skmsg.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
  3. #include <linux/skmsg.h>
  4. #include <linux/skbuff.h>
  5. #include <linux/scatterlist.h>
  6. #include <net/sock.h>
  7. #include <net/tcp.h>
  8. #include <net/tls.h>
  9. static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
  10. {
  11. if (msg->sg.end > msg->sg.start &&
  12. elem_first_coalesce < msg->sg.end)
  13. return true;
  14. if (msg->sg.end < msg->sg.start &&
  15. (elem_first_coalesce > msg->sg.start ||
  16. elem_first_coalesce < msg->sg.end))
  17. return true;
  18. return false;
  19. }
  20. int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
  21. int elem_first_coalesce)
  22. {
  23. struct page_frag *pfrag = sk_page_frag(sk);
  24. u32 osize = msg->sg.size;
  25. int ret = 0;
  26. len -= msg->sg.size;
  27. while (len > 0) {
  28. struct scatterlist *sge;
  29. u32 orig_offset;
  30. int use, i;
  31. if (!sk_page_frag_refill(sk, pfrag)) {
  32. ret = -ENOMEM;
  33. goto msg_trim;
  34. }
  35. orig_offset = pfrag->offset;
  36. use = min_t(int, len, pfrag->size - orig_offset);
  37. if (!sk_wmem_schedule(sk, use)) {
  38. ret = -ENOMEM;
  39. goto msg_trim;
  40. }
  41. i = msg->sg.end;
  42. sk_msg_iter_var_prev(i);
  43. sge = &msg->sg.data[i];
  44. if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
  45. sg_page(sge) == pfrag->page &&
  46. sge->offset + sge->length == orig_offset) {
  47. sge->length += use;
  48. } else {
  49. if (sk_msg_full(msg)) {
  50. ret = -ENOSPC;
  51. break;
  52. }
  53. sge = &msg->sg.data[msg->sg.end];
  54. sg_unmark_end(sge);
  55. sg_set_page(sge, pfrag->page, use, orig_offset);
  56. get_page(pfrag->page);
  57. sk_msg_iter_next(msg, end);
  58. }
  59. sk_mem_charge(sk, use);
  60. msg->sg.size += use;
  61. pfrag->offset += use;
  62. len -= use;
  63. }
  64. return ret;
  65. msg_trim:
  66. sk_msg_trim(sk, msg, osize);
  67. return ret;
  68. }
  69. EXPORT_SYMBOL_GPL(sk_msg_alloc);
  70. int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
  71. u32 off, u32 len)
  72. {
  73. int i = src->sg.start;
  74. struct scatterlist *sge = sk_msg_elem(src, i);
  75. struct scatterlist *sgd = NULL;
  76. u32 sge_len, sge_off;
  77. while (off) {
  78. if (sge->length > off)
  79. break;
  80. off -= sge->length;
  81. sk_msg_iter_var_next(i);
  82. if (i == src->sg.end && off)
  83. return -ENOSPC;
  84. sge = sk_msg_elem(src, i);
  85. }
  86. while (len) {
  87. sge_len = sge->length - off;
  88. if (sge_len > len)
  89. sge_len = len;
  90. if (dst->sg.end)
  91. sgd = sk_msg_elem(dst, dst->sg.end - 1);
  92. if (sgd &&
  93. (sg_page(sge) == sg_page(sgd)) &&
  94. (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
  95. sgd->length += sge_len;
  96. dst->sg.size += sge_len;
  97. } else if (!sk_msg_full(dst)) {
  98. sge_off = sge->offset + off;
  99. sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
  100. } else {
  101. return -ENOSPC;
  102. }
  103. off = 0;
  104. len -= sge_len;
  105. sk_mem_charge(sk, sge_len);
  106. sk_msg_iter_var_next(i);
  107. if (i == src->sg.end && len)
  108. return -ENOSPC;
  109. sge = sk_msg_elem(src, i);
  110. }
  111. return 0;
  112. }
  113. EXPORT_SYMBOL_GPL(sk_msg_clone);
  114. void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
  115. {
  116. int i = msg->sg.start;
  117. do {
  118. struct scatterlist *sge = sk_msg_elem(msg, i);
  119. if (bytes < sge->length) {
  120. sge->length -= bytes;
  121. sge->offset += bytes;
  122. sk_mem_uncharge(sk, bytes);
  123. break;
  124. }
  125. sk_mem_uncharge(sk, sge->length);
  126. bytes -= sge->length;
  127. sge->length = 0;
  128. sge->offset = 0;
  129. sk_msg_iter_var_next(i);
  130. } while (bytes && i != msg->sg.end);
  131. msg->sg.start = i;
  132. }
  133. EXPORT_SYMBOL_GPL(sk_msg_return_zero);
