ipmr_base.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. /* Linux multicast routing support
  2. * Common logic shared by IPv4 [ipmr] and IPv6 [ip6mr] implementation
  3. */
  4. #include <linux/rhashtable.h>
  5. #include <linux/mroute_base.h>
  6. /* Sets everything common except 'dev', since that is done under locking */
  7. void vif_device_init(struct vif_device *v,
  8. struct net_device *dev,
  9. unsigned long rate_limit,
  10. unsigned char threshold,
  11. unsigned short flags,
  12. unsigned short get_iflink_mask)
  13. {
  14. RCU_INIT_POINTER(v->dev, NULL);
  15. v->bytes_in = 0;
  16. v->bytes_out = 0;
  17. v->pkt_in = 0;
  18. v->pkt_out = 0;
  19. v->rate_limit = rate_limit;
  20. v->flags = flags;
  21. v->threshold = threshold;
  22. if (v->flags & get_iflink_mask)
  23. v->link = dev_get_iflink(dev);
  24. else
  25. v->link = dev->ifindex;
  26. }
  27. EXPORT_SYMBOL(vif_device_init);
  28. struct mr_table *
  29. mr_table_alloc(struct net *net, u32 id,
  30. struct mr_table_ops *ops,
  31. void (*expire_func)(struct timer_list *t),
  32. void (*table_set)(struct mr_table *mrt,
  33. struct net *net))
  34. {
  35. struct mr_table *mrt;
  36. int err;
  37. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  38. if (!mrt)
  39. return ERR_PTR(-ENOMEM);
  40. mrt->id = id;
  41. write_pnet(&mrt->net, net);
  42. mrt->ops = *ops;
  43. err = rhltable_init(&mrt->mfc_hash, mrt->ops.rht_params);
  44. if (err) {
  45. kfree(mrt);
  46. return ERR_PTR(err);
  47. }
  48. INIT_LIST_HEAD(&mrt->mfc_cache_list);
  49. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  50. timer_setup(&mrt->ipmr_expire_timer, expire_func, 0);
  51. mrt->mroute_reg_vif_num = -1;
  52. table_set(mrt, net);
  53. return mrt;
  54. }
  55. EXPORT_SYMBOL(mr_table_alloc);
  56. void *mr_mfc_find_parent(struct mr_table *mrt, void *hasharg, int parent)
  57. {
  58. struct rhlist_head *tmp, *list;
  59. struct mr_mfc *c;
  60. list = rhltable_lookup(&mrt->mfc_hash, hasharg, *mrt->ops.rht_params);
  61. rhl_for_each_entry_rcu(c, tmp, list, mnode)
  62. if (parent == -1 || parent == c->mfc_parent)
  63. return c;
  64. return NULL;
  65. }
  66. EXPORT_SYMBOL(mr_mfc_find_parent);
  67. void *mr_mfc_find_any_parent(struct mr_table *mrt, int vifi)
  68. {
  69. struct rhlist_head *tmp, *list;
  70. struct mr_mfc *c;
  71. list = rhltable_lookup(&mrt->mfc_hash, mrt->ops.cmparg_any,
  72. *mrt->ops.rht_params);
  73. rhl_for_each_entry_rcu(c, tmp, list, mnode)
  74. if (c->mfc_un.res.ttls[vifi] < 255)
  75. return c;
  76. return NULL;
  77. }
  78. EXPORT_SYMBOL(mr_mfc_find_any_parent);
  79. void *mr_mfc_find_any(struct mr_table *mrt, int vifi, void *hasharg)
  80. {
  81. struct rhlist_head *tmp, *list;
  82. struct mr_mfc *c, *proxy;
  83. list = rhltable_lookup(&mrt->mfc_hash, hasharg, *mrt->ops.rht_params);
  84. rhl_for_each_entry_rcu(c, tmp, list, mnode) {
  85. if (c->mfc_un.res.ttls[vifi] < 255)
  86. return c;
  87. /* It's ok if the vifi is part of the static tree */
  88. proxy = mr_mfc_find_any_parent(mrt, c->mfc_parent);
