af_iucv.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * IUCV protocol stack for Linux on zSeries
  4. *
  5. * Copyright IBM Corp. 2006, 2009
  6. *
  7. * Author(s): Jennifer Hunt <[email protected]>
  8. * Hendrik Brueckner <[email protected]>
  9. * PM functions:
  10. * Ursula Braun <[email protected]>
  11. */
  12. #define KMSG_COMPONENT "af_iucv"
  13. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  14. #include <linux/filter.h>
  15. #include <linux/module.h>
  16. #include <linux/netdevice.h>
  17. #include <linux/types.h>
  18. #include <linux/limits.h>
  19. #include <linux/list.h>
  20. #include <linux/errno.h>
  21. #include <linux/kernel.h>
  22. #include <linux/sched/signal.h>
  23. #include <linux/slab.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/init.h>
  26. #include <linux/poll.h>
  27. #include <linux/security.h>
  28. #include <net/sock.h>
  29. #include <asm/ebcdic.h>
  30. #include <asm/cpcmd.h>
  31. #include <linux/kmod.h>
  32. #include <net/iucv/af_iucv.h>
  33. #define VERSION "1.2"
  34. static char iucv_userid[80];
  35. static struct proto iucv_proto = {
  36. .name = "AF_IUCV",
  37. .owner = THIS_MODULE,
  38. .obj_size = sizeof(struct iucv_sock),
  39. };
  40. static struct iucv_interface *pr_iucv;
  41. static struct iucv_handler af_iucv_handler;
  42. /* special AF_IUCV IPRM messages */
  43. static const u8 iprm_shutdown[8] =
  44. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  45. #define TRGCLS_SIZE sizeof_field(struct iucv_message, class)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk_sleep(sk), &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static struct sock *iucv_accept_dequeue(struct sock *parent,
  78. struct socket *newsock);
  79. static void iucv_sock_kill(struct sock *sk);
  80. static void iucv_sock_close(struct sock *sk);
  81. static void afiucv_hs_callback_txnotify(struct sock *sk, enum iucv_tx_notify);
  82. static struct iucv_sock_list iucv_sk_list = {
  83. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  84. .autobind_name = ATOMIC_INIT(0)
  85. };
  86. static inline void high_nmcpy(unsigned char *dst, char *src)
  87. {
  88. memcpy(dst, src, 8);
  89. }
  90. static inline void low_nmcpy(unsigned char *dst, char *src)
  91. {
  92. memcpy(&dst[8], src, 8);
  93. }
  94. /**
  95. * iucv_msg_length() - Returns the length of an iucv message.
  96. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  97. *
  98. * The function returns the length of the specified iucv message @msg of data
  99. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  100. *
  101. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  102. * data:
  103. * PRMDATA[0..6] socket data (max 7 bytes);
  104. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  105. *
  106. * The socket data length is computed by subtracting the socket data length
  107. * value from 0xFF.
  108. * If the socket data len is greater 7, then PRMDATA can be used for special
  109. * notifications (see iucv_sock_shutdown); and further,
  110. * if the socket data len is > 7, the function returns 8.
  111. *
  112. * Use this function to allocate socket buffers to store iucv message data.
  113. */
  114. static inline size_t iucv_msg_length(struct iucv_message *msg)
  115. {
  116. size_t datalen;
  117. if (msg->flags & IUCV_IPRMDATA) {
  118. datalen = 0xff - msg->rmmsg[7];
  119. return (datalen < 8) ? datalen : 8;
  120. }
  121. return msg->length;
  122. }
  123. /**
  124. * iucv_sock_in_state() - check for specific states
  125. * @sk: sock structure
  126. * @state: first iucv sk state
  127. * @state2: second iucv sk state
  128. *
  129. * Returns true if the socket in either in the first or second state.
  130. */
  131. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  132. {
  133. return (sk->sk_state == state || sk->sk_state == state2);
  134. }
  135. /**
  136. * iucv_below_msglim() - function to check if messages can be sent
  137. * @sk: sock structure
  138. *
  139. * Returns true if the send queue length is lower than the message limit.
  140. * Always returns true if the socket is not connected (no iucv path for
  141. * checking the message limit).
  142. */
  143. static inline int iucv_below_msglim(struct sock *sk)
  144. {
  145. struct iucv_sock *iucv = iucv_sk(sk);
  146. if (sk->sk_state != IUCV_CONNECTED)
  147. return 1;
  148. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  149. return (atomic_read(&iucv->skbs_in_xmit) < iucv->path->msglim);
  150. else
  151. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  152. (atomic_read(&iucv->pendings) <= 0));
  153. }
  154. /*
  155. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  156. */
  157. static void iucv_sock_wake_msglim(struct sock *sk)
  158. {
  159. struct socket_wq *wq;
  160. rcu_read_lock();
  161. wq = rcu_dereference(sk->sk_wq);
  162. if (skwq_has_sleeper(wq))
  163. wake_up_interruptible_all(&wq->wait);
  164. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  165. rcu_read_unlock();
  166. }
  167. /*
  168. * afiucv_hs_send() - send a message through HiperSockets transport
  169. */
  170. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  171. struct sk_buff *skb, u8 flags)
  172. {
  173. struct iucv_sock *iucv = iucv_sk(sock);
  174. struct af_iucv_trans_hdr *phs_hdr;
  175. int err, confirm_recv = 0;
  176. phs_hdr = skb_push(skb, sizeof(*phs_hdr));
  177. memset(phs_hdr, 0, sizeof(*phs_hdr));
  178. skb_reset_network_header(skb);
  179. phs_hdr->magic = ETH_P_AF_IUCV;
  180. phs_hdr->version = 1;
  181. phs_hdr->flags = flags;
  182. if (flags == AF_IUCV_FLAG_SYN)
  183. phs_hdr->window = iucv->msglimit;
  184. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  185. confirm_recv = atomic_read(&iucv->msg_recv);
  186. phs_hdr->window = confirm_recv;
  187. if (confirm_recv)
  188. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  189. }
  190. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  191. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  192. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  193. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  194. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  195. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  196. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  197. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  198. if (imsg)
  199. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  200. skb->dev = iucv->hs_dev;
  201. if (!skb->dev) {
  202. err = -ENODEV;
  203. goto err_free;
  204. }
  205. dev_hard_header(skb, skb->dev, ETH_P_AF_IUCV, NULL, NULL, skb->len);
  206. if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev)) {
  207. err = -ENETDOWN;
  208. goto err_free;
  209. }
  210. if (skb->len > skb->dev->mtu) {
  211. if (sock->sk_type == SOCK_SEQPACKET) {
  212. err = -EMSGSIZE;
  213. goto err_free;
  214. }
  215. err = pskb_trim(skb, skb->dev->mtu);
  216. if (err)
  217. goto err_free;
  218. }
  219. skb->protocol = cpu_to_be16(ETH_P_AF_IUCV);
  220. atomic_inc(&iucv->skbs_in_xmit);
  221. err = dev_queue_xmit(skb);
  222. if (net_xmit_eval(err)) {
  223. atomic_dec(&iucv->skbs_in_xmit);
  224. } else {
  225. atomic_sub(confirm_recv, &iucv->msg_recv);
  226. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  227. }
  228. return net_xmit_eval(err);
  229. err_free:
  230. kfree_skb(skb);
  231. return err;
  232. }
  233. static struct sock *__iucv_get_sock_by_name(char *nm)
  234. {
  235. struct sock *sk;
  236. sk_for_each(sk, &iucv_sk_list.head)
  237. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  238. return sk;
  239. return NULL;
  240. }
  241. static void iucv_sock_destruct(struct sock *sk)
  242. {
  243. skb_queue_purge(&sk->sk_receive_queue);
  244. skb_queue_purge(&sk->sk_error_queue);
  245. if (!sock_flag(sk, SOCK_DEAD)) {
  246. pr_err("Attempt to release alive iucv socket %p\n", sk);
  247. return;
  248. }
  249. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  250. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  251. WARN_ON(sk->sk_wmem_queued);
  252. WARN_ON(sk->sk_forward_alloc);
  253. }
  254. /* Cleanup Listen */