  134. void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
  135. {
  136. int i = msg->sg.start;
  137. do {
  138. struct scatterlist *sge = &msg->sg.data[i];
  139. int uncharge = (bytes < sge->length) ? bytes : sge->length;
  140. sk_mem_uncharge(sk, uncharge);
  141. bytes -= uncharge;
  142. sk_msg_iter_var_next(i);
  143. } while (i != msg->sg.end);
  144. }
  145. EXPORT_SYMBOL_GPL(sk_msg_return);
  146. static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
  147. bool charge)
  148. {
  149. struct scatterlist *sge = sk_msg_elem(msg, i);
  150. u32 len = sge->length;
  151. /* When the skb owns the memory we free it from consume_skb path. */
  152. if (!msg->skb) {
  153. if (charge)
  154. sk_mem_uncharge(sk, len);
  155. put_page(sg_page(sge));
  156. }
  157. memset(sge, 0, sizeof(*sge));
  158. return len;
  159. }
  160. static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
  161. bool charge)
  162. {
  163. struct scatterlist *sge = sk_msg_elem(msg, i);
  164. int freed = 0;
  165. while (msg->sg.size) {
  166. msg->sg.size -= sge->length;
  167. freed += sk_msg_free_elem(sk, msg, i, charge);
  168. sk_msg_iter_var_next(i);
  169. sk_msg_check_to_free(msg, i, msg->sg.size);
  170. sge = sk_msg_elem(msg, i);
  171. }
  172. consume_skb(msg->skb);
  173. sk_msg_init(msg);
  174. return freed;
  175. }
  176. int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
  177. {
  178. return __sk_msg_free(sk, msg, msg->sg.start, false);
  179. }
  180. EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
  181. int sk_msg_free(struct sock *sk, struct sk_msg *msg)
  182. {
  183. return __sk_msg_free(sk, msg, msg->sg.start, true);
  184. }
  185. EXPORT_SYMBOL_GPL(sk_msg_free);
  186. static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
  187. u32 bytes, bool charge)
  188. {
  189. struct scatterlist *sge;
  190. u32 i = msg->sg.start;
  191. while (bytes) {
  192. sge = sk_msg_elem(msg, i);
  193. if (!sge->length)
  194. break;
  195. if (bytes < sge->length) {
  196. if (charge)
  197. sk_mem_uncharge(sk, bytes);
  198. sge->length -= bytes;
  199. sge->offset += bytes;
  200. msg->sg.size -= bytes;
  201. break;
  202. }
  203. msg->sg.size -= sge->length;
  204. bytes -= sge->length;
  205. sk_msg_free_elem(sk, msg, i, charge);
  206. sk_msg_iter_var_next(i);
  207. sk_msg_check_to_free(msg, i, bytes);
  208. }
  209. msg->sg.start = i;
  210. }
  211. void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
  212. {
  213. __sk_msg_free_partial(sk, msg, bytes, true);
  214. }
  215. EXPORT_SYMBOL_GPL(sk_msg_free_partial);
  216. void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
  217. u32 bytes)
  218. {
  219. __sk_msg_free_partial(sk, msg, bytes, false);
  220. }
  221. void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
  222. {
  223. int trim = msg->sg.size - len;
  224. u32 i = msg->sg.end;
  225. if (trim <= 0) {
  226. WARN_ON(trim < 0);
  227. return;
  228. }
  229. sk_msg_iter_var_prev(i);
  230. msg->sg.size = len;
  231. while (msg->sg.data[i].length &&
  232. trim >= msg->sg.data[i].length) {
  233. trim -= msg->sg.data[i].length;
  234. sk_msg_free_elem(sk, msg, i, true);
  235. sk_msg_iter_var_prev(i);
  236. if (!trim)
  237. goto out;
  238. }
  239. msg->sg.data[i].length -= trim;
  240. sk_mem_uncharge(sk, trim);
  241. /* Adjust copybreak if it falls into the trimmed part of last buf */
  242. if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
  243. msg->sg.copybreak = msg->sg.data[i].length;
  244. out:
  245. sk_msg_iter_var_next(i);
  246. msg->sg.end = i;
  247. /* If we trim data a full sg elem before curr pointer update
  248. * copybreak and current so that any future copy operations
  249. * start at new copy location.
  250. * However trimed data that has not yet been used in a copy op
  251. * does not require an update.
