common.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* net/atm/common.c - ATM sockets (common part for PVC and SVC) */
  3. /* Written 1995-2000 by Werner Almesberger, EPFL LRC/ICA */
  4. #define pr_fmt(fmt) KBUILD_MODNAME ":%s: " fmt, __func__
  5. #include <linux/module.h>
  6. #include <linux/kmod.h>
  7. #include <linux/net.h> /* struct socket, struct proto_ops */
  8. #include <linux/atm.h> /* ATM stuff */
  9. #include <linux/atmdev.h>
  10. #include <linux/socket.h> /* SOL_SOCKET */
  11. #include <linux/errno.h> /* error codes */
  12. #include <linux/capability.h>
  13. #include <linux/mm.h>
  14. #include <linux/sched/signal.h>
  15. #include <linux/time64.h> /* 64-bit time for seconds */
  16. #include <linux/skbuff.h>
  17. #include <linux/bitops.h>
  18. #include <linux/init.h>
  19. #include <linux/slab.h>
  20. #include <net/sock.h> /* struct sock */
  21. #include <linux/uaccess.h>
  22. #include <linux/poll.h>
  23. #include <linux/atomic.h>
  24. #include "resources.h" /* atm_find_dev */
  25. #include "common.h" /* prototypes */
  26. #include "protocols.h" /* atm_init_<transport> */
  27. #include "addr.h" /* address registry */
  28. #include "signaling.h" /* for WAITING and sigd_attach */
  29. struct hlist_head vcc_hash[VCC_HTABLE_SIZE];
  30. EXPORT_SYMBOL(vcc_hash);
  31. DEFINE_RWLOCK(vcc_sklist_lock);
  32. EXPORT_SYMBOL(vcc_sklist_lock);
  33. static ATOMIC_NOTIFIER_HEAD(atm_dev_notify_chain);
  34. static void __vcc_insert_socket(struct sock *sk)
  35. {
  36. struct atm_vcc *vcc = atm_sk(sk);
  37. struct hlist_head *head = &vcc_hash[vcc->vci & (VCC_HTABLE_SIZE - 1)];
  38. sk->sk_hash = vcc->vci & (VCC_HTABLE_SIZE - 1);
  39. sk_add_node(sk, head);
  40. }
  41. void vcc_insert_socket(struct sock *sk)
  42. {
  43. write_lock_irq(&vcc_sklist_lock);
  44. __vcc_insert_socket(sk);
  45. write_unlock_irq(&vcc_sklist_lock);
  46. }
  47. EXPORT_SYMBOL(vcc_insert_socket);
  48. static void vcc_remove_socket(struct sock *sk)
  49. {
  50. write_lock_irq(&vcc_sklist_lock);
  51. sk_del_node_init(sk);
  52. write_unlock_irq(&vcc_sklist_lock);
  53. }
  54. static bool vcc_tx_ready(struct atm_vcc *vcc, unsigned int size)
  55. {
  56. struct sock *sk = sk_atm(vcc);
  57. if (sk_wmem_alloc_get(sk) && !atm_may_send(vcc, size)) {
  58. pr_debug("Sorry: wmem_alloc = %d, size = %d, sndbuf = %d\n",
  59. sk_wmem_alloc_get(sk), size, sk->sk_sndbuf);
  60. return false;
  61. }
  62. return true;
  63. }
  64. static void vcc_sock_destruct(struct sock *sk)
  65. {
  66. if (atomic_read(&sk->sk_rmem_alloc))
  67. printk(KERN_DEBUG "%s: rmem leakage (%d bytes) detected.\n",
  68. __func__, atomic_read(&sk->sk_rmem_alloc));
  69. if (refcount_read(&sk->sk_wmem_alloc))
  70. printk(KERN_DEBUG "%s: wmem leakage (%d bytes) detected.\n",
  71. __func__, refcount_read(&sk->sk_wmem_alloc));
  72. }
  73. static void vcc_def_wakeup(struct sock *sk)
  74. {
  75. struct socket_wq *wq;
  76. rcu_read_lock();
  77. wq = rcu_dereference(sk->sk_wq);
  78. if (skwq_has_sleeper(wq))
  79. wake_up(&wq->wait);