  255. static void iucv_sock_cleanup_listen(struct sock *parent)
  256. {
  257. struct sock *sk;
  258. /* Close non-accepted connections */
  259. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  260. iucv_sock_close(sk);
  261. iucv_sock_kill(sk);
  262. }
  263. parent->sk_state = IUCV_CLOSED;
  264. }
  265. static void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  266. {
  267. write_lock_bh(&l->lock);
  268. sk_add_node(sk, &l->head);
  269. write_unlock_bh(&l->lock);
  270. }
  271. static void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  272. {
  273. write_lock_bh(&l->lock);
  274. sk_del_node_init(sk);
  275. write_unlock_bh(&l->lock);
  276. }
  277. /* Kill socket (only if zapped and orphaned) */
  278. static void iucv_sock_kill(struct sock *sk)
  279. {
  280. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  281. return;
  282. iucv_sock_unlink(&iucv_sk_list, sk);
  283. sock_set_flag(sk, SOCK_DEAD);
  284. sock_put(sk);
  285. }
  286. /* Terminate an IUCV path */
  287. static void iucv_sever_path(struct sock *sk, int with_user_data)
  288. {
  289. unsigned char user_data[16];
  290. struct iucv_sock *iucv = iucv_sk(sk);
  291. struct iucv_path *path = iucv->path;
  292. if (iucv->path) {
  293. iucv->path = NULL;
  294. if (with_user_data) {
  295. low_nmcpy(user_data, iucv->src_name);
  296. high_nmcpy(user_data, iucv->dst_name);
  297. ASCEBC(user_data, sizeof(user_data));
  298. pr_iucv->path_sever(path, user_data);
  299. } else
  300. pr_iucv->path_sever(path, NULL);
  301. iucv_path_free(path);
  302. }
  303. }
  304. /* Send controlling flags through an IUCV socket for HIPER transport */
  305. static int iucv_send_ctrl(struct sock *sk, u8 flags)
  306. {
  307. struct iucv_sock *iucv = iucv_sk(sk);
  308. int err = 0;
  309. int blen;
  310. struct sk_buff *skb;
  311. u8 shutdown = 0;
  312. blen = sizeof(struct af_iucv_trans_hdr) +
  313. LL_RESERVED_SPACE(iucv->hs_dev);
  314. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  315. /* controlling flags should be sent anyway */
  316. shutdown = sk->sk_shutdown;
  317. sk->sk_shutdown &= RCV_SHUTDOWN;
  318. }
  319. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  320. if (skb) {
  321. skb_reserve(skb, blen);
  322. err = afiucv_hs_send(NULL, sk, skb, flags);
  323. }
  324. if (shutdown)
  325. sk->sk_shutdown = shutdown;
  326. return err;
  327. }
  328. /* Close an IUCV socket */
  329. static void iucv_sock_close(struct sock *sk)
  330. {
  331. struct iucv_sock *iucv = iucv_sk(sk);
  332. unsigned long timeo;
  333. int err = 0;
  334. lock_sock(sk);
  335. switch (sk->sk_state) {
  336. case IUCV_LISTEN:
  337. iucv_sock_cleanup_listen(sk);
  338. break;
  339. case IUCV_CONNECTED:
  340. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  341. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  342. sk->sk_state = IUCV_DISCONN;
  343. sk->sk_state_change(sk);
  344. }
  345. fallthrough;
  346. case IUCV_DISCONN:
  347. sk->sk_state = IUCV_CLOSING;
  348. sk->sk_state_change(sk);
  349. if (!err && atomic_read(&iucv->skbs_in_xmit) > 0) {
  350. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  351. timeo = sk->sk_lingertime;
  352. else
  353. timeo = IUCV_DISCONN_TIMEOUT;
  354. iucv_sock_wait(sk,
  355. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  356. timeo);
  357. }
  358. fallthrough;
  359. case IUCV_CLOSING:
  360. sk->sk_state = IUCV_CLOSED;
  361. sk->sk_state_change(sk);
  362. sk->sk_err = ECONNRESET;
  363. sk->sk_state_change(sk);
  364. skb_queue_purge(&iucv->send_skb_q);
  365. skb_queue_purge(&iucv->backlog_skb_q);
  366. fallthrough;
  367. default:
  368. iucv_sever_path(sk, 1);
  369. }
  370. if (iucv->hs_dev) {
  371. dev_put(iucv->hs_dev);
  372. iucv->hs_dev = NULL;
  373. sk->sk_bound_dev_if = 0;
  374. }
  375. /* mark socket for deletion by iucv_sock_kill() */
  376. sock_set_flag(sk, SOCK_ZAPPED);
  377. release_sock(sk);
  378. }
  379. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  380. {
  381. if (parent) {
  382. sk->sk_type = parent->sk_type;
  383. security_sk_clone(parent, sk);
  384. }
  385. }
  386. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio, int kern)
  387. {
  388. struct sock *sk;
  389. struct iucv_sock *iucv;
  390. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto, kern);
  391. if (!sk)
  392. return NULL;
  393. iucv = iucv_sk(sk);
  394. sock_init_data(sock, sk);
  395. INIT_LIST_HEAD(&iucv->accept_q);
  396. spin_lock_init(&iucv->accept_q_lock);
  397. skb_queue_head_init(&iucv->send_skb_q);
  398. INIT_LIST_HEAD(&iucv->message_q.list);
  399. spin_lock_init(&iucv->message_q.lock);
  400. skb_queue_head_init(&iucv->backlog_skb_q);
  401. iucv->send_tag = 0;
  402. atomic_set(&iucv->pendings, 0);
  403. iucv->flags = 0;
  404. iucv->msglimit = 0;
  405. atomic_set(&iucv->skbs_in_xmit, 0);
  406. atomic_set(&iucv->msg_sent, 0);
  407. atomic_set(&iucv->msg_recv, 0);
  408. iucv->path = NULL;
  409. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  410. memset(&iucv->init, 0, sizeof(iucv->init));
  411. if (pr_iucv)
  412. iucv->transport = AF_IUCV_TRANS_IUCV;
  413. else
  414. iucv->transport = AF_IUCV_TRANS_HIPER;
  415. sk->sk_destruct = iucv_sock_destruct;
  416. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  417. sock_reset_flag(sk, SOCK_ZAPPED);
  418. sk->sk_protocol = proto;
  419. sk->sk_state = IUCV_OPEN;
  420. iucv_sock_link(&iucv_sk_list, sk);
  421. return sk;
  422. }
  423. static void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  424. {
  425. unsigned long flags;
  426. struct iucv_sock *par = iucv_sk(parent);
  427. sock_hold(sk);
  428. spin_lock_irqsave(&par->accept_q_lock, flags);
  429. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  430. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  431. iucv_sk(sk)->parent = parent;
  432. sk_acceptq_added(parent);
  433. }
  434. static void iucv_accept_unlink(struct sock *sk)
  435. {
  436. unsigned long flags;
  437. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  438. spin_lock_irqsave(&par->accept_q_lock, flags);
  439. list_del_init(&iucv_sk(sk)->accept_q);
  440. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  441. sk_acceptq_removed(iucv_sk(sk)->parent);
  442. iucv_sk(sk)->parent = NULL;
  443. sock_put(sk);
  444. }
  445. static struct sock *iucv_accept_dequeue(struct sock *parent,
  446. struct socket *newsock)
  447. {
  448. struct iucv_sock *isk, *n;
  449. struct sock *sk;
  450. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  451. sk = (struct sock *) isk;
  452. lock_sock(sk);
  453. if (sk->sk_state == IUCV_CLOSED) {
  454. iucv_accept_unlink(sk);
  455. release_sock(sk);
  456. continue;
  457. }
  458. if (sk->sk_state == IUCV_CONNECTED ||
  459. sk->sk_state == IUCV_DISCONN ||
  460. !newsock) {
  461. iucv_accept_unlink(sk);
  462. if (newsock)
  463. sock_graft(sk, newsock);
  464. release_sock(sk);
  465. return sk;
  466. }
  467. release_sock(sk);
  468. }
  469. return NULL;
  470. }
  471. static void __iucv_auto_name(struct iucv_sock *iucv)
  472. {
  473. char name[12];
  474. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  475. while (__iucv_get_sock_by_name(name)) {
  476. sprintf(name, "%08x",
  477. atomic_inc_return(&iucv_sk_list.autobind_name));
  478. }
  479. memcpy(iucv->src_name, name, 8);
  480. }
  481. /* Bind an unbound socket */
  482. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  483. int addr_len)
  484. {
  485. DECLARE_SOCKADDR(struct sockaddr_iucv *, sa, addr);
  486. char uid[sizeof(sa->siucv_user_id)];
  487. struct sock *sk = sock->sk;
  488. struct iucv_sock *iucv;
  489. int err = 0;
  490. struct net_device *dev;
  491. /* Verify the input sockaddr */
  492. if (addr_len < sizeof(struct sockaddr_iucv) ||
  493. addr->sa_family != AF_IUCV)
  494. return -EINVAL;
  495. lock_sock(sk);
  496. if (sk->sk_state != IUCV_OPEN) {
  497. err = -EBADFD;
  498. goto done;
  499. }
  500. write_lock_bh(&iucv_sk_list.lock);
  501. iucv = iucv_sk(sk);
  502. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  503. err = -EADDRINUSE;
  504. goto done_unlock;
  505. }
  506. if (iucv->path)
  507. goto done_unlock;
  508. /* Bind the socket */
