  2963. sel->family);
  2964. break;
  2965. default:
  2966. return -EINVAL;
  2967. }
  2968. return 0;
  2969. }
  2970. static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k)
  2971. {
  2972. struct sadb_x_kmaddress *kma;
  2973. u8 *sa;
  2974. int family = k->family;
  2975. int socklen = pfkey_sockaddr_len(family);
  2976. int size_req;
  2977. size_req = (sizeof(struct sadb_x_kmaddress) +
  2978. pfkey_sockaddr_pair_size(family));
  2979. kma = skb_put_zero(skb, size_req);
  2980. kma->sadb_x_kmaddress_len = size_req / 8;
  2981. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2982. kma->sadb_x_kmaddress_reserved = k->reserved;
  2983. sa = (u8 *)(kma + 1);
  2984. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2985. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2986. return -EINVAL;
  2987. return 0;
  2988. }
  2989. static int set_ipsecrequest(struct sk_buff *skb,
  2990. uint8_t proto, uint8_t mode, int level,
  2991. uint32_t reqid, uint8_t family,
  2992. const xfrm_address_t *src, const xfrm_address_t *dst)
  2993. {
  2994. struct sadb_x_ipsecrequest *rq;
  2995. u8 *sa;
  2996. int socklen = pfkey_sockaddr_len(family);
  2997. int size_req;
  2998. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2999. pfkey_sockaddr_pair_size(family);
  3000. rq = skb_put_zero(skb, size_req);
  3001. rq->sadb_x_ipsecrequest_len = size_req;
  3002. rq->sadb_x_ipsecrequest_proto = proto;
  3003. rq->sadb_x_ipsecrequest_mode = mode;
  3004. rq->sadb_x_ipsecrequest_level = level;
  3005. rq->sadb_x_ipsecrequest_reqid = reqid;
  3006. sa = (u8 *) (rq + 1);
  3007. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  3008. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  3009. return -EINVAL;
  3010. return 0;
  3011. }
  3012. #endif
  3013. #ifdef CONFIG_NET_KEY_MIGRATE
  3014. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3015. const struct xfrm_migrate *m, int num_bundles,
  3016. const struct xfrm_kmaddress *k,
  3017. const struct xfrm_encap_tmpl *encap)
  3018. {
  3019. int i;
  3020. int sasize_sel;
  3021. int size = 0;
  3022. int size_pol = 0;
  3023. struct sk_buff *skb;
  3024. struct sadb_msg *hdr;
  3025. struct sadb_x_policy *pol;
  3026. const struct xfrm_migrate *mp;
  3027. if (type != XFRM_POLICY_TYPE_MAIN)
  3028. return 0;
  3029. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3030. return -EINVAL;
  3031. if (k != NULL) {
  3032. /* addresses for KM */
  3033. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  3034. pfkey_sockaddr_pair_size(k->family));
  3035. }
  3036. /* selector */
  3037. sasize_sel = pfkey_sockaddr_size(sel->family);
  3038. if (!sasize_sel)
  3039. return -EINVAL;
  3040. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3041. /* policy info */
  3042. size_pol += sizeof(struct sadb_x_policy);
  3043. /* ipsecrequests */
  3044. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3045. /* old locator pair */
  3046. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3047. pfkey_sockaddr_pair_size(mp->old_family);
  3048. /* new locator pair */
  3049. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3050. pfkey_sockaddr_pair_size(mp->new_family);
  3051. }
  3052. size += sizeof(struct sadb_msg) + size_pol;
  3053. /* alloc buffer */
  3054. skb = alloc_skb(size, GFP_ATOMIC);
  3055. if (skb == NULL)
  3056. return -ENOMEM;
  3057. hdr = skb_put(skb, sizeof(struct sadb_msg));
  3058. hdr->sadb_msg_version = PF_KEY_V2;
  3059. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3060. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3061. hdr->sadb_msg_len = size / 8;
  3062. hdr->sadb_msg_errno = 0;
  3063. hdr->sadb_msg_reserved = 0;
  3064. hdr->sadb_msg_seq = 0;
  3065. hdr->sadb_msg_pid = 0;
  3066. /* Addresses to be used by KM for negotiation, if ext is available */
  3067. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  3068. goto err;
  3069. /* selector src */
  3070. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3071. /* selector dst */
  3072. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3073. /* policy information */
  3074. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  3075. pol->sadb_x_policy_len = size_pol / 8;