  252. */
  253. if (!msg->sg.size) {
  254. msg->sg.curr = msg->sg.start;
  255. msg->sg.copybreak = 0;
  256. } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
  257. sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
  258. sk_msg_iter_var_prev(i);
  259. msg->sg.curr = i;
  260. msg->sg.copybreak = msg->sg.data[i].length;
  261. }
  262. }
  263. EXPORT_SYMBOL_GPL(sk_msg_trim);
  264. int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
  265. struct sk_msg *msg, u32 bytes)
  266. {
  267. int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
  268. const int to_max_pages = MAX_MSG_FRAGS;
  269. struct page *pages[MAX_MSG_FRAGS];
  270. ssize_t orig, copied, use, offset;
  271. orig = msg->sg.size;
  272. while (bytes > 0) {
  273. i = 0;
  274. maxpages = to_max_pages - num_elems;
  275. if (maxpages == 0) {
  276. ret = -EFAULT;
  277. goto out;
  278. }
  279. copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
  280. &offset);
  281. if (copied <= 0) {
  282. ret = -EFAULT;
  283. goto out;
  284. }
  285. bytes -= copied;
  286. msg->sg.size += copied;
  287. while (copied) {
  288. use = min_t(int, copied, PAGE_SIZE - offset);
  289. sg_set_page(&msg->sg.data[msg->sg.end],
  290. pages[i], use, offset);
  291. sg_unmark_end(&msg->sg.data[msg->sg.end]);
  292. sk_mem_charge(sk, use);
  293. offset = 0;
  294. copied -= use;
  295. sk_msg_iter_next(msg, end);
  296. num_elems++;
  297. i++;
  298. }
  299. /* When zerocopy is mixed with sk_msg_*copy* operations we
  300. * may have a copybreak set in this case clear and prefer
  301. * zerocopy remainder when possible.
  302. */
  303. msg->sg.copybreak = 0;
  304. msg->sg.curr = msg->sg.end;
  305. }
  306. out:
  307. /* Revert iov_iter updates, msg will need to use 'trim' later if it
  308. * also needs to be cleared.
  309. */
  310. if (ret)
  311. iov_iter_revert(from, msg->sg.size - orig);
  312. return ret;
  313. }
  314. EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
  315. int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
  316. struct sk_msg *msg, u32 bytes)
  317. {
  318. int ret = -ENOSPC, i = msg->sg.curr;
  319. struct scatterlist *sge;
  320. u32 copy, buf_size;
  321. void *to;
  322. do {
  323. sge = sk_msg_elem(msg, i);
  324. /* This is possible if a trim operation shrunk the buffer */
  325. if (msg->sg.copybreak >= sge->length) {
  326. msg->sg.copybreak = 0;
  327. sk_msg_iter_var_next(i);
  328. if (i == msg->sg.end)
  329. break;
  330. sge = sk_msg_elem(msg, i);
  331. }
  332. buf_size = sge->length - msg->sg.copybreak;
  333. copy = (buf_size > bytes) ? bytes : buf_size;
  334. to = sg_virt(sge) + msg->sg.copybreak;
  335. msg->sg.copybreak += copy;
  336. if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
  337. ret = copy_from_iter_nocache(to, copy, from);
  338. else
  339. ret = copy_from_iter(to, copy, from);
  340. if (ret != copy) {
  341. ret = -EFAULT;
  342. goto out;
  343. }
  344. bytes -= copy;
  345. if (!bytes)
  346. break;
  347. msg->sg.copybreak = 0;
  348. sk_msg_iter_var_next(i);
  349. } while (i != msg->sg.end);
  350. out:
  351. msg->sg.curr = i;
  352. return ret;
  353. }
  354. EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
  355. /* Receive sk_msg from psock->ingress_msg to @msg. */
  356. int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
  357. int len, int flags)
  358. {
  359. struct iov_iter *iter = &msg->msg_iter;
  360. int peek = flags & MSG_PEEK;
  361. struct sk_msg *msg_rx;
  362. int i, copied = 0;
  363. msg_rx = sk_psock_peek_msg(psock);
  364. while (copied != len) {
  365. struct scatterlist *sge;
  366. if (unlikely(!msg_rx))
  367. break;
  368. i = msg_rx->sg.start;
  369. do {
  370. struct page *page;
  371. int copy;
  372. sge = sk_msg_elem(msg_rx, i);
  373. copy = sge->length;
  374. page = sg_page(sge);
  375. if (copied + copy > len)
  376. copy = len - copied;
  377. copy = copy_page_to_iter(page, sge->offset, copy, iter);
  378. if (!copy) {
  379. copied = copied ? copied : -EFAULT;
  380. goto out;
  381. }
  382. copied += copy;
  383. if (likely(!peek)) {
  384. sge->offset += copy;
  385. sge->length -= copy;
  386. if (!msg_rx->skb)
  387. sk_mem_uncharge(sk, copy);
  388. msg_rx->sg.size -= copy;
  389. if (!sge->length) {
  390. sk_msg_iter_var_next(i);
  391. if (!msg_rx->skb)
  392. put_page(page);
  393. }
  394. } else {
  395. /* Lets not optimize peek case if copy_page_to_iter
  396. * didn't copy the entire length lets just break.