  509. if (pr_iucv)
  510. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  511. goto vm_bind; /* VM IUCV transport */
  512. /* try hiper transport */
  513. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  514. ASCEBC(uid, 8);
  515. rcu_read_lock();
  516. for_each_netdev_rcu(&init_net, dev) {
  517. if (!memcmp(dev->perm_addr, uid, 8)) {
  518. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  519. /* Check for uninitialized siucv_name */
  520. if (strncmp(sa->siucv_name, " ", 8) == 0)
  521. __iucv_auto_name(iucv);
  522. else
  523. memcpy(iucv->src_name, sa->siucv_name, 8);
  524. sk->sk_bound_dev_if = dev->ifindex;
  525. iucv->hs_dev = dev;
  526. dev_hold(dev);
  527. sk->sk_state = IUCV_BOUND;
  528. iucv->transport = AF_IUCV_TRANS_HIPER;
  529. if (!iucv->msglimit)
  530. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  531. rcu_read_unlock();
  532. goto done_unlock;
  533. }
  534. }
  535. rcu_read_unlock();
  536. vm_bind:
  537. if (pr_iucv) {
  538. /* use local userid for backward compat */
  539. memcpy(iucv->src_name, sa->siucv_name, 8);
  540. memcpy(iucv->src_user_id, iucv_userid, 8);
  541. sk->sk_state = IUCV_BOUND;
  542. iucv->transport = AF_IUCV_TRANS_IUCV;
  543. sk->sk_allocation |= GFP_DMA;
  544. if (!iucv->msglimit)
  545. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  546. goto done_unlock;
  547. }
  548. /* found no dev to bind */
  549. err = -ENODEV;
  550. done_unlock:
  551. /* Release the socket list lock */
  552. write_unlock_bh(&iucv_sk_list.lock);
  553. done:
  554. release_sock(sk);
  555. return err;
  556. }
  557. /* Automatically bind an unbound socket */
  558. static int iucv_sock_autobind(struct sock *sk)
  559. {
  560. struct iucv_sock *iucv = iucv_sk(sk);
  561. int err = 0;
  562. if (unlikely(!pr_iucv))
  563. return -EPROTO;
  564. memcpy(iucv->src_user_id, iucv_userid, 8);
  565. iucv->transport = AF_IUCV_TRANS_IUCV;
  566. sk->sk_allocation |= GFP_DMA;
  567. write_lock_bh(&iucv_sk_list.lock);
  568. __iucv_auto_name(iucv);
  569. write_unlock_bh(&iucv_sk_list.lock);
  570. if (!iucv->msglimit)
  571. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  572. return err;
  573. }
  574. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  575. {
  576. DECLARE_SOCKADDR(struct sockaddr_iucv *, sa, addr);
  577. struct sock *sk = sock->sk;
  578. struct iucv_sock *iucv = iucv_sk(sk);
  579. unsigned char user_data[16];
  580. int err;
  581. high_nmcpy(user_data, sa->siucv_name);
  582. low_nmcpy(user_data, iucv->src_name);
  583. ASCEBC(user_data, sizeof(user_data));
  584. /* Create path. */
  585. iucv->path = iucv_path_alloc(iucv->msglimit,
  586. IUCV_IPRMDATA, GFP_KERNEL);
  587. if (!iucv->path) {
  588. err = -ENOMEM;
  589. goto done;
  590. }
  591. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  592. sa->siucv_user_id, NULL, user_data,
  593. sk);
  594. if (err) {
  595. iucv_path_free(iucv->path);
  596. iucv->path = NULL;
  597. switch (err) {
  598. case 0x0b: /* Target communicator is not logged on */
  599. err = -ENETUNREACH;
  600. break;
  601. case 0x0d: /* Max connections for this guest exceeded */
  602. case 0x0e: /* Max connections for target guest exceeded */
  603. err = -EAGAIN;
  604. break;
  605. case 0x0f: /* Missing IUCV authorization */
  606. err = -EACCES;
  607. break;
  608. default:
  609. err = -ECONNREFUSED;
  610. break;
  611. }
  612. }
  613. done:
  614. return err;
  615. }
  616. /* Connect an unconnected socket */
  617. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  618. int alen, int flags)
  619. {
  620. DECLARE_SOCKADDR(struct sockaddr_iucv *, sa, addr);
  621. struct sock *sk = sock->sk;
  622. struct iucv_sock *iucv = iucv_sk(sk);
  623. int err;
  624. if (alen < sizeof(struct sockaddr_iucv) || addr->sa_family != AF_IUCV)
  625. return -EINVAL;
  626. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  627. return -EBADFD;
  628. if (sk->sk_state == IUCV_OPEN &&
  629. iucv->transport == AF_IUCV_TRANS_HIPER)
  630. return -EBADFD; /* explicit bind required */
  631. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  632. return -EINVAL;
  633. if (sk->sk_state == IUCV_OPEN) {
  634. err = iucv_sock_autobind(sk);
  635. if (unlikely(err))
  636. return err;
  637. }
  638. lock_sock(sk);
  639. /* Set the destination information */
  640. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  641. memcpy(iucv->dst_name, sa->siucv_name, 8);
  642. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  643. err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
  644. else
  645. err = afiucv_path_connect(sock, addr);
  646. if (err)
  647. goto done;
  648. if (sk->sk_state != IUCV_CONNECTED)
  649. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  650. IUCV_DISCONN),
  651. sock_sndtimeo(sk, flags & O_NONBLOCK));
  652. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  653. err = -ECONNREFUSED;
  654. if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
  655. iucv_sever_path(sk, 0);
  656. done:
  657. release_sock(sk);
  658. return err;
  659. }
  660. /* Move a socket into listening state. */
  661. static int iucv_sock_listen(struct socket *sock, int backlog)
  662. {
  663. struct sock *sk = sock->sk;
  664. int err;
  665. lock_sock(sk);
  666. err = -EINVAL;
  667. if (sk->sk_state != IUCV_BOUND)
  668. goto done;
  669. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  670. goto done;
  671. sk->sk_max_ack_backlog = backlog;
  672. sk->sk_ack_backlog = 0;
  673. sk->sk_state = IUCV_LISTEN;
  674. err = 0;
  675. done:
  676. release_sock(sk);
  677. return err;
  678. }
  679. /* Accept a pending connection */
  680. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  681. int flags, bool kern)
  682. {
  683. DECLARE_WAITQUEUE(wait, current);
  684. struct sock *sk = sock->sk, *nsk;
  685. long timeo;
  686. int err = 0;
  687. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  688. if (sk->sk_state != IUCV_LISTEN) {
  689. err = -EBADFD;
  690. goto done;
  691. }
  692. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  693. /* Wait for an incoming connection */
  694. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  695. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  696. set_current_state(TASK_INTERRUPTIBLE);
  697. if (!timeo) {
  698. err = -EAGAIN;
  699. break;
  700. }
  701. release_sock(sk);
  702. timeo = schedule_timeout(timeo);
  703. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  704. if (sk->sk_state != IUCV_LISTEN) {
  705. err = -EBADFD;
  706. break;
  707. }
  708. if (signal_pending(current)) {
  709. err = sock_intr_errno(timeo);
  710. break;
  711. }
  712. }
  713. set_current_state(TASK_RUNNING);
  714. remove_wait_queue(sk_sleep(sk), &wait);
  715. if (err)
  716. goto done;
  717. newsock->state = SS_CONNECTED;
  718. done:
  719. release_sock(sk);
  720. return err;
  721. }
  722. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  723. int peer)
  724. {
  725. DECLARE_SOCKADDR(struct sockaddr_iucv *, siucv, addr);
  726. struct sock *sk = sock->sk;
  727. struct iucv_sock *iucv = iucv_sk(sk);
  728. addr->sa_family = AF_IUCV;
  729. if (peer) {
  730. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  731. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  732. } else {
  733. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  734. memcpy(siucv->siucv_name, iucv->src_name, 8);
  735. }
  736. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  737. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  738. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  739. return sizeof(struct sockaddr_iucv);
  740. }
  741. /**
  742. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  743. * @path: IUCV path
  744. * @msg: Pointer to a struct iucv_message
  745. * @skb: The socket data to send, skb->len MUST BE <= 7
  746. *
  747. * Send the socket data in the parameter list in the iucv message
  748. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  749. * list and the socket data len at index 7 (last byte).
  750. * See also iucv_msg_length().
  751. *
  752. * Returns the error code from the iucv_message_send() call.