  89. if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
  90. return c;
  91. }
  92. return mr_mfc_find_any_parent(mrt, vifi);
  93. }
  94. EXPORT_SYMBOL(mr_mfc_find_any);
  95. #ifdef CONFIG_PROC_FS
  96. void *mr_vif_seq_idx(struct net *net, struct mr_vif_iter *iter, loff_t pos)
  97. {
  98. struct mr_table *mrt = iter->mrt;
  99. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  100. if (!VIF_EXISTS(mrt, iter->ct))
  101. continue;
  102. if (pos-- == 0)
  103. return &mrt->vif_table[iter->ct];
  104. }
  105. return NULL;
  106. }
  107. EXPORT_SYMBOL(mr_vif_seq_idx);
  108. void *mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  109. {
  110. struct mr_vif_iter *iter = seq->private;
  111. struct net *net = seq_file_net(seq);
  112. struct mr_table *mrt = iter->mrt;
  113. ++*pos;
  114. if (v == SEQ_START_TOKEN)
  115. return mr_vif_seq_idx(net, iter, 0);
  116. while (++iter->ct < mrt->maxvif) {
  117. if (!VIF_EXISTS(mrt, iter->ct))
  118. continue;
  119. return &mrt->vif_table[iter->ct];
  120. }
  121. return NULL;
  122. }
  123. EXPORT_SYMBOL(mr_vif_seq_next);
  124. void *mr_mfc_seq_idx(struct net *net,
  125. struct mr_mfc_iter *it, loff_t pos)
  126. {
  127. struct mr_table *mrt = it->mrt;
  128. struct mr_mfc *mfc;
  129. rcu_read_lock();
  130. it->cache = &mrt->mfc_cache_list;
  131. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
  132. if (pos-- == 0)
  133. return mfc;
  134. rcu_read_unlock();
  135. spin_lock_bh(it->lock);
  136. it->cache = &mrt->mfc_unres_queue;
  137. list_for_each_entry(mfc, it->cache, list)
  138. if (pos-- == 0)
  139. return mfc;
  140. spin_unlock_bh(it->lock);
  141. it->cache = NULL;
  142. return NULL;
  143. }
  144. EXPORT_SYMBOL(mr_mfc_seq_idx);
  145. void *mr_mfc_seq_next(struct seq_file *seq, void *v,
  146. loff_t *pos)
  147. {
  148. struct mr_mfc_iter *it = seq->private;
  149. struct net *net = seq_file_net(seq);
  150. struct mr_table *mrt = it->mrt;
  151. struct mr_mfc *c = v;
  152. ++*pos;
  153. if (v == SEQ_START_TOKEN)
  154. return mr_mfc_seq_idx(net, seq->private, 0);
  155. if (c->list.next != it->cache)
  156. return list_entry(c->list.next, struct mr_mfc, list);
  157. if (it->cache == &mrt->mfc_unres_queue)
  158. goto end_of_list;
  159. /* exhausted cache_array, show unresolved */
  160. rcu_read_unlock();
  161. it->cache = &mrt->mfc_unres_queue;
  162. spin_lock_bh(it->lock);
  163. if (!list_empty(it->cache))
  164. return list_first_entry(it->cache, struct mr_mfc, list);
  165. end_of_list:
  166. spin_unlock_bh(it->lock);
  167. it->cache = NULL;
  168. return NULL;
  169. }
  170. EXPORT_SYMBOL(mr_mfc_seq_next);
  171. #endif
  172. int mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  173. struct mr_mfc *c, struct rtmsg *rtm)
  174. {
  175. struct net_device *vif_dev;
  176. struct rta_mfc_stats mfcs;
  177. struct nlattr *mp_attr;
  178. struct rtnexthop *nhp;
  179. unsigned long lastuse;
  180. int ct;
  181. /* If cache is unresolved, don't try to parse IIF and OIF */
  182. if (c->mfc_parent >= MAXVIFS) {
  183. rtm->rtm_flags |= RTNH_F_UNRESOLVED;
  184. return -ENOENT;