  397. */
  398. if (copy != sge->length)
  399. goto out;
  400. sk_msg_iter_var_next(i);
  401. }
  402. if (copied == len)
  403. break;
  404. } while ((i != msg_rx->sg.end) && !sg_is_last(sge));
  405. if (unlikely(peek)) {
  406. msg_rx = sk_psock_next_msg(psock, msg_rx);
  407. if (!msg_rx)
  408. break;
  409. continue;
  410. }
  411. msg_rx->sg.start = i;
  412. if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
  413. msg_rx = sk_psock_dequeue_msg(psock);
  414. kfree_sk_msg(msg_rx);
  415. }
  416. msg_rx = sk_psock_peek_msg(psock);
  417. }
  418. out:
  419. return copied;
  420. }
  421. EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
  422. bool sk_msg_is_readable(struct sock *sk)
  423. {
  424. struct sk_psock *psock;
  425. bool empty = true;
  426. rcu_read_lock();
  427. psock = sk_psock(sk);
  428. if (likely(psock))
  429. empty = list_empty(&psock->ingress_msg);
  430. rcu_read_unlock();
  431. return !empty;
  432. }
  433. EXPORT_SYMBOL_GPL(sk_msg_is_readable);
  434. static struct sk_msg *alloc_sk_msg(gfp_t gfp)
  435. {
  436. struct sk_msg *msg;
  437. msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN);
  438. if (unlikely(!msg))
  439. return NULL;
  440. sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
  441. return msg;
  442. }
  443. static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
  444. struct sk_buff *skb)
  445. {
  446. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  447. return NULL;
  448. if (!sk_rmem_schedule(sk, skb, skb->truesize))
  449. return NULL;
  450. return alloc_sk_msg(GFP_KERNEL);
  451. }
  452. static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
  453. u32 off, u32 len,
  454. struct sk_psock *psock,
  455. struct sock *sk,
  456. struct sk_msg *msg)
  457. {
  458. int num_sge, copied;
  459. num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
  460. if (num_sge < 0) {
  461. /* skb linearize may fail with ENOMEM, but lets simply try again
  462. * later if this happens. Under memory pressure we don't want to
  463. * drop the skb. We need to linearize the skb so that the mapping
  464. * in skb_to_sgvec can not error.
  465. */
  466. if (skb_linearize(skb))
  467. return -EAGAIN;
  468. num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
  469. if (unlikely(num_sge < 0))
  470. return num_sge;
  471. }
  472. copied = len;
  473. msg->sg.start = 0;
  474. msg->sg.size = copied;
  475. msg->sg.end = num_sge;
  476. msg->skb = skb;
  477. sk_psock_queue_msg(psock, msg);
  478. sk_psock_data_ready(sk, psock);
  479. return copied;
  480. }
  481. static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
  482. u32 off, u32 len);
  483. static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
  484. u32 off, u32 len)
  485. {
  486. struct sock *sk = psock->sk;
  487. struct sk_msg *msg;
  488. int err;
  489. /* If we are receiving on the same sock skb->sk is already assigned,
  490. * skip memory accounting and owner transition seeing it already set
  491. * correctly.
  492. */
  493. if (unlikely(skb->sk == sk))
  494. return sk_psock_skb_ingress_self(psock, skb, off, len);
  495. msg = sk_psock_create_ingress_msg(sk, skb);
  496. if (!msg)
  497. return -EAGAIN;
  498. /* This will transition ownership of the data from the socket where
  499. * the BPF program was run initiating the redirect to the socket
  500. * we will eventually receive this data on. The data will be released
  501. * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
  502. * into user buffers.
  503. */
  504. skb_set_owner_r(skb, sk);
  505. err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
  506. if (err < 0)
  507. kfree(msg);
  508. return err;
  509. }
  510. /* Puts an skb on the ingress queue of the socket already assigned to the
  511. * skb. In this case we do not need to check memory limits or skb_set_owner_r
  512. * because the skb is already accounted for here.