  753. */
  754. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  755. struct sk_buff *skb)
  756. {
  757. u8 prmdata[8];
  758. memcpy(prmdata, (void *) skb->data, skb->len);
  759. prmdata[7] = 0xff - (u8) skb->len;
  760. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  761. (void *) prmdata, 8);
  762. }
  763. static int iucv_sock_sendmsg(struct socket *sock, struct msghdr *msg,
  764. size_t len)
  765. {
  766. struct sock *sk = sock->sk;
  767. struct iucv_sock *iucv = iucv_sk(sk);
  768. size_t headroom = 0;
  769. size_t linear;
  770. struct sk_buff *skb;
  771. struct iucv_message txmsg = {0};
  772. struct cmsghdr *cmsg;
  773. int cmsg_done;
  774. long timeo;
  775. char user_id[9];
  776. char appl_id[9];
  777. int err;
  778. int noblock = msg->msg_flags & MSG_DONTWAIT;
  779. err = sock_error(sk);
  780. if (err)
  781. return err;
  782. if (msg->msg_flags & MSG_OOB)
  783. return -EOPNOTSUPP;
  784. /* SOCK_SEQPACKET: we do not support segmented records */
  785. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  786. return -EOPNOTSUPP;
  787. lock_sock(sk);
  788. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  789. err = -EPIPE;
  790. goto out;
  791. }
  792. /* Return if the socket is not in connected state */
  793. if (sk->sk_state != IUCV_CONNECTED) {
  794. err = -ENOTCONN;
  795. goto out;
  796. }
  797. /* initialize defaults */
  798. cmsg_done = 0; /* check for duplicate headers */
  799. /* iterate over control messages */
  800. for_each_cmsghdr(cmsg, msg) {
  801. if (!CMSG_OK(msg, cmsg)) {
  802. err = -EINVAL;
  803. goto out;
  804. }
  805. if (cmsg->cmsg_level != SOL_IUCV)
  806. continue;
  807. if (cmsg->cmsg_type & cmsg_done) {
  808. err = -EINVAL;
  809. goto out;
  810. }
  811. cmsg_done |= cmsg->cmsg_type;
  812. switch (cmsg->cmsg_type) {
  813. case SCM_IUCV_TRGCLS:
  814. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  815. err = -EINVAL;
  816. goto out;
  817. }
  818. /* set iucv message target class */
  819. memcpy(&txmsg.class,
  820. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  821. break;
  822. default:
  823. err = -EINVAL;
  824. goto out;
  825. }
  826. }
  827. /* allocate one skb for each iucv message:
  828. * this is fine for SOCK_SEQPACKET (unless we want to support
  829. * segmented records using the MSG_EOR flag), but
  830. * for SOCK_STREAM we might want to improve it in future */
  831. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  832. headroom = sizeof(struct af_iucv_trans_hdr) +
  833. LL_RESERVED_SPACE(iucv->hs_dev);
  834. linear = min(len, PAGE_SIZE - headroom);
  835. } else {
  836. if (len < PAGE_SIZE) {
  837. linear = len;
  838. } else {
  839. /* In nonlinear "classic" iucv skb,
  840. * reserve space for iucv_array
  841. */
  842. headroom = sizeof(struct iucv_array) *
  843. (MAX_SKB_FRAGS + 1);
  844. linear = PAGE_SIZE - headroom;
  845. }
  846. }
  847. skb = sock_alloc_send_pskb(sk, headroom + linear, len - linear,
  848. noblock, &err, 0);
  849. if (!skb)
  850. goto out;
  851. if (headroom)
  852. skb_reserve(skb, headroom);
  853. skb_put(skb, linear);
  854. skb->len = len;
  855. skb->data_len = len - linear;
  856. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
  857. if (err)
  858. goto fail;
  859. /* wait if outstanding messages for iucv path has reached */
  860. timeo = sock_sndtimeo(sk, noblock);
  861. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  862. if (err)
  863. goto fail;
  864. /* return -ECONNRESET if the socket is no longer connected */
  865. if (sk->sk_state != IUCV_CONNECTED) {
  866. err = -ECONNRESET;
  867. goto fail;
  868. }
  869. /* increment and save iucv message tag for msg_completion cbk */
  870. txmsg.tag = iucv->send_tag++;
  871. IUCV_SKB_CB(skb)->tag = txmsg.tag;
  872. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  873. atomic_inc(&iucv->msg_sent);
  874. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  875. if (err) {
  876. atomic_dec(&iucv->msg_sent);
  877. goto out;
  878. }
  879. } else { /* Classic VM IUCV transport */
  880. skb_queue_tail(&iucv->send_skb_q, skb);
  881. atomic_inc(&iucv->skbs_in_xmit);
  882. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags) &&
  883. skb->len <= 7) {
  884. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  885. /* on success: there is no message_complete callback */
  886. /* for an IPRMDATA msg; remove skb from send queue */
  887. if (err == 0) {
  888. atomic_dec(&iucv->skbs_in_xmit);
  889. skb_unlink(skb, &iucv->send_skb_q);
  890. consume_skb(skb);
  891. }
  892. /* this error should never happen since the */
  893. /* IUCV_IPRMDATA path flag is set... sever path */
  894. if (err == 0x15) {
  895. pr_iucv->path_sever(iucv->path, NULL);
  896. atomic_dec(&iucv->skbs_in_xmit);
  897. skb_unlink(skb, &iucv->send_skb_q);
  898. err = -EPIPE;
  899. goto fail;
  900. }
  901. } else if (skb_is_nonlinear(skb)) {
  902. struct iucv_array *iba = (struct iucv_array *)skb->head;
  903. int i;
  904. /* skip iucv_array lying in the headroom */
  905. iba[0].address = (u32)(addr_t)skb->data;
  906. iba[0].length = (u32)skb_headlen(skb);
  907. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  908. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  909. iba[i + 1].address =
  910. (u32)(addr_t)skb_frag_address(frag);
  911. iba[i + 1].length = (u32)skb_frag_size(frag);
  912. }
  913. err = pr_iucv->message_send(iucv->path, &txmsg,
  914. IUCV_IPBUFLST, 0,
  915. (void *)iba, skb->len);
  916. } else { /* non-IPRM Linear skb */
  917. err = pr_iucv->message_send(iucv->path, &txmsg,
  918. 0, 0, (void *)skb->data, skb->len);
  919. }
  920. if (err) {
  921. if (err == 3) {
  922. user_id[8] = 0;
  923. memcpy(user_id, iucv->dst_user_id, 8);
  924. appl_id[8] = 0;
  925. memcpy(appl_id, iucv->dst_name, 8);
  926. pr_err(
  927. "Application %s on z/VM guest %s exceeds message limit\n",
  928. appl_id, user_id);
  929. err = -EAGAIN;
  930. } else {
  931. err = -EPIPE;
  932. }
  933. atomic_dec(&iucv->skbs_in_xmit);
  934. skb_unlink(skb, &iucv->send_skb_q);
  935. goto fail;
  936. }
  937. }
  938. release_sock(sk);
  939. return len;
  940. fail:
  941. kfree_skb(skb);
  942. out:
  943. release_sock(sk);
  944. return err;
  945. }
  946. static struct sk_buff *alloc_iucv_recv_skb(unsigned long len)
  947. {
  948. size_t headroom, linear;
  949. struct sk_buff *skb;
  950. int err;
  951. if (len < PAGE_SIZE) {
  952. headroom = 0;
  953. linear = len;
  954. } else {
  955. headroom = sizeof(struct iucv_array) * (MAX_SKB_FRAGS + 1);
  956. linear = PAGE_SIZE - headroom;
  957. }
  958. skb = alloc_skb_with_frags(headroom + linear, len - linear,
  959. 0, &err, GFP_ATOMIC | GFP_DMA);
  960. WARN_ONCE(!skb,
  961. "alloc of recv iucv skb len=%lu failed with errcode=%d\n",
  962. len, err);
  963. if (skb) {
  964. if (headroom)
  965. skb_reserve(skb, headroom);
  966. skb_put(skb, linear);
  967. skb->len = len;
  968. skb->data_len = len - linear;
  969. }
  970. return skb;
  971. }
  972. /* iucv_process_message() - Receive a single outstanding IUCV message
  973. *
  974. * Locking: must be called with message_q.lock held
  975. */
  976. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  977. struct iucv_path *path,
  978. struct iucv_message *msg)
  979. {
  980. int rc;
  981. unsigned int len;
  982. len = iucv_msg_length(msg);
  983. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  984. /* Note: the first 4 bytes are reserved for msg tag */
  985. IUCV_SKB_CB(skb)->class = msg->class;
  986. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  987. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  988. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  989. skb->data = NULL;
  990. skb->len = 0;
  991. }
  992. } else {
  993. if (skb_is_nonlinear(skb)) {
  994. struct iucv_array *iba = (struct iucv_array *)skb->head;
  995. int i;
  996. iba[0].address = (u32)(addr_t)skb->data;
  997. iba[0].length = (u32)skb_headlen(skb);
  998. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  999. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1000. iba[i + 1].address =
  1001. (u32)(addr_t)skb_frag_address(frag);
  1002. iba[i + 1].length = (u32)skb_frag_size(frag);
  1003. }
  1004. rc = pr_iucv->message_receive(path, msg,
  1005. IUCV_IPBUFLST,
  1006. (void *)iba, len, NULL);
  1007. } else {
  1008. rc = pr_iucv->message_receive(path, msg,
  1009. msg->flags & IUCV_IPRMDATA,
  1010. skb->data, len, NULL);
  1011. }
  1012. if (rc) {
  1013. kfree_skb(skb);
  1014. return;
  1015. }
  1016. WARN_ON_ONCE(skb->len != len);
  1017. }
  1018. IUCV_SKB_CB(skb)->offset = 0;
  1019. if (sk_filter(sk, skb)) {
  1020. atomic_inc(&sk->sk_drops); /* skb rejected by filter */
  1021. kfree_skb(skb);
  1022. return;
  1023. }
  1024. if (__sock_queue_rcv_skb(sk, skb)) /* handle rcv queue full */
  1025. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1026. }
  1027. /* iucv_process_message_q() - Process outstanding IUCV messages
  1028. *
  1029. * Locking: must be called with message_q.lock held
  1030. */
  1031. static void iucv_process_message_q(struct sock *sk)
  1032. {
  1033. struct iucv_sock *iucv = iucv_sk(sk);
  1034. struct sk_buff *skb;
  1035. struct sock_msg_q *p, *n;
  1036. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1037. skb = alloc_iucv_recv_skb(iucv_msg_length(&p->msg));
  1038. if (!skb)
  1039. break;
  1040. iucv_process_message(sk, skb, p->path, &p->msg);
  1041. list_del(&p->list);
  1042. kfree(p);
  1043. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1044. break;
  1045. }
  1046. }
  1047. static int iucv_sock_recvmsg(struct socket *sock, struct msghdr *msg,
  1048. size_t len, int flags)
  1049. {
  1050. struct sock *sk = sock->sk;
  1051. struct iucv_sock *iucv = iucv_sk(sk);
  1052. unsigned int copied, rlen;
  1053. struct sk_buff *skb, *rskb, *cskb;
  1054. int err = 0;
  1055. u32 offset;