  80. rcu_read_unlock();
  81. }
  82. static inline int vcc_writable(struct sock *sk)
  83. {
  84. struct atm_vcc *vcc = atm_sk(sk);
  85. return (vcc->qos.txtp.max_sdu +
  86. refcount_read(&sk->sk_wmem_alloc)) <= sk->sk_sndbuf;
  87. }
  88. static void vcc_write_space(struct sock *sk)
  89. {
  90. struct socket_wq *wq;
  91. rcu_read_lock();
  92. if (vcc_writable(sk)) {
  93. wq = rcu_dereference(sk->sk_wq);
  94. if (skwq_has_sleeper(wq))
  95. wake_up_interruptible(&wq->wait);
  96. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  97. }
  98. rcu_read_unlock();
  99. }
  100. static void vcc_release_cb(struct sock *sk)
  101. {
  102. struct atm_vcc *vcc = atm_sk(sk);
  103. if (vcc->release_cb)
  104. vcc->release_cb(vcc);
  105. }
  106. static struct proto vcc_proto = {
  107. .name = "VCC",
  108. .owner = THIS_MODULE,
  109. .obj_size = sizeof(struct atm_vcc),
  110. .release_cb = vcc_release_cb,
  111. };
  112. int vcc_create(struct net *net, struct socket *sock, int protocol, int family, int kern)
  113. {
  114. struct sock *sk;
  115. struct atm_vcc *vcc;
  116. sock->sk = NULL;
  117. if (sock->type == SOCK_STREAM)
  118. return -EINVAL;
  119. sk = sk_alloc(net, family, GFP_KERNEL, &vcc_proto, kern);
  120. if (!sk)
  121. return -ENOMEM;
  122. sock_init_data(sock, sk);
  123. sk->sk_state_change = vcc_def_wakeup;
  124. sk->sk_write_space = vcc_write_space;
  125. vcc = atm_sk(sk);
  126. vcc->dev = NULL;
  127. memset(&vcc->local, 0, sizeof(struct sockaddr_atmsvc));
  128. memset(&vcc->remote, 0, sizeof(struct sockaddr_atmsvc));
  129. vcc->qos.txtp.max_sdu = 1 << 16; /* for meta VCs */
  130. refcount_set(&sk->sk_wmem_alloc, 1);
  131. atomic_set(&sk->sk_rmem_alloc, 0);
  132. vcc->push = NULL;
  133. vcc->pop = NULL;
  134. vcc->owner = NULL;
  135. vcc->push_oam = NULL;
  136. vcc->release_cb = NULL;
  137. vcc->vpi = vcc->vci = 0; /* no VCI/VPI yet */
  138. vcc->atm_options = vcc->aal_options = 0;
  139. sk->sk_destruct = vcc_sock_destruct;
  140. return 0;
  141. }
  142. static void vcc_destroy_socket(struct sock *sk)
  143. {
  144. struct atm_vcc *vcc = atm_sk(sk);
  145. struct sk_buff *skb;
  146. set_bit(ATM_VF_CLOSE, &vcc->flags);
  147. clear_bit(ATM_VF_READY, &vcc->flags);
  148. if (vcc->dev && vcc->dev->ops->close)
  149. vcc->dev->ops->close(vcc);
  150. if (vcc->push)
  151. vcc->push(vcc, NULL); /* atmarpd has no push */
  152. module_put(vcc->owner);
  153. while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
  154. atm_return(vcc, skb->truesize);
  155. kfree_skb(skb);
  156. }
  157. if (vcc->dev && vcc->dev->ops->owner) {
  158. module_put(vcc->dev->ops->owner);
  159. atm_dev_put(vcc->dev);
  160. }
  161. vcc_remove_socket(sk);
  162. }
  163. int vcc_release(struct socket *sock)
  164. {
  165. struct sock *sk = sock->sk;
  166. if (sk) {
  167. lock_sock(sk);
  168. vcc_destroy_socket(sock->sk);
  169. release_sock(sk);
  170. sock_put(sk);
  171. }
  172. return 0;
  173. }
  174. void vcc_release_async(struct atm_vcc *vcc, int reply)
  175. {