  3076. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3077. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3078. pol->sadb_x_policy_dir = dir + 1;
  3079. pol->sadb_x_policy_reserved = 0;
  3080. pol->sadb_x_policy_id = 0;
  3081. pol->sadb_x_policy_priority = 0;
  3082. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3083. /* old ipsecrequest */
  3084. int mode = pfkey_mode_from_xfrm(mp->mode);
  3085. if (mode < 0)
  3086. goto err;
  3087. if (set_ipsecrequest(skb, mp->proto, mode,
  3088. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3089. mp->reqid, mp->old_family,
  3090. &mp->old_saddr, &mp->old_daddr) < 0)
  3091. goto err;
  3092. /* new ipsecrequest */
  3093. if (set_ipsecrequest(skb, mp->proto, mode,
  3094. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3095. mp->reqid, mp->new_family,
  3096. &mp->new_saddr, &mp->new_daddr) < 0)
  3097. goto err;
  3098. }
  3099. /* broadcast migrate message to sockets */
  3100. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3101. return 0;
  3102. err:
  3103. kfree_skb(skb);
  3104. return -EINVAL;
  3105. }
  3106. #else
  3107. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3108. const struct xfrm_migrate *m, int num_bundles,
  3109. const struct xfrm_kmaddress *k,
  3110. const struct xfrm_encap_tmpl *encap)
  3111. {
  3112. return -ENOPROTOOPT;
  3113. }
  3114. #endif
  3115. static int pfkey_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
  3116. {
  3117. struct sock *sk = sock->sk;
  3118. struct sk_buff *skb = NULL;
  3119. struct sadb_msg *hdr = NULL;
  3120. int err;
  3121. struct net *net = sock_net(sk);
  3122. err = -EOPNOTSUPP;
  3123. if (msg->msg_flags & MSG_OOB)
  3124. goto out;
  3125. err = -EMSGSIZE;
  3126. if ((unsigned int)len > sk->sk_sndbuf - 32)
  3127. goto out;
  3128. err = -ENOBUFS;
  3129. skb = alloc_skb(len, GFP_KERNEL);
  3130. if (skb == NULL)
  3131. goto out;
  3132. err = -EFAULT;
  3133. if (memcpy_from_msg(skb_put(skb,len), msg, len))
  3134. goto out;
  3135. hdr = pfkey_get_base_msg(skb, &err);
  3136. if (!hdr)
  3137. goto out;
  3138. mutex_lock(&net->xfrm.xfrm_cfg_mutex);
  3139. err = pfkey_process(sk, skb, hdr);
  3140. mutex_unlock(&net->xfrm.xfrm_cfg_mutex);
  3141. out:
  3142. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3143. err = 0;
  3144. kfree_skb(skb);
  3145. return err ? : len;
  3146. }
  3147. static int pfkey_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  3148. int flags)
  3149. {
  3150. struct sock *sk = sock->sk;
  3151. struct pfkey_sock *pfk = pfkey_sk(sk);
  3152. struct sk_buff *skb;
  3153. int copied, err;
  3154. err = -EINVAL;
  3155. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3156. goto out;
  3157. skb = skb_recv_datagram(sk, flags, &err);
  3158. if (skb == NULL)
  3159. goto out;
  3160. copied = skb->len;
  3161. if (copied > len) {
  3162. msg->msg_flags |= MSG_TRUNC;
  3163. copied = len;
  3164. }
  3165. skb_reset_transport_header(skb);
  3166. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  3167. if (err)
  3168. goto out_free;
  3169. sock_recv_cmsgs(msg, sk, skb);
  3170. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3171. if (pfk->dump.dump != NULL &&
  3172. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3173. pfkey_do_dump(pfk);
  3174. out_free:
  3175. skb_free_datagram(sk, skb);
  3176. out:
  3177. return err;
  3178. }
  3179. static const struct proto_ops pfkey_ops = {
  3180. .family = PF_KEY,
  3181. .owner = THIS_MODULE,
  3182. /* Operations that make no sense on pfkey sockets. */
  3183. .bind = sock_no_bind,
  3184. .connect = sock_no_connect,
  3185. .socketpair = sock_no_socketpair,
  3186. .accept = sock_no_accept,
  3187. .getname = sock_no_getname,
  3188. .ioctl = sock_no_ioctl,
  3189. .listen = sock_no_listen,
  3190. .shutdown = sock_no_shutdown,
  3191. .mmap = sock_no_mmap,
  3192. .sendpage = sock_no_sendpage,
  3193. /* Now the operations that really occur. */
  3194. .release = pfkey_release,
  3195. .poll = datagram_poll,
  3196. .sendmsg = pfkey_sendmsg,
  3197. .recvmsg = pfkey_recvmsg,
  3198. };
  3199. static const struct net_proto_family pfkey_family_ops = {