  1056. if ((sk->sk_state == IUCV_DISCONN) &&
  1057. skb_queue_empty(&iucv->backlog_skb_q) &&
  1058. skb_queue_empty(&sk->sk_receive_queue) &&
  1059. list_empty(&iucv->message_q.list))
  1060. return 0;
  1061. if (flags & (MSG_OOB))
  1062. return -EOPNOTSUPP;
  1063. /* receive/dequeue next skb:
  1064. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1065. skb = skb_recv_datagram(sk, flags, &err);
  1066. if (!skb) {
  1067. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1068. return 0;
  1069. return err;
  1070. }
  1071. offset = IUCV_SKB_CB(skb)->offset;
  1072. rlen = skb->len - offset; /* real length of skb */
  1073. copied = min_t(unsigned int, rlen, len);
  1074. if (!rlen)
  1075. sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN;
  1076. cskb = skb;
  1077. if (skb_copy_datagram_msg(cskb, offset, msg, copied)) {
  1078. if (!(flags & MSG_PEEK))
  1079. skb_queue_head(&sk->sk_receive_queue, skb);
  1080. return -EFAULT;
  1081. }
  1082. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1083. if (sk->sk_type == SOCK_SEQPACKET) {
  1084. if (copied < rlen)
  1085. msg->msg_flags |= MSG_TRUNC;
  1086. /* each iucv message contains a complete record */
  1087. msg->msg_flags |= MSG_EOR;
  1088. }
  1089. /* create control message to store iucv msg target class:
  1090. * get the trgcls from the control buffer of the skb due to
  1091. * fragmentation of original iucv message. */
  1092. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1093. sizeof(IUCV_SKB_CB(skb)->class),
  1094. (void *)&IUCV_SKB_CB(skb)->class);
  1095. if (err) {
  1096. if (!(flags & MSG_PEEK))
  1097. skb_queue_head(&sk->sk_receive_queue, skb);
  1098. return err;
  1099. }
  1100. /* Mark read part of skb as used */
  1101. if (!(flags & MSG_PEEK)) {
  1102. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1103. if (sk->sk_type == SOCK_STREAM) {
  1104. if (copied < rlen) {
  1105. IUCV_SKB_CB(skb)->offset = offset + copied;
  1106. skb_queue_head(&sk->sk_receive_queue, skb);
  1107. goto done;
  1108. }
  1109. }
  1110. consume_skb(skb);
  1111. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1112. atomic_inc(&iucv->msg_recv);
  1113. if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
  1114. WARN_ON(1);
  1115. iucv_sock_close(sk);
  1116. return -EFAULT;
  1117. }
  1118. }
  1119. /* Queue backlog skbs */
  1120. spin_lock_bh(&iucv->message_q.lock);
  1121. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1122. while (rskb) {
  1123. IUCV_SKB_CB(rskb)->offset = 0;
  1124. if (__sock_queue_rcv_skb(sk, rskb)) {
  1125. /* handle rcv queue full */
  1126. skb_queue_head(&iucv->backlog_skb_q,
  1127. rskb);
  1128. break;
  1129. }
  1130. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1131. }
  1132. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1133. if (!list_empty(&iucv->message_q.list))
  1134. iucv_process_message_q(sk);
  1135. if (atomic_read(&iucv->msg_recv) >=
  1136. iucv->msglimit / 2) {
  1137. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
  1138. if (err) {
  1139. sk->sk_state = IUCV_DISCONN;
  1140. sk->sk_state_change(sk);
  1141. }
  1142. }
  1143. }
  1144. spin_unlock_bh(&iucv->message_q.lock);
  1145. }
  1146. done:
  1147. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1148. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1149. copied = rlen;
  1150. return copied;
  1151. }
  1152. static inline __poll_t iucv_accept_poll(struct sock *parent)
  1153. {
  1154. struct iucv_sock *isk, *n;
  1155. struct sock *sk;
  1156. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1157. sk = (struct sock *) isk;
  1158. if (sk->sk_state == IUCV_CONNECTED)
  1159. return EPOLLIN | EPOLLRDNORM;
  1160. }
  1161. return 0;
  1162. }
  1163. static __poll_t iucv_sock_poll(struct file *file, struct socket *sock,
  1164. poll_table *wait)
  1165. {
  1166. struct sock *sk = sock->sk;
  1167. __poll_t mask = 0;
  1168. sock_poll_wait(file, sock, wait);
  1169. if (sk->sk_state == IUCV_LISTEN)
  1170. return iucv_accept_poll(sk);
  1171. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1172. mask |= EPOLLERR |
  1173. (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
  1174. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1175. mask |= EPOLLRDHUP;
  1176. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1177. mask |= EPOLLHUP;
  1178. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1179. (sk->sk_shutdown & RCV_SHUTDOWN))
  1180. mask |= EPOLLIN | EPOLLRDNORM;
  1181. if (sk->sk_state == IUCV_CLOSED)
  1182. mask |= EPOLLHUP;
  1183. if (sk->sk_state == IUCV_DISCONN)
  1184. mask |= EPOLLIN;
  1185. if (sock_writeable(sk) && iucv_below_msglim(sk))
  1186. mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
  1187. else
  1188. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1189. return mask;
  1190. }
  1191. static int iucv_sock_shutdown(struct socket *sock, int how)
  1192. {
  1193. struct sock *sk = sock->sk;
  1194. struct iucv_sock *iucv = iucv_sk(sk);
  1195. struct iucv_message txmsg;
  1196. int err = 0;
  1197. how++;
  1198. if ((how & ~SHUTDOWN_MASK) || !how)
  1199. return -EINVAL;
  1200. lock_sock(sk);
  1201. switch (sk->sk_state) {
  1202. case IUCV_LISTEN:
  1203. case IUCV_DISCONN:
  1204. case IUCV_CLOSING:
  1205. case IUCV_CLOSED:
  1206. err = -ENOTCONN;
  1207. goto fail;
  1208. default:
  1209. break;
  1210. }
  1211. if ((how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) &&
  1212. sk->sk_state == IUCV_CONNECTED) {
  1213. if (iucv->transport == AF_IUCV_TRANS_IUCV) {
  1214. txmsg.class = 0;
  1215. txmsg.tag = 0;
  1216. err = pr_iucv->message_send(iucv->path, &txmsg,
  1217. IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8);
  1218. if (err) {
  1219. switch (err) {
  1220. case 1:
  1221. err = -ENOTCONN;
  1222. break;
  1223. case 2:
  1224. err = -ECONNRESET;
  1225. break;
  1226. default:
  1227. err = -ENOTCONN;
  1228. break;
  1229. }
  1230. }
  1231. } else
  1232. iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT);
  1233. }
  1234. sk->sk_shutdown |= how;
  1235. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1236. if ((iucv->transport == AF_IUCV_TRANS_IUCV) &&
  1237. iucv->path) {
  1238. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1239. if (err)
  1240. err = -ENOTCONN;
  1241. /* skb_queue_purge(&sk->sk_receive_queue); */
  1242. }
  1243. skb_queue_purge(&sk->sk_receive_queue);
  1244. }
  1245. /* Wake up anyone sleeping in poll */
  1246. sk->sk_state_change(sk);
  1247. fail:
  1248. release_sock(sk);
  1249. return err;
  1250. }
  1251. static int iucv_sock_release(struct socket *sock)
  1252. {
  1253. struct sock *sk = sock->sk;
  1254. int err = 0;
  1255. if (!sk)
  1256. return 0;
  1257. iucv_sock_close(sk);
  1258. sock_orphan(sk);
  1259. iucv_sock_kill(sk);
  1260. return err;
  1261. }
  1262. /* getsockopt and setsockopt */
  1263. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1264. sockptr_t optval, unsigned int optlen)
  1265. {
  1266. struct sock *sk = sock->sk;
  1267. struct iucv_sock *iucv = iucv_sk(sk);
  1268. int val;
  1269. int rc;
  1270. if (level != SOL_IUCV)
  1271. return -ENOPROTOOPT;
  1272. if (optlen < sizeof(int))
  1273. return -EINVAL;
  1274. if (copy_from_sockptr(&val, optval, sizeof(int)))
  1275. return -EFAULT;
  1276. rc = 0;
  1277. lock_sock(sk);
  1278. switch (optname) {
  1279. case SO_IPRMDATA_MSG:
  1280. if (val)
  1281. iucv->flags |= IUCV_IPRMDATA;
  1282. else
  1283. iucv->flags &= ~IUCV_IPRMDATA;
  1284. break;
  1285. case SO_MSGLIMIT:
  1286. switch (sk->sk_state) {
  1287. case IUCV_OPEN:
  1288. case IUCV_BOUND:
  1289. if (val < 1 || val > U16_MAX)
  1290. rc = -EINVAL;
  1291. else
  1292. iucv->msglimit = val;
  1293. break;
  1294. default:
  1295. rc = -EINVAL;
  1296. break;
  1297. }
  1298. break;
  1299. default:
  1300. rc = -ENOPROTOOPT;
  1301. break;
  1302. }
  1303. release_sock(sk);
  1304. return rc;
  1305. }
  1306. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1307. char __user *optval, int __user *optlen)
  1308. {
  1309. struct sock *sk = sock->sk;
  1310. struct iucv_sock *iucv = iucv_sk(sk);
  1311. unsigned int val;
  1312. int len;
  1313. if (level != SOL_IUCV)
  1314. return -ENOPROTOOPT;
  1315. if (get_user(len, optlen))
  1316. return -EFAULT;
  1317. if (len < 0)
  1318. return -EINVAL;
  1319. len = min_t(unsigned int, len, sizeof(int));
  1320. switch (optname) {
  1321. case SO_IPRMDATA_MSG:
  1322. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1323. break;
  1324. case SO_MSGLIMIT:
  1325. lock_sock(sk);
  1326. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1327. : iucv->msglimit; /* default */
  1328. release_sock(sk);
  1329. break;
  1330. case SO_MSGSIZE:
  1331. if (sk->sk_state == IUCV_OPEN)
  1332. return -EBADFD;
  1333. val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
  1334. sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
  1335. 0x7fffffff;
  1336. break;
  1337. default:
  1338. return -ENOPROTOOPT;
  1339. }
  1340. if (put_user(len, optlen))
  1341. return -EFAULT;
  1342. if (copy_to_user(optval, &val, len))
  1343. return -EFAULT;
  1344. return 0;
  1345. }
  1346. /* Callback wrappers - called from iucv base support */
  1347. static int iucv_callback_connreq(struct iucv_path *path,
  1348. u8 ipvmid[8], u8 ipuser[16])
  1349. {
  1350. unsigned char user_data[16];
  1351. unsigned char nuser_data[16];
  1352. unsigned char src_name[8];
  1353. struct sock *sk, *nsk;
  1354. struct iucv_sock *iucv, *niucv;
  1355. int err;
  1356. memcpy(src_name, ipuser, 8);
  1357. EBCASC(src_name, 8);
  1358. /* Find out if this path belongs to af_iucv. */
  1359. read_lock(&iucv_sk_list.lock);
  1360. iucv = NULL;
  1361. sk = NULL;
  1362. sk_for_each(sk, &iucv_sk_list.head)
  1363. if (sk->sk_state == IUCV_LISTEN &&
  1364. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1365. /*
  1366. * Found a listening socket with
  1367. * src_name == ipuser[0-7].