  513. */
  514. static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
  515. u32 off, u32 len)
  516. {
  517. struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC);
  518. struct sock *sk = psock->sk;
  519. int err;
  520. if (unlikely(!msg))
  521. return -EAGAIN;
  522. skb_set_owner_r(skb, sk);
  523. err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
  524. if (err < 0)
  525. kfree(msg);
  526. return err;
  527. }
  528. static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
  529. u32 off, u32 len, bool ingress)
  530. {
  531. int err = 0;
  532. if (!ingress) {
  533. if (!sock_writeable(psock->sk))
  534. return -EAGAIN;
  535. return skb_send_sock(psock->sk, skb, off, len);
  536. }
  537. skb_get(skb);
  538. err = sk_psock_skb_ingress(psock, skb, off, len);
  539. if (err < 0)
  540. kfree_skb(skb);
  541. return err;
  542. }
  543. static void sk_psock_skb_state(struct sk_psock *psock,
  544. struct sk_psock_work_state *state,
  545. int len, int off)
  546. {
  547. spin_lock_bh(&psock->ingress_lock);
  548. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
  549. state->len = len;
  550. state->off = off;
  551. }
  552. spin_unlock_bh(&psock->ingress_lock);
  553. }
  554. static void sk_psock_backlog(struct work_struct *work)
  555. {
  556. struct delayed_work *dwork = to_delayed_work(work);
  557. struct sk_psock *psock = container_of(dwork, struct sk_psock, work);
  558. struct sk_psock_work_state *state = &psock->work_state;
  559. struct sk_buff *skb = NULL;
  560. u32 len = 0, off = 0;
  561. bool ingress;
  562. int ret;
  563. mutex_lock(&psock->work_mutex);
  564. if (unlikely(state->len)) {
  565. len = state->len;
  566. off = state->off;
  567. }
  568. while ((skb = skb_peek(&psock->ingress_skb))) {
  569. len = skb->len;
  570. off = 0;
  571. if (skb_bpf_strparser(skb)) {
  572. struct strp_msg *stm = strp_msg(skb);
  573. off = stm->offset;
  574. len = stm->full_len;
  575. }
  576. ingress = skb_bpf_ingress(skb);
  577. skb_bpf_redirect_clear(skb);
  578. do {
  579. ret = -EIO;
  580. if (!sock_flag(psock->sk, SOCK_DEAD))
  581. ret = sk_psock_handle_skb(psock, skb, off,
  582. len, ingress);
  583. if (ret <= 0) {
  584. if (ret == -EAGAIN) {
  585. sk_psock_skb_state(psock, state, len, off);
  586. /* Delay slightly to prioritize any
  587. * other work that might be here.
  588. */
  589. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
  590. schedule_delayed_work(&psock->work, 1);
  591. goto end;
  592. }
  593. /* Hard errors break pipe and stop xmit. */
  594. sk_psock_report_error(psock, ret ? -ret : EPIPE);
  595. sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
  596. goto end;
  597. }
  598. off += ret;
  599. len -= ret;
  600. } while (len);
  601. skb = skb_dequeue(&psock->ingress_skb);
  602. kfree_skb(skb);
  603. }
  604. end:
  605. mutex_unlock(&psock->work_mutex);
  606. }
  607. struct sk_psock *sk_psock_init(struct sock *sk, int node)
  608. {
  609. struct sk_psock *psock;
  610. struct proto *prot;
  611. write_lock_bh(&sk->sk_callback_lock);
  612. if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
  613. psock = ERR_PTR(-EINVAL);
  614. goto out;
  615. }
  616. if (sk->sk_user_data) {
  617. psock = ERR_PTR(-EBUSY);
  618. goto out;
  619. }
  620. psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
  621. if (!psock) {
  622. psock = ERR_PTR(-ENOMEM);
  623. goto out;
  624. }
  625. prot = READ_ONCE(sk->sk_prot);
  626. psock->sk = sk;
  627. psock->eval = __SK_NONE;
  628. psock->sk_proto = prot;
  629. psock->saved_unhash = prot->unhash;
  630. psock->saved_destroy = prot->destroy;
  631. psock->saved_close = prot->close;
  632. psock->saved_write_space = sk->sk_write_space;
  633. INIT_LIST_HEAD(&psock->link);
  634. spin_lock_init(&psock->link_lock);
  635. INIT_DELAYED_WORK(&psock->work, sk_psock_backlog);
  636. mutex_init(&psock->work_mutex);
  637. INIT_LIST_HEAD(&psock->ingress_msg);
  638. spin_lock_init(&psock->ingress_lock);
  639. skb_queue_head_init(&psock->ingress_skb);
  640. sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
  641. refcount_set(&psock->refcnt, 1);
  642. __rcu_assign_sk_user_data_with_flags(sk, psock,
  643. SK_USER_DATA_NOCOPY |
  644. SK_USER_DATA_PSOCK);
  645. sock_hold(sk);
  646. out:
  647. write_unlock_bh(&sk->sk_callback_lock);
  648. return psock;
  649. }
  650. EXPORT_SYMBOL_GPL(sk_psock_init);
  651. struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
  652. {
  653. struct sk_psock_link *link;
  654. spin_lock_bh(&psock->link_lock);