  3200. .family = PF_KEY,
  3201. .create = pfkey_create,
  3202. .owner = THIS_MODULE,
  3203. };
  3204. #ifdef CONFIG_PROC_FS
  3205. static int pfkey_seq_show(struct seq_file *f, void *v)
  3206. {
  3207. struct sock *s = sk_entry(v);
  3208. if (v == SEQ_START_TOKEN)
  3209. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3210. else
  3211. seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n",
  3212. s,
  3213. refcount_read(&s->sk_refcnt),
  3214. sk_rmem_alloc_get(s),
  3215. sk_wmem_alloc_get(s),
  3216. from_kuid_munged(seq_user_ns(f), sock_i_uid(s)),
  3217. sock_i_ino(s)
  3218. );
  3219. return 0;
  3220. }
  3221. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3222. __acquires(rcu)
  3223. {
  3224. struct net *net = seq_file_net(f);
  3225. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3226. rcu_read_lock();
  3227. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3228. }
  3229. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3230. {
  3231. struct net *net = seq_file_net(f);
  3232. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3233. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3234. }
  3235. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3236. __releases(rcu)
  3237. {
  3238. rcu_read_unlock();
  3239. }
  3240. static const struct seq_operations pfkey_seq_ops = {
  3241. .start = pfkey_seq_start,
  3242. .next = pfkey_seq_next,
  3243. .stop = pfkey_seq_stop,
  3244. .show = pfkey_seq_show,
  3245. };
  3246. static int __net_init pfkey_init_proc(struct net *net)
  3247. {
  3248. struct proc_dir_entry *e;
  3249. e = proc_create_net("pfkey", 0, net->proc_net, &pfkey_seq_ops,
  3250. sizeof(struct seq_net_private));
  3251. if (e == NULL)
  3252. return -ENOMEM;
  3253. return 0;
  3254. }
  3255. static void __net_exit pfkey_exit_proc(struct net *net)
  3256. {
  3257. remove_proc_entry("pfkey", net->proc_net);
  3258. }
  3259. #else
  3260. static inline int pfkey_init_proc(struct net *net)
  3261. {
  3262. return 0;
  3263. }
  3264. static inline void pfkey_exit_proc(struct net *net)
  3265. {
  3266. }
  3267. #endif
  3268. static struct xfrm_mgr pfkeyv2_mgr =
  3269. {
  3270. .notify = pfkey_send_notify,
  3271. .acquire = pfkey_send_acquire,
  3272. .compile_policy = pfkey_compile_policy,
  3273. .new_mapping = pfkey_send_new_mapping,
  3274. .notify_policy = pfkey_send_policy_notify,
  3275. .migrate = pfkey_send_migrate,
  3276. .is_alive = pfkey_is_alive,
  3277. };
  3278. static int __net_init pfkey_net_init(struct net *net)
  3279. {
  3280. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3281. int rv;
  3282. INIT_HLIST_HEAD(&net_pfkey->table);
  3283. atomic_set(&net_pfkey->socks_nr, 0);
  3284. rv = pfkey_init_proc(net);
  3285. return rv;
  3286. }
  3287. static void __net_exit pfkey_net_exit(struct net *net)
  3288. {
  3289. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3290. pfkey_exit_proc(net);
  3291. WARN_ON(!hlist_empty(&net_pfkey->table));
  3292. }
  3293. static struct pernet_operations pfkey_net_ops = {
  3294. .init = pfkey_net_init,
  3295. .exit = pfkey_net_exit,
  3296. .id = &pfkey_net_id,
  3297. .size = sizeof(struct netns_pfkey),
  3298. };
  3299. static void __exit ipsec_pfkey_exit(void)
  3300. {
  3301. xfrm_unregister_km(&pfkeyv2_mgr);
  3302. sock_unregister(PF_KEY);
  3303. unregister_pernet_subsys(&pfkey_net_ops);
  3304. proto_unregister(&key_proto);
  3305. }
  3306. static int __init ipsec_pfkey_init(void)
  3307. {
  3308. int err = proto_register(&key_proto, 0);
  3309. if (err != 0)
  3310. goto out;
  3311. err = register_pernet_subsys(&pfkey_net_ops);
  3312. if (err != 0)
  3313. goto out_unregister_key_proto;
  3314. err = sock_register(&pfkey_family_ops);
  3315. if (err != 0)
  3316. goto out_unregister_pernet;
  3317. xfrm_register_km(&pfkeyv2_mgr);
  3318. out:
  3319. return err;
  3320. out_unregister_pernet:
  3321. unregister_pernet_subsys(&pfkey_net_ops);
  3322. out_unregister_key_proto:
  3323. proto_unregister(&key_proto);
  3324. goto out;
  3325. }
  3326. module_init(ipsec_pfkey_init);
  3327. module_exit(ipsec_pfkey_exit);
  3328. MODULE_LICENSE("GPL");
  3329. MODULE_ALIAS_NETPROTO(PF_KEY);