  1368. */
  1369. iucv = iucv_sk(sk);
  1370. break;
  1371. }
  1372. read_unlock(&iucv_sk_list.lock);
  1373. if (!iucv)
  1374. /* No socket found, not one of our paths. */
  1375. return -EINVAL;
  1376. bh_lock_sock(sk);
  1377. /* Check if parent socket is listening */
  1378. low_nmcpy(user_data, iucv->src_name);
  1379. high_nmcpy(user_data, iucv->dst_name);
  1380. ASCEBC(user_data, sizeof(user_data));
  1381. if (sk->sk_state != IUCV_LISTEN) {
  1382. err = pr_iucv->path_sever(path, user_data);
  1383. iucv_path_free(path);
  1384. goto fail;
  1385. }
  1386. /* Check for backlog size */
  1387. if (sk_acceptq_is_full(sk)) {
  1388. err = pr_iucv->path_sever(path, user_data);
  1389. iucv_path_free(path);
  1390. goto fail;
  1391. }
  1392. /* Create the new socket */
  1393. nsk = iucv_sock_alloc(NULL, sk->sk_protocol, GFP_ATOMIC, 0);
  1394. if (!nsk) {
  1395. err = pr_iucv->path_sever(path, user_data);
  1396. iucv_path_free(path);
  1397. goto fail;
  1398. }
  1399. niucv = iucv_sk(nsk);
  1400. iucv_sock_init(nsk, sk);
  1401. niucv->transport = AF_IUCV_TRANS_IUCV;
  1402. nsk->sk_allocation |= GFP_DMA;
  1403. /* Set the new iucv_sock */
  1404. memcpy(niucv->dst_name, ipuser + 8, 8);
  1405. EBCASC(niucv->dst_name, 8);
  1406. memcpy(niucv->dst_user_id, ipvmid, 8);
  1407. memcpy(niucv->src_name, iucv->src_name, 8);
  1408. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1409. niucv->path = path;
  1410. /* Call iucv_accept */
  1411. high_nmcpy(nuser_data, ipuser + 8);
  1412. memcpy(nuser_data + 8, niucv->src_name, 8);
  1413. ASCEBC(nuser_data + 8, 8);
  1414. /* set message limit for path based on msglimit of accepting socket */
  1415. niucv->msglimit = iucv->msglimit;
  1416. path->msglim = iucv->msglimit;
  1417. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1418. if (err) {
  1419. iucv_sever_path(nsk, 1);
  1420. iucv_sock_kill(nsk);
  1421. goto fail;
  1422. }
  1423. iucv_accept_enqueue(sk, nsk);
  1424. /* Wake up accept */
  1425. nsk->sk_state = IUCV_CONNECTED;
  1426. sk->sk_data_ready(sk);
  1427. err = 0;
  1428. fail:
  1429. bh_unlock_sock(sk);
  1430. return 0;
  1431. }
  1432. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1433. {
  1434. struct sock *sk = path->private;
  1435. sk->sk_state = IUCV_CONNECTED;
  1436. sk->sk_state_change(sk);
  1437. }
  1438. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1439. {
  1440. struct sock *sk = path->private;
  1441. struct iucv_sock *iucv = iucv_sk(sk);
  1442. struct sk_buff *skb;
  1443. struct sock_msg_q *save_msg;
  1444. int len;
  1445. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1446. pr_iucv->message_reject(path, msg);
  1447. return;
  1448. }
  1449. spin_lock(&iucv->message_q.lock);
  1450. if (!list_empty(&iucv->message_q.list) ||
  1451. !skb_queue_empty(&iucv->backlog_skb_q))
  1452. goto save_message;
  1453. len = atomic_read(&sk->sk_rmem_alloc);
  1454. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1455. if (len > sk->sk_rcvbuf)
  1456. goto save_message;
  1457. skb = alloc_iucv_recv_skb(iucv_msg_length(msg));
  1458. if (!skb)
  1459. goto save_message;
  1460. iucv_process_message(sk, skb, path, msg);
  1461. goto out_unlock;
  1462. save_message:
  1463. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1464. if (!save_msg)
  1465. goto out_unlock;
  1466. save_msg->path = path;
  1467. save_msg->msg = *msg;
  1468. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1469. out_unlock:
  1470. spin_unlock(&iucv->message_q.lock);
  1471. }
  1472. static void iucv_callback_txdone(struct iucv_path *path,
  1473. struct iucv_message *msg)
  1474. {
  1475. struct sock *sk = path->private;
  1476. struct sk_buff *this = NULL;
  1477. struct sk_buff_head *list;
  1478. struct sk_buff *list_skb;
  1479. struct iucv_sock *iucv;
  1480. unsigned long flags;
  1481. iucv = iucv_sk(sk);
  1482. list = &iucv->send_skb_q;
  1483. bh_lock_sock(sk);
  1484. spin_lock_irqsave(&list->lock, flags);
  1485. skb_queue_walk(list, list_skb) {
  1486. if (msg->tag == IUCV_SKB_CB(list_skb)->tag) {
  1487. this = list_skb;
  1488. break;
  1489. }
  1490. }
  1491. if (this) {
  1492. atomic_dec(&iucv->skbs_in_xmit);
  1493. __skb_unlink(this, list);
  1494. }
  1495. spin_unlock_irqrestore(&list->lock, flags);
  1496. if (this) {
  1497. consume_skb(this);
  1498. /* wake up any process waiting for sending */
  1499. iucv_sock_wake_msglim(sk);
  1500. }
  1501. if (sk->sk_state == IUCV_CLOSING) {
  1502. if (atomic_read(&iucv->skbs_in_xmit) == 0) {
  1503. sk->sk_state = IUCV_CLOSED;
  1504. sk->sk_state_change(sk);
  1505. }
  1506. }
  1507. bh_unlock_sock(sk);
  1508. }
  1509. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1510. {
  1511. struct sock *sk = path->private;
  1512. if (sk->sk_state == IUCV_CLOSED)
  1513. return;
  1514. bh_lock_sock(sk);
  1515. iucv_sever_path(sk, 1);
  1516. sk->sk_state = IUCV_DISCONN;
  1517. sk->sk_state_change(sk);
  1518. bh_unlock_sock(sk);
  1519. }
  1520. /* called if the other communication side shuts down its RECV direction;
  1521. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1522. */
  1523. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1524. {
  1525. struct sock *sk = path->private;
  1526. bh_lock_sock(sk);
  1527. if (sk->sk_state != IUCV_CLOSED) {
  1528. sk->sk_shutdown |= SEND_SHUTDOWN;
  1529. sk->sk_state_change(sk);
  1530. }
  1531. bh_unlock_sock(sk);
  1532. }
  1533. static struct iucv_handler af_iucv_handler = {
  1534. .path_pending = iucv_callback_connreq,
  1535. .path_complete = iucv_callback_connack,
  1536. .path_severed = iucv_callback_connrej,
  1537. .message_pending = iucv_callback_rx,
  1538. .message_complete = iucv_callback_txdone,
  1539. .path_quiesced = iucv_callback_shutdown,
  1540. };
  1541. /***************** HiperSockets transport callbacks ********************/
  1542. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1543. {
  1544. struct af_iucv_trans_hdr *trans_hdr = iucv_trans_hdr(skb);
  1545. char tmpID[8];
  1546. char tmpName[8];
  1547. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1548. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1549. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1550. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1551. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1552. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1553. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1554. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1555. memcpy(trans_hdr->destUserID, tmpID, 8);
  1556. memcpy(trans_hdr->destAppName, tmpName, 8);
  1557. skb_push(skb, ETH_HLEN);
  1558. memset(skb->data, 0, ETH_HLEN);
  1559. }
  1560. /*
  1561. * afiucv_hs_callback_syn - react on received SYN
  1562. */
  1563. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1564. {
  1565. struct af_iucv_trans_hdr *trans_hdr = iucv_trans_hdr(skb);
  1566. struct sock *nsk;
  1567. struct iucv_sock *iucv, *niucv;
  1568. int err;
  1569. iucv = iucv_sk(sk);
  1570. if (!iucv) {
  1571. /* no sock - connection refused */
  1572. afiucv_swap_src_dest(skb);