  655. link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
  656. list);
  657. if (link)
  658. list_del(&link->list);
  659. spin_unlock_bh(&psock->link_lock);
  660. return link;
  661. }
  662. static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
  663. {
  664. struct sk_msg *msg, *tmp;
  665. list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
  666. list_del(&msg->list);
  667. sk_msg_free(psock->sk, msg);
  668. kfree(msg);
  669. }
  670. }
  671. static void __sk_psock_zap_ingress(struct sk_psock *psock)
  672. {
  673. struct sk_buff *skb;
  674. while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
  675. skb_bpf_redirect_clear(skb);
  676. sock_drop(psock->sk, skb);
  677. }
  678. __sk_psock_purge_ingress_msg(psock);
  679. }
  680. static void sk_psock_link_destroy(struct sk_psock *psock)
  681. {
  682. struct sk_psock_link *link, *tmp;
  683. list_for_each_entry_safe(link, tmp, &psock->link, list) {
  684. list_del(&link->list);
  685. sk_psock_free_link(link);
  686. }
  687. }
  688. void sk_psock_stop(struct sk_psock *psock)
  689. {
  690. spin_lock_bh(&psock->ingress_lock);
  691. sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
  692. sk_psock_cork_free(psock);
  693. spin_unlock_bh(&psock->ingress_lock);
  694. }
  695. static void sk_psock_done_strp(struct sk_psock *psock);
  696. static void sk_psock_destroy(struct work_struct *work)
  697. {
  698. struct sk_psock *psock = container_of(to_rcu_work(work),
  699. struct sk_psock, rwork);
  700. /* No sk_callback_lock since already detached. */
  701. sk_psock_done_strp(psock);
  702. cancel_delayed_work_sync(&psock->work);
  703. __sk_psock_zap_ingress(psock);
  704. mutex_destroy(&psock->work_mutex);
  705. psock_progs_drop(&psock->progs);
  706. sk_psock_link_destroy(psock);
  707. sk_psock_cork_free(psock);
  708. if (psock->sk_redir)
  709. sock_put(psock->sk_redir);
  710. sock_put(psock->sk);
  711. kfree(psock);
  712. }
  713. void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
  714. {
  715. write_lock_bh(&sk->sk_callback_lock);
  716. sk_psock_restore_proto(sk, psock);
  717. rcu_assign_sk_user_data(sk, NULL);
  718. if (psock->progs.stream_parser)
  719. sk_psock_stop_strp(sk, psock);
  720. else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
  721. sk_psock_stop_verdict(sk, psock);
  722. write_unlock_bh(&sk->sk_callback_lock);
  723. sk_psock_stop(psock);
  724. INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
  725. queue_rcu_work(system_wq, &psock->rwork);
  726. }
  727. EXPORT_SYMBOL_GPL(sk_psock_drop);
  728. static int sk_psock_map_verd(int verdict, bool redir)
  729. {
  730. switch (verdict) {
  731. case SK_PASS:
  732. return redir ? __SK_REDIRECT : __SK_PASS;
  733. case SK_DROP:
  734. default:
  735. break;
  736. }
  737. return __SK_DROP;
  738. }
  739. int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
  740. struct sk_msg *msg)
  741. {
  742. struct bpf_prog *prog;
  743. int ret;
  744. rcu_read_lock();
  745. prog = READ_ONCE(psock->progs.msg_parser);
  746. if (unlikely(!prog)) {
  747. ret = __SK_PASS;
  748. goto out;
  749. }
  750. sk_msg_compute_data_pointers(msg);
  751. msg->sk = sk;
  752. ret = bpf_prog_run_pin_on_cpu(prog, msg);
  753. ret = sk_psock_map_verd(ret, msg->sk_redir);
  754. psock->apply_bytes = msg->apply_bytes;
  755. if (ret == __SK_REDIRECT) {
  756. if (psock->sk_redir) {
  757. sock_put(psock->sk_redir);
  758. psock->sk_redir = NULL;
  759. }
  760. if (!msg->sk_redir) {
  761. ret = __SK_DROP;
  762. goto out;
  763. }
  764. psock->redir_ingress = sk_msg_to_ingress(msg);
  765. psock->sk_redir = msg->sk_redir;
  766. sock_hold(psock->sk_redir);
  767. }
  768. out:
  769. rcu_read_unlock();
  770. return ret;
  771. }
  772. EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
  773. static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
  774. {
  775. struct sk_psock *psock_other;
  776. struct sock *sk_other;
  777. sk_other = skb_bpf_redirect_fetch(skb);
  778. /* This error is a buggy BPF program, it returned a redirect
  779. * return code, but then didn't set a redirect interface.
  780. */
  781. if (unlikely(!sk_other)) {
  782. skb_bpf_redirect_clear(skb);
  783. sock_drop(from->sk, skb);
  784. return -EIO;
  785. }
  786. psock_other = sk_psock(sk_other);
  787. /* This error indicates the socket is being torn down or had another
  788. * error that caused the pipe to break. We can't send a packet on
  789. * a socket that is in this state so we drop the skb.