  176. struct sock *sk = sk_atm(vcc);
  177. set_bit(ATM_VF_CLOSE, &vcc->flags);
  178. sk->sk_shutdown |= RCV_SHUTDOWN;
  179. sk->sk_err = -reply;
  180. clear_bit(ATM_VF_WAITING, &vcc->flags);
  181. sk->sk_state_change(sk);
  182. }
  183. EXPORT_SYMBOL(vcc_release_async);
  184. void vcc_process_recv_queue(struct atm_vcc *vcc)
  185. {
  186. struct sk_buff_head queue, *rq;
  187. struct sk_buff *skb, *tmp;
  188. unsigned long flags;
  189. __skb_queue_head_init(&queue);
  190. rq = &sk_atm(vcc)->sk_receive_queue;
  191. spin_lock_irqsave(&rq->lock, flags);
  192. skb_queue_splice_init(rq, &queue);
  193. spin_unlock_irqrestore(&rq->lock, flags);
  194. skb_queue_walk_safe(&queue, skb, tmp) {
  195. __skb_unlink(skb, &queue);
  196. vcc->push(vcc, skb);
  197. }
  198. }
  199. EXPORT_SYMBOL(vcc_process_recv_queue);
  200. void atm_dev_signal_change(struct atm_dev *dev, char signal)
  201. {
  202. pr_debug("%s signal=%d dev=%p number=%d dev->signal=%d\n",
  203. __func__, signal, dev, dev->number, dev->signal);
  204. /* atm driver sending invalid signal */
  205. WARN_ON(signal < ATM_PHY_SIG_LOST || signal > ATM_PHY_SIG_FOUND);
  206. if (dev->signal == signal)
  207. return; /* no change */
  208. dev->signal = signal;
  209. atomic_notifier_call_chain(&atm_dev_notify_chain, signal, dev);
  210. }
  211. EXPORT_SYMBOL(atm_dev_signal_change);
  212. void atm_dev_release_vccs(struct atm_dev *dev)
  213. {
  214. int i;
  215. write_lock_irq(&vcc_sklist_lock);
  216. for (i = 0; i < VCC_HTABLE_SIZE; i++) {
  217. struct hlist_head *head = &vcc_hash[i];
  218. struct hlist_node *tmp;
  219. struct sock *s;
  220. struct atm_vcc *vcc;
  221. sk_for_each_safe(s, tmp, head) {
  222. vcc = atm_sk(s);
  223. if (vcc->dev == dev) {
  224. vcc_release_async(vcc, -EPIPE);
  225. sk_del_node_init(s);
  226. }
  227. }
  228. }
  229. write_unlock_irq(&vcc_sklist_lock);
  230. }
  231. EXPORT_SYMBOL(atm_dev_release_vccs);
  232. static int adjust_tp(struct atm_trafprm *tp, unsigned char aal)
  233. {
  234. int max_sdu;
  235. if (!tp->traffic_class)
  236. return 0;
  237. switch (aal) {
  238. case ATM_AAL0:
  239. max_sdu = ATM_CELL_SIZE-1;
  240. break;
  241. case ATM_AAL34:
  242. max_sdu = ATM_MAX_AAL34_PDU;
  243. break;
  244. default:
  245. pr_warn("AAL problems ... (%d)\n", aal);
  246. fallthrough;
  247. case ATM_AAL5:
  248. max_sdu = ATM_MAX_AAL5_PDU;
  249. }
  250. if (!tp->max_sdu)
  251. tp->max_sdu = max_sdu;
  252. else if (tp->max_sdu > max_sdu)
  253. return -EINVAL;
  254. if (!tp->max_cdv)
  255. tp->max_cdv = ATM_MAX_CDV;
  256. return 0;
  257. }
  258. static int check_ci(const struct atm_vcc *vcc, short vpi, int vci)
  259. {
  260. struct hlist_head *head = &vcc_hash[vci & (VCC_HTABLE_SIZE - 1)];
  261. struct sock *s;
  262. struct atm_vcc *walk;
  263. sk_for_each(s, head) {
  264. walk = atm_sk(s);
  265. if (walk->dev != vcc->dev)
  266. continue;
  267. if (test_bit(ATM_VF_ADDR, &walk->flags) && walk->vpi == vpi &&
  268. walk->vci == vci && ((walk->qos.txtp.traffic_class !=