  1573. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1574. err = dev_queue_xmit(skb);
  1575. goto out;
  1576. }
  1577. nsk = iucv_sock_alloc(NULL, sk->sk_protocol, GFP_ATOMIC, 0);
  1578. bh_lock_sock(sk);
  1579. if ((sk->sk_state != IUCV_LISTEN) ||
  1580. sk_acceptq_is_full(sk) ||
  1581. !nsk) {
  1582. /* error on server socket - connection refused */
  1583. afiucv_swap_src_dest(skb);
  1584. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1585. err = dev_queue_xmit(skb);
  1586. iucv_sock_kill(nsk);
  1587. bh_unlock_sock(sk);
  1588. goto out;
  1589. }
  1590. niucv = iucv_sk(nsk);
  1591. iucv_sock_init(nsk, sk);
  1592. niucv->transport = AF_IUCV_TRANS_HIPER;
  1593. niucv->msglimit = iucv->msglimit;
  1594. if (!trans_hdr->window)
  1595. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1596. else
  1597. niucv->msglimit_peer = trans_hdr->window;
  1598. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1599. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1600. memcpy(niucv->src_name, iucv->src_name, 8);
  1601. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1602. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1603. niucv->hs_dev = iucv->hs_dev;
  1604. dev_hold(niucv->hs_dev);
  1605. afiucv_swap_src_dest(skb);
  1606. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1607. trans_hdr->window = niucv->msglimit;
  1608. /* if receiver acks the xmit connection is established */
  1609. err = dev_queue_xmit(skb);
  1610. if (!err) {
  1611. iucv_accept_enqueue(sk, nsk);
  1612. nsk->sk_state = IUCV_CONNECTED;
  1613. sk->sk_data_ready(sk);
  1614. } else
  1615. iucv_sock_kill(nsk);
  1616. bh_unlock_sock(sk);
  1617. out:
  1618. return NET_RX_SUCCESS;
  1619. }
  1620. /*
  1621. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1622. */
  1623. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1624. {
  1625. struct iucv_sock *iucv = iucv_sk(sk);
  1626. if (!iucv || sk->sk_state != IUCV_BOUND) {
  1627. kfree_skb(skb);
  1628. return NET_RX_SUCCESS;
  1629. }
  1630. bh_lock_sock(sk);
  1631. iucv->msglimit_peer = iucv_trans_hdr(skb)->window;
  1632. sk->sk_state = IUCV_CONNECTED;
  1633. sk->sk_state_change(sk);
  1634. bh_unlock_sock(sk);
  1635. consume_skb(skb);
  1636. return NET_RX_SUCCESS;
  1637. }
  1638. /*
  1639. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1640. */
  1641. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1642. {
  1643. struct iucv_sock *iucv = iucv_sk(sk);
  1644. if (!iucv || sk->sk_state != IUCV_BOUND) {
  1645. kfree_skb(skb);
  1646. return NET_RX_SUCCESS;
  1647. }
  1648. bh_lock_sock(sk);
  1649. sk->sk_state = IUCV_DISCONN;
  1650. sk->sk_state_change(sk);
  1651. bh_unlock_sock(sk);
  1652. consume_skb(skb);
  1653. return NET_RX_SUCCESS;
  1654. }
  1655. /*
  1656. * afiucv_hs_callback_fin() - react on received FIN
  1657. */
  1658. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1659. {
  1660. struct iucv_sock *iucv = iucv_sk(sk);
  1661. /* other end of connection closed */
  1662. if (!iucv) {
  1663. kfree_skb(skb);
  1664. return NET_RX_SUCCESS;
  1665. }
  1666. bh_lock_sock(sk);
  1667. if (sk->sk_state == IUCV_CONNECTED) {
  1668. sk->sk_state = IUCV_DISCONN;
  1669. sk->sk_state_change(sk);
  1670. }
  1671. bh_unlock_sock(sk);
  1672. consume_skb(skb);
  1673. return NET_RX_SUCCESS;
  1674. }
  1675. /*
  1676. * afiucv_hs_callback_win() - react on received WIN
  1677. */
  1678. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1679. {
  1680. struct iucv_sock *iucv = iucv_sk(sk);
  1681. if (!iucv)
  1682. return NET_RX_SUCCESS;
  1683. if (sk->sk_state != IUCV_CONNECTED)
  1684. return NET_RX_SUCCESS;
  1685. atomic_sub(iucv_trans_hdr(skb)->window, &iucv->msg_sent);
  1686. iucv_sock_wake_msglim(sk);
  1687. return NET_RX_SUCCESS;
  1688. }
  1689. /*
  1690. * afiucv_hs_callback_rx() - react on received data
  1691. */
  1692. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1693. {
  1694. struct iucv_sock *iucv = iucv_sk(sk);
  1695. if (!iucv) {
  1696. kfree_skb(skb);
  1697. return NET_RX_SUCCESS;
  1698. }
  1699. if (sk->sk_state != IUCV_CONNECTED) {
  1700. kfree_skb(skb);
  1701. return NET_RX_SUCCESS;
  1702. }
  1703. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1704. kfree_skb(skb);
  1705. return NET_RX_SUCCESS;
  1706. }
  1707. /* write stuff from iucv_msg to skb cb */
  1708. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1709. skb_reset_transport_header(skb);
  1710. skb_reset_network_header(skb);
  1711. IUCV_SKB_CB(skb)->offset = 0;
  1712. if (sk_filter(sk, skb)) {
  1713. atomic_inc(&sk->sk_drops); /* skb rejected by filter */
  1714. kfree_skb(skb);
  1715. return NET_RX_SUCCESS;
  1716. }
  1717. spin_lock(&iucv->message_q.lock);
  1718. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1719. if (__sock_queue_rcv_skb(sk, skb))
  1720. /* handle rcv queue full */
  1721. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1722. } else
  1723. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1724. spin_unlock(&iucv->message_q.lock);
  1725. return NET_RX_SUCCESS;
  1726. }
  1727. /*
  1728. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1729. * transport
  1730. * called from netif RX softirq
  1731. */
  1732. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1733. struct packet_type *pt, struct net_device *orig_dev)
  1734. {
  1735. struct sock *sk;
  1736. struct iucv_sock *iucv;
  1737. struct af_iucv_trans_hdr *trans_hdr;
  1738. int err = NET_RX_SUCCESS;
  1739. char nullstring[8];
  1740. if (!pskb_may_pull(skb, sizeof(*trans_hdr))) {
  1741. kfree_skb(skb);
  1742. return NET_RX_SUCCESS;
  1743. }
  1744. trans_hdr = iucv_trans_hdr(skb);
  1745. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1746. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1747. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1748. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1749. memset(nullstring, 0, sizeof(nullstring));
  1750. iucv = NULL;
  1751. sk = NULL;
  1752. read_lock(&iucv_sk_list.lock);
  1753. sk_for_each(sk, &iucv_sk_list.head) {
  1754. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1755. if ((!memcmp(&iucv_sk(sk)->src_name,
  1756. trans_hdr->destAppName, 8)) &&
  1757. (!memcmp(&iucv_sk(sk)->src_user_id,
  1758. trans_hdr->destUserID, 8)) &&
  1759. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1760. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1761. nullstring, 8))) {
  1762. iucv = iucv_sk(sk);
  1763. break;
  1764. }
  1765. } else {
  1766. if ((!memcmp(&iucv_sk(sk)->src_name,
  1767. trans_hdr->destAppName, 8)) &&
  1768. (!memcmp(&iucv_sk(sk)->src_user_id,
  1769. trans_hdr->destUserID, 8)) &&
  1770. (!memcmp(&iucv_sk(sk)->dst_name,
  1771. trans_hdr->srcAppName, 8)) &&
  1772. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1773. trans_hdr->srcUserID, 8))) {
  1774. iucv = iucv_sk(sk);
  1775. break;
  1776. }
  1777. }
  1778. }
  1779. read_unlock(&iucv_sk_list.lock);
  1780. if (!iucv)
  1781. sk = NULL;
  1782. /* no sock
  1783. how should we send with no sock
  1784. 1) send without sock no send rc checking?