  185. }
  186. rcu_read_lock();
  187. vif_dev = rcu_dereference(mrt->vif_table[c->mfc_parent].dev);
  188. if (vif_dev && nla_put_u32(skb, RTA_IIF, vif_dev->ifindex) < 0) {
  189. rcu_read_unlock();
  190. return -EMSGSIZE;
  191. }
  192. rcu_read_unlock();
  193. if (c->mfc_flags & MFC_OFFLOAD)
  194. rtm->rtm_flags |= RTNH_F_OFFLOAD;
  195. mp_attr = nla_nest_start_noflag(skb, RTA_MULTIPATH);
  196. if (!mp_attr)
  197. return -EMSGSIZE;
  198. rcu_read_lock();
  199. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  200. struct vif_device *vif = &mrt->vif_table[ct];
  201. vif_dev = rcu_dereference(vif->dev);
  202. if (vif_dev && c->mfc_un.res.ttls[ct] < 255) {
  203. nhp = nla_reserve_nohdr(skb, sizeof(*nhp));
  204. if (!nhp) {
  205. rcu_read_unlock();
  206. nla_nest_cancel(skb, mp_attr);
  207. return -EMSGSIZE;
  208. }
  209. nhp->rtnh_flags = 0;
  210. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  211. nhp->rtnh_ifindex = vif_dev->ifindex;
  212. nhp->rtnh_len = sizeof(*nhp);
  213. }
  214. }
  215. rcu_read_unlock();
  216. nla_nest_end(skb, mp_attr);
  217. lastuse = READ_ONCE(c->mfc_un.res.lastuse);
  218. lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
  219. mfcs.mfcs_packets = c->mfc_un.res.pkt;
  220. mfcs.mfcs_bytes = c->mfc_un.res.bytes;
  221. mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
  222. if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
  223. nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
  224. RTA_PAD))
  225. return -EMSGSIZE;
  226. rtm->rtm_type = RTN_MULTICAST;
  227. return 1;
  228. }
  229. EXPORT_SYMBOL(mr_fill_mroute);
  230. static bool mr_mfc_uses_dev(const struct mr_table *mrt,
  231. const struct mr_mfc *c,
  232. const struct net_device *dev)
  233. {
  234. int ct;
  235. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  236. const struct net_device *vif_dev;
  237. const struct vif_device *vif;
  238. vif = &mrt->vif_table[ct];
  239. vif_dev = rcu_access_pointer(vif->dev);
  240. if (vif_dev && c->mfc_un.res.ttls[ct] < 255 &&
  241. vif_dev == dev)
  242. return true;
  243. }
  244. return false;
  245. }
  246. int mr_table_dump(struct mr_table *mrt, struct sk_buff *skb,
  247. struct netlink_callback *cb,
  248. int (*fill)(struct mr_table *mrt, struct sk_buff *skb,
  249. u32 portid, u32 seq, struct mr_mfc *c,
  250. int cmd, int flags),
  251. spinlock_t *lock, struct fib_dump_filter *filter)
  252. {
  253. unsigned int e = 0, s_e = cb->args[1];
  254. unsigned int flags = NLM_F_MULTI;
  255. struct mr_mfc *mfc;
  256. int err;
  257. if (filter->filter_set)
  258. flags |= NLM_F_DUMP_FILTERED;
  259. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
  260. if (e < s_e)
  261. goto next_entry;
  262. if (filter->dev &&
  263. !mr_mfc_uses_dev(mrt, mfc, filter->dev))
  264. goto next_entry;
  265. err = fill(mrt, skb, NETLINK_CB(cb->skb).portid,
  266. cb->nlh->nlmsg_seq, mfc, RTM_NEWROUTE, flags);
  267. if (err < 0)
  268. goto out;
  269. next_entry:
  270. e++;
  271. }
  272. spin_lock_bh(lock);
  273. list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