  790. */
  791. if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
  792. skb_bpf_redirect_clear(skb);
  793. sock_drop(from->sk, skb);
  794. return -EIO;
  795. }
  796. spin_lock_bh(&psock_other->ingress_lock);
  797. if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
  798. spin_unlock_bh(&psock_other->ingress_lock);
  799. skb_bpf_redirect_clear(skb);
  800. sock_drop(from->sk, skb);
  801. return -EIO;
  802. }
  803. skb_queue_tail(&psock_other->ingress_skb, skb);
  804. schedule_delayed_work(&psock_other->work, 0);
  805. spin_unlock_bh(&psock_other->ingress_lock);
  806. return 0;
  807. }
  808. static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
  809. struct sk_psock *from, int verdict)
  810. {
  811. switch (verdict) {
  812. case __SK_REDIRECT:
  813. sk_psock_skb_redirect(from, skb);
  814. break;
  815. case __SK_PASS:
  816. case __SK_DROP:
  817. default:
  818. break;
  819. }
  820. }
  821. int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
  822. {
  823. struct bpf_prog *prog;
  824. int ret = __SK_PASS;
  825. rcu_read_lock();
  826. prog = READ_ONCE(psock->progs.stream_verdict);
  827. if (likely(prog)) {
  828. skb->sk = psock->sk;
  829. skb_dst_drop(skb);
  830. skb_bpf_redirect_clear(skb);
  831. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  832. ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
  833. skb->sk = NULL;
  834. }
  835. sk_psock_tls_verdict_apply(skb, psock, ret);
  836. rcu_read_unlock();
  837. return ret;
  838. }
  839. EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
  840. static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
  841. int verdict)
  842. {
  843. struct sock *sk_other;
  844. int err = 0;
  845. u32 len, off;
  846. switch (verdict) {
  847. case __SK_PASS:
  848. err = -EIO;
  849. sk_other = psock->sk;
  850. if (sock_flag(sk_other, SOCK_DEAD) ||
  851. !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
  852. goto out_free;
  853. skb_bpf_set_ingress(skb);
  854. /* If the queue is empty then we can submit directly
  855. * into the msg queue. If its not empty we have to
  856. * queue work otherwise we may get OOO data. Otherwise,
  857. * if sk_psock_skb_ingress errors will be handled by
  858. * retrying later from workqueue.
  859. */
  860. if (skb_queue_empty(&psock->ingress_skb)) {
  861. len = skb->len;
  862. off = 0;
  863. if (skb_bpf_strparser(skb)) {
  864. struct strp_msg *stm = strp_msg(skb);
  865. off = stm->offset;
  866. len = stm->full_len;
  867. }
  868. err = sk_psock_skb_ingress_self(psock, skb, off, len);
  869. }
  870. if (err < 0) {
  871. spin_lock_bh(&psock->ingress_lock);
  872. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
  873. skb_queue_tail(&psock->ingress_skb, skb);
  874. schedule_delayed_work(&psock->work, 0);
  875. err = 0;
  876. }
  877. spin_unlock_bh(&psock->ingress_lock);
  878. if (err < 0)
  879. goto out_free;
  880. }
  881. break;
  882. case __SK_REDIRECT:
  883. tcp_eat_skb(psock->sk, skb);
  884. err = sk_psock_skb_redirect(psock, skb);
  885. break;
  886. case __SK_DROP:
  887. default:
  888. out_free:
  889. skb_bpf_redirect_clear(skb);
  890. tcp_eat_skb(psock->sk, skb);
  891. sock_drop(psock->sk, skb);
  892. }
  893. return err;
  894. }
  895. static void sk_psock_write_space(struct sock *sk)
  896. {
  897. struct sk_psock *psock;
  898. void (*write_space)(struct sock *sk) = NULL;
  899. rcu_read_lock();
  900. psock = sk_psock(sk);
  901. if (likely(psock)) {
  902. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
  903. schedule_delayed_work(&psock->work, 0);
  904. write_space = psock->saved_write_space;
  905. }
  906. rcu_read_unlock();
  907. if (write_space)
  908. write_space(sk);
  909. }
  910. #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
  911. static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
  912. {
  913. struct sk_psock *psock;
  914. struct bpf_prog *prog;
  915. int ret = __SK_DROP;
  916. struct sock *sk;
  917. rcu_read_lock();
  918. sk = strp->sk;
  919. psock = sk_psock(sk);
  920. if (unlikely(!psock)) {
  921. sock_drop(sk, skb);
  922. goto out;
  923. }
  924. prog = READ_ONCE(psock->progs.stream_verdict);
  925. if (likely(prog)) {
  926. skb->sk = sk;
  927. skb_dst_drop(skb);
  928. skb_bpf_redirect_clear(skb);
  929. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  930. skb_bpf_set_strparser(skb);
  931. ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
  932. skb->sk = NULL;
  933. }
  934. sk_psock_verdict_apply(psock, skb, ret);
  935. out:
  936. rcu_read_unlock();
  937. }
  938. static int sk_psock_strp_read_done(struct strparser *strp, int err)
  939. {
  940. return err;
  941. }
  942. static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
  943. {
  944. struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
  945. struct bpf_prog *prog;
  946. int ret = skb->len;
  947. rcu_read_lock();
  948. prog = READ_ONCE(psock->progs.stream_parser);
  949. if (likely(prog)) {
  950. skb->sk = psock->sk;
  951. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  952. skb->sk = NULL;
  953. }
  954. rcu_read_unlock();
  955. return ret;
  956. }
  957. /* Called with socket lock held. */
  958. static void sk_psock_strp_data_ready(struct sock *sk)
  959. {
  960. struct sk_psock *psock;
  961. rcu_read_lock();
  962. psock = sk_psock(sk);
  963. if (likely(psock)) {
  964. if (tls_sw_has_ctx_rx(sk)) {
  965. psock->saved_data_ready(sk);
  966. } else {
  967. write_lock_bh(&sk->sk_callback_lock);
  968. strp_data_ready(&psock->strp);
  969. write_unlock_bh(&sk->sk_callback_lock);
  970. }
  971. }
  972. rcu_read_unlock();
  973. }
  974. int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
  975. {
  976. int ret;
  977. static const struct strp_callbacks cb = {
  978. .rcv_msg = sk_psock_strp_read,
  979. .read_sock_done = sk_psock_strp_read_done,
  980. .parse_msg = sk_psock_strp_parse,
  981. };
  982. ret = strp_init(&psock->strp, sk, &cb);
  983. if (!ret)
  984. sk_psock_set_state(psock, SK_PSOCK_RX_STRP_ENABLED);
  985. return ret;
  986. }
  987. void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
  988. {
  989. if (psock->saved_data_ready)
  990. return;
  991. psock->saved_data_ready = sk->sk_data_ready;
  992. sk->sk_data_ready = sk_psock_strp_data_ready;
  993. sk->sk_write_space = sk_psock_write_space;
  994. }
  995. void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
  996. {
  997. psock_set_prog(&psock->progs.stream_parser, NULL);
  998. if (!psock->saved_data_ready)
  999. return;
  1000. sk->sk_data_ready = psock->saved_data_ready;
  1001. psock->saved_data_ready = NULL;
  1002. strp_stop(&psock->strp);
  1003. }
  1004. static void sk_psock_done_strp(struct sk_psock *psock)
  1005. {
  1006. /* Parser has been stopped */
  1007. if (sk_psock_test_state(psock, SK_PSOCK_RX_STRP_ENABLED))
  1008. strp_done(&psock->strp);
  1009. }
  1010. #else
  1011. static void sk_psock_done_strp(struct sk_psock *psock)
  1012. {
  1013. }
  1014. #endif /* CONFIG_BPF_STREAM_PARSER */
  1015. static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
  1016. {
  1017. struct sk_psock *psock;
  1018. struct bpf_prog *prog;
  1019. int ret = __SK_DROP;
  1020. int len = skb->len;
  1021. rcu_read_lock();
  1022. psock = sk_psock(sk);
  1023. if (unlikely(!psock)) {
  1024. len = 0;
  1025. tcp_eat_skb(sk, skb);
  1026. sock_drop(sk, skb);
  1027. goto out;
  1028. }
  1029. prog = READ_ONCE(psock->progs.stream_verdict);
  1030. if (!prog)
  1031. prog = READ_ONCE(psock->progs.skb_verdict);
  1032. if (likely(prog)) {
  1033. skb_dst_drop(skb);
  1034. skb_bpf_redirect_clear(skb);
  1035. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  1036. ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
  1037. }
  1038. ret = sk_psock_verdict_apply(psock, skb, ret);
  1039. if (ret < 0)
  1040. len = ret;
  1041. out:
  1042. rcu_read_unlock();
  1043. return len;
  1044. }
  1045. static void sk_psock_verdict_data_ready(struct sock *sk)
  1046. {
  1047. struct socket *sock = sk->sk_socket;
  1048. int copied;
  1049. if (unlikely(!sock || !sock->ops || !sock->ops->read_skb))
  1050. return;
  1051. copied = sock->ops->read_skb(sk, sk_psock_verdict_recv);
  1052. if (copied >= 0) {
  1053. struct sk_psock *psock;
  1054. rcu_read_lock();
  1055. psock = sk_psock(sk);
  1056. if (psock)
  1057. psock->saved_data_ready(sk);
  1058. rcu_read_unlock();
  1059. }
  1060. }
  1061. void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
  1062. {
  1063. if (psock->saved_data_ready)
  1064. return;
  1065. psock->saved_data_ready = sk->sk_data_ready;
  1066. sk->sk_data_ready = sk_psock_verdict_data_ready;
  1067. sk->sk_write_space = sk_psock_write_space;
  1068. }
  1069. void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
  1070. {
  1071. psock_set_prog(&psock->progs.stream_verdict, NULL);
  1072. psock_set_prog(&psock->progs.skb_verdict, NULL);
  1073. if (!psock->saved_data_ready)
  1074. return;
  1075. sk->sk_data_ready = psock->saved_data_ready;
  1076. psock->saved_data_ready = NULL;
  1077. }