  1785. 2) introduce default sock to handle this cases
  1786. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1787. data -> send FIN
  1788. SYN|ACK, SYN|FIN, FIN -> no action? */
  1789. switch (trans_hdr->flags) {
  1790. case AF_IUCV_FLAG_SYN:
  1791. /* connect request */
  1792. err = afiucv_hs_callback_syn(sk, skb);
  1793. break;
  1794. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1795. /* connect request confirmed */
  1796. err = afiucv_hs_callback_synack(sk, skb);
  1797. break;
  1798. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1799. /* connect request refused */
  1800. err = afiucv_hs_callback_synfin(sk, skb);
  1801. break;
  1802. case (AF_IUCV_FLAG_FIN):
  1803. /* close request */
  1804. err = afiucv_hs_callback_fin(sk, skb);
  1805. break;
  1806. case (AF_IUCV_FLAG_WIN):
  1807. err = afiucv_hs_callback_win(sk, skb);
  1808. if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
  1809. consume_skb(skb);
  1810. break;
  1811. }
  1812. fallthrough; /* and receive non-zero length data */
  1813. case (AF_IUCV_FLAG_SHT):
  1814. /* shutdown request */
  1815. fallthrough; /* and receive zero length data */
  1816. case 0:
  1817. /* plain data frame */
  1818. IUCV_SKB_CB(skb)->class = trans_hdr->iucv_hdr.class;
  1819. err = afiucv_hs_callback_rx(sk, skb);
  1820. break;
  1821. default:
  1822. kfree_skb(skb);
  1823. }
  1824. return err;
  1825. }
  1826. /*
  1827. * afiucv_hs_callback_txnotify() - handle send notifications from HiperSockets
  1828. * transport
  1829. */
  1830. static void afiucv_hs_callback_txnotify(struct sock *sk, enum iucv_tx_notify n)
  1831. {
  1832. struct iucv_sock *iucv = iucv_sk(sk);
  1833. if (sock_flag(sk, SOCK_ZAPPED))
  1834. return;
  1835. switch (n) {
  1836. case TX_NOTIFY_OK:
  1837. atomic_dec(&iucv->skbs_in_xmit);
  1838. iucv_sock_wake_msglim(sk);
  1839. break;
  1840. case TX_NOTIFY_PENDING:
  1841. atomic_inc(&iucv->pendings);
  1842. break;
  1843. case TX_NOTIFY_DELAYED_OK:
  1844. atomic_dec(&iucv->skbs_in_xmit);
  1845. if (atomic_dec_return(&iucv->pendings) <= 0)
  1846. iucv_sock_wake_msglim(sk);
  1847. break;
  1848. default:
  1849. atomic_dec(&iucv->skbs_in_xmit);
  1850. if (sk->sk_state == IUCV_CONNECTED) {
  1851. sk->sk_state = IUCV_DISCONN;
  1852. sk->sk_state_change(sk);
  1853. }
  1854. }
  1855. if (sk->sk_state == IUCV_CLOSING) {
  1856. if (atomic_read(&iucv->skbs_in_xmit) == 0) {
  1857. sk->sk_state = IUCV_CLOSED;
  1858. sk->sk_state_change(sk);
  1859. }
  1860. }
  1861. }
  1862. /*
  1863. * afiucv_netdev_event: handle netdev notifier chain events
  1864. */
  1865. static int afiucv_netdev_event(struct notifier_block *this,
  1866. unsigned long event, void *ptr)
  1867. {
  1868. struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
  1869. struct sock *sk;
  1870. struct iucv_sock *iucv;
  1871. switch (event) {
  1872. case NETDEV_REBOOT:
  1873. case NETDEV_GOING_DOWN:
  1874. sk_for_each(sk, &iucv_sk_list.head) {
  1875. iucv = iucv_sk(sk);
  1876. if ((iucv->hs_dev == event_dev) &&
  1877. (sk->sk_state == IUCV_CONNECTED)) {
  1878. if (event == NETDEV_GOING_DOWN)
  1879. iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  1880. sk->sk_state = IUCV_DISCONN;
  1881. sk->sk_state_change(sk);
  1882. }
  1883. }
  1884. break;
  1885. case NETDEV_DOWN:
  1886. case NETDEV_UNREGISTER:
  1887. default:
  1888. break;
  1889. }
  1890. return NOTIFY_DONE;
  1891. }
  1892. static struct notifier_block afiucv_netdev_notifier = {
  1893. .notifier_call = afiucv_netdev_event,
  1894. };
  1895. static const struct proto_ops iucv_sock_ops = {
  1896. .family = PF_IUCV,
  1897. .owner = THIS_MODULE,
  1898. .release = iucv_sock_release,
  1899. .bind = iucv_sock_bind,
  1900. .connect = iucv_sock_connect,
  1901. .listen = iucv_sock_listen,
  1902. .accept = iucv_sock_accept,
  1903. .getname = iucv_sock_getname,
  1904. .sendmsg = iucv_sock_sendmsg,
  1905. .recvmsg = iucv_sock_recvmsg,
  1906. .poll = iucv_sock_poll,
  1907. .ioctl = sock_no_ioctl,
  1908. .mmap = sock_no_mmap,
  1909. .socketpair = sock_no_socketpair,
  1910. .shutdown = iucv_sock_shutdown,
  1911. .setsockopt = iucv_sock_setsockopt,
  1912. .getsockopt = iucv_sock_getsockopt,
  1913. };
  1914. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  1915. int kern)
  1916. {
  1917. struct sock *sk;
  1918. if (protocol && protocol != PF_IUCV)
  1919. return -EPROTONOSUPPORT;
  1920. sock->state = SS_UNCONNECTED;
  1921. switch (sock->type) {
  1922. case SOCK_STREAM:
  1923. case SOCK_SEQPACKET:
  1924. /* currently, proto ops can handle both sk types */
  1925. sock->ops = &iucv_sock_ops;
  1926. break;
  1927. default:
  1928. return -ESOCKTNOSUPPORT;
  1929. }
  1930. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL, kern);
  1931. if (!sk)
  1932. return -ENOMEM;
  1933. iucv_sock_init(sk, NULL);
  1934. return 0;
  1935. }
  1936. static const struct net_proto_family iucv_sock_family_ops = {
  1937. .family = AF_IUCV,
  1938. .owner = THIS_MODULE,
  1939. .create = iucv_sock_create,
  1940. };
  1941. static struct packet_type iucv_packet_type = {
  1942. .type = cpu_to_be16(ETH_P_AF_IUCV),
  1943. .func = afiucv_hs_rcv,
  1944. };
  1945. static int __init afiucv_init(void)
  1946. {
  1947. int err;
  1948. if (MACHINE_IS_VM && IS_ENABLED(CONFIG_IUCV)) {
  1949. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  1950. if (unlikely(err)) {
  1951. WARN_ON(err);
  1952. err = -EPROTONOSUPPORT;
  1953. goto out;
  1954. }
  1955. pr_iucv = &iucv_if;
  1956. } else {
  1957. memset(&iucv_userid, 0, sizeof(iucv_userid));
  1958. pr_iucv = NULL;
  1959. }
  1960. err = proto_register(&iucv_proto, 0);
  1961. if (err)
  1962. goto out;
  1963. err = sock_register(&iucv_sock_family_ops);
  1964. if (err)
  1965. goto out_proto;
  1966. if (pr_iucv) {
  1967. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  1968. if (err)
  1969. goto out_sock;
  1970. }
  1971. err = register_netdevice_notifier(&afiucv_netdev_notifier);
  1972. if (err)
  1973. goto out_notifier;
  1974. dev_add_pack(&iucv_packet_type);
  1975. return 0;
  1976. out_notifier:
  1977. if (pr_iucv)
  1978. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  1979. out_sock:
  1980. sock_unregister(PF_IUCV);
  1981. out_proto:
  1982. proto_unregister(&iucv_proto);
  1983. out:
  1984. return err;
  1985. }
  1986. static void __exit afiucv_exit(void)
  1987. {
  1988. if (pr_iucv)
  1989. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  1990. unregister_netdevice_notifier(&afiucv_netdev_notifier);
  1991. dev_remove_pack(&iucv_packet_type);
  1992. sock_unregister(PF_IUCV);
  1993. proto_unregister(&iucv_proto);
  1994. }
  1995. module_init(afiucv_init);
  1996. module_exit(afiucv_exit);
  1997. MODULE_AUTHOR("Jennifer Hunt <[email protected]>");
  1998. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  1999. MODULE_VERSION(VERSION);
  2000. MODULE_LICENSE("GPL");
  2001. MODULE_ALIAS_NETPROTO(PF_IUCV);