  274. if (e < s_e)
  275. goto next_entry2;
  276. if (filter->dev &&
  277. !mr_mfc_uses_dev(mrt, mfc, filter->dev))
  278. goto next_entry2;
  279. err = fill(mrt, skb, NETLINK_CB(cb->skb).portid,
  280. cb->nlh->nlmsg_seq, mfc, RTM_NEWROUTE, flags);
  281. if (err < 0) {
  282. spin_unlock_bh(lock);
  283. goto out;
  284. }
  285. next_entry2:
  286. e++;
  287. }
  288. spin_unlock_bh(lock);
  289. err = 0;
  290. out:
  291. cb->args[1] = e;
  292. return err;
  293. }
  294. EXPORT_SYMBOL(mr_table_dump);
  295. int mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb,
  296. struct mr_table *(*iter)(struct net *net,
  297. struct mr_table *mrt),
  298. int (*fill)(struct mr_table *mrt,
  299. struct sk_buff *skb,
  300. u32 portid, u32 seq, struct mr_mfc *c,
  301. int cmd, int flags),
  302. spinlock_t *lock, struct fib_dump_filter *filter)
  303. {
  304. unsigned int t = 0, s_t = cb->args[0];
  305. struct net *net = sock_net(skb->sk);
  306. struct mr_table *mrt;
  307. int err;
  308. /* multicast does not track protocol or have route type other
  309. * than RTN_MULTICAST
  310. */
  311. if (filter->filter_set) {
  312. if (filter->protocol || filter->flags ||
  313. (filter->rt_type && filter->rt_type != RTN_MULTICAST))
  314. return skb->len;
  315. }
  316. rcu_read_lock();
  317. for (mrt = iter(net, NULL); mrt; mrt = iter(net, mrt)) {
  318. if (t < s_t)
  319. goto next_table;
  320. err = mr_table_dump(mrt, skb, cb, fill, lock, filter);
  321. if (err < 0)
  322. break;
  323. cb->args[1] = 0;
  324. next_table:
  325. t++;
  326. }
  327. rcu_read_unlock();
  328. cb->args[0] = t;
  329. return skb->len;
  330. }
  331. EXPORT_SYMBOL(mr_rtm_dumproute);
  332. int mr_dump(struct net *net, struct notifier_block *nb, unsigned short family,
  333. int (*rules_dump)(struct net *net,
  334. struct notifier_block *nb,
  335. struct netlink_ext_ack *extack),
  336. struct mr_table *(*mr_iter)(struct net *net,
  337. struct mr_table *mrt),
  338. struct netlink_ext_ack *extack)
  339. {
  340. struct mr_table *mrt;
  341. int err;
  342. err = rules_dump(net, nb, extack);
  343. if (err)
  344. return err;
  345. for (mrt = mr_iter(net, NULL); mrt; mrt = mr_iter(net, mrt)) {
  346. struct vif_device *v = &mrt->vif_table[0];
  347. struct net_device *vif_dev;
  348. struct mr_mfc *mfc;
  349. int vifi;
  350. /* Notifiy on table VIF entries */
  351. rcu_read_lock();
  352. for (vifi = 0; vifi < mrt->maxvif; vifi++, v++) {
  353. vif_dev = rcu_dereference(v->dev);
  354. if (!vif_dev)
  355. continue;
  356. err = mr_call_vif_notifier(nb, family,
  357. FIB_EVENT_VIF_ADD, v,
  358. vif_dev, vifi,
  359. mrt->id, extack);
  360. if (err)
  361. break;
  362. }
  363. rcu_read_unlock();
  364. if (err)
  365. return err;
  366. /* Notify on table MFC entries */
  367. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
  368. err = mr_call_mfc_notifier(nb, family,
  369. FIB_EVENT_ENTRY_ADD,
  370. mfc, mrt->id, extack);
  371. if (err)
  372. return err;
  373. }
  374. }
  375. return 0;
  376. }
  377. EXPORT_SYMBOL(mr_dump);