  269. ATM_NONE && vcc->qos.txtp.traffic_class != ATM_NONE) ||
  270. (walk->qos.rxtp.traffic_class != ATM_NONE &&
  271. vcc->qos.rxtp.traffic_class != ATM_NONE)))
  272. return -EADDRINUSE;
  273. }
  274. /* allow VCCs with same VPI/VCI iff they don't collide on
  275. TX/RX (but we may refuse such sharing for other reasons,
  276. e.g. if protocol requires to have both channels) */
  277. return 0;
  278. }
  279. static int find_ci(const struct atm_vcc *vcc, short *vpi, int *vci)
  280. {
  281. static short p; /* poor man's per-device cache */
  282. static int c;
  283. short old_p;
  284. int old_c;
  285. int err;
  286. if (*vpi != ATM_VPI_ANY && *vci != ATM_VCI_ANY) {
  287. err = check_ci(vcc, *vpi, *vci);
  288. return err;
  289. }
  290. /* last scan may have left values out of bounds for current device */
  291. if (*vpi != ATM_VPI_ANY)
  292. p = *vpi;
  293. else if (p >= 1 << vcc->dev->ci_range.vpi_bits)
  294. p = 0;
  295. if (*vci != ATM_VCI_ANY)
  296. c = *vci;
  297. else if (c < ATM_NOT_RSV_VCI || c >= 1 << vcc->dev->ci_range.vci_bits)
  298. c = ATM_NOT_RSV_VCI;
  299. old_p = p;
  300. old_c = c;
  301. do {
  302. if (!check_ci(vcc, p, c)) {
  303. *vpi = p;
  304. *vci = c;
  305. return 0;
  306. }
  307. if (*vci == ATM_VCI_ANY) {
  308. c++;
  309. if (c >= 1 << vcc->dev->ci_range.vci_bits)
  310. c = ATM_NOT_RSV_VCI;
  311. }
  312. if ((c == ATM_NOT_RSV_VCI || *vci != ATM_VCI_ANY) &&
  313. *vpi == ATM_VPI_ANY) {
  314. p++;
  315. if (p >= 1 << vcc->dev->ci_range.vpi_bits)
  316. p = 0;
  317. }
  318. } while (old_p != p || old_c != c);
  319. return -EADDRINUSE;
  320. }
  321. static int __vcc_connect(struct atm_vcc *vcc, struct atm_dev *dev, short vpi,
  322. int vci)
  323. {
  324. struct sock *sk = sk_atm(vcc);
  325. int error;
  326. if ((vpi != ATM_VPI_UNSPEC && vpi != ATM_VPI_ANY &&
  327. vpi >> dev->ci_range.vpi_bits) || (vci != ATM_VCI_UNSPEC &&
  328. vci != ATM_VCI_ANY && vci >> dev->ci_range.vci_bits))
  329. return -EINVAL;
  330. if (vci > 0 && vci < ATM_NOT_RSV_VCI && !capable(CAP_NET_BIND_SERVICE))
  331. return -EPERM;
  332. error = -ENODEV;
  333. if (!try_module_get(dev->ops->owner))
  334. return error;
  335. vcc->dev = dev;
  336. write_lock_irq(&vcc_sklist_lock);
  337. if (test_bit(ATM_DF_REMOVED, &dev->flags) ||
  338. (error = find_ci(vcc, &vpi, &vci))) {
  339. write_unlock_irq(&vcc_sklist_lock);
  340. goto fail_module_put;
  341. }
  342. vcc->vpi = vpi;
  343. vcc->vci = vci;
  344. __vcc_insert_socket(sk);
  345. write_unlock_irq(&vcc_sklist_lock);
  346. switch (vcc->qos.aal) {
  347. case ATM_AAL0:
  348. error = atm_init_aal0(vcc);
  349. vcc->stats = &dev->stats.aal0;
  350. break;
  351. case ATM_AAL34:
  352. error = atm_init_aal34(vcc);
  353. vcc->stats = &dev->stats.aal34;
  354. break;
  355. case ATM_NO_AAL:
  356. /* ATM_AAL5 is also used in the "0 for default" case */
  357. vcc->qos.aal = ATM_AAL5;
  358. fallthrough;
  359. case ATM_AAL5:
  360. error = atm_init_aal5(vcc);
  361. vcc->stats = &dev->stats.aal5;
  362. break;
  363. default:
  364. error = -EPROTOTYPE;
  365. }
  366. if (!error)
  367. error = adjust_tp(&vcc->qos.txtp, vcc->qos.aal);
  368. if (!error)
  369. error = adjust_tp(&vcc->qos.rxtp, vcc->qos.aal);
  370. if (error)
  371. goto fail;
  372. pr_debug("VCC %d.%d, AAL %d\n", vpi, vci, vcc->qos.aal);
  373. pr_debug(" TX: %d, PCR %d..%d, SDU %d\n",
  374. vcc->qos.txtp.traffic_class,
  375. vcc->qos.txtp.min_pcr,
  376. vcc->qos.txtp.max_pcr,
  377. vcc->qos.txtp.max_sdu);
  378. pr_debug(" RX: %d, PCR %d..%d, SDU %d\n",
  379. vcc->qos.rxtp.traffic_class,
  380. vcc->qos.rxtp.min_pcr,
  381. vcc->qos.rxtp.max_pcr,
  382. vcc->qos.rxtp.max_sdu);
  383. if (dev->ops->open) {
  384. error = dev->ops->open(vcc);
  385. if (error)
  386. goto fail;
  387. }
  388. return 0;
  389. fail:
  390. vcc_remove_socket(sk);
  391. fail_module_put:
  392. module_put(dev->ops->owner);
  393. /* ensure we get dev module ref count correct */
  394. vcc->dev = NULL;
  395. return error;
  396. }
  397. int vcc_connect(struct socket *sock, int itf, short vpi, int vci)
  398. {
  399. struct atm_dev *dev;
  400. struct atm_vcc *vcc = ATM_SD(sock);
  401. int error;
  402. pr_debug("(vpi %d, vci %d)\n", vpi, vci);
  403. if (sock->state == SS_CONNECTED)
  404. return -EISCONN;
  405. if (sock->state != SS_UNCONNECTED)
  406. return -EINVAL;
  407. if (!(vpi || vci))
  408. return -EINVAL;
  409. if (vpi != ATM_VPI_UNSPEC && vci != ATM_VCI_UNSPEC)
  410. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  411. else
  412. if (test_bit(ATM_VF_PARTIAL, &vcc->flags))
  413. return -EINVAL;
  414. pr_debug("(TX: cl %d,bw %d-%d,sdu %d; "
  415. "RX: cl %d,bw %d-%d,sdu %d,AAL %s%d)\n",
  416. vcc->qos.txtp.traffic_class, vcc->qos.txtp.min_pcr,
  417. vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_sdu,
  418. vcc->qos.rxtp.traffic_class, vcc->qos.rxtp.min_pcr,
  419. vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_sdu,
  420. vcc->qos.aal == ATM_AAL5 ? "" :
  421. vcc->qos.aal == ATM_AAL0 ? "" : " ??? code ",
  422. vcc->qos.aal == ATM_AAL0 ? 0 : vcc->qos.aal);
  423. if (!test_bit(ATM_VF_HASQOS, &vcc->flags))
  424. return -EBADFD;
  425. if (vcc->qos.txtp.traffic_class == ATM_ANYCLASS ||
  426. vcc->qos.rxtp.traffic_class == ATM_ANYCLASS)
  427. return -EINVAL;
  428. if (likely(itf != ATM_ITF_ANY)) {
  429. dev = try_then_request_module(atm_dev_lookup(itf),
  430. "atm-device-%d", itf);
  431. } else {
  432. dev = NULL;
  433. mutex_lock(&atm_dev_mutex);
  434. if (!list_empty(&atm_devs)) {
  435. dev = list_entry(atm_devs.next,
  436. struct atm_dev, dev_list);
  437. atm_dev_hold(dev);
  438. }
  439. mutex_unlock(&atm_dev_mutex);
  440. }
  441. if (!dev)
  442. return -ENODEV;
  443. error = __vcc_connect(vcc, dev, vpi, vci);
  444. if (error) {
  445. atm_dev_put(dev);
  446. return error;
  447. }
  448. if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC)
  449. set_bit(ATM_VF_PARTIAL, &vcc->flags);
  450. if (test_bit(ATM_VF_READY, &ATM_SD(sock)->flags))
  451. sock->state = SS_CONNECTED;
  452. return 0;
  453. }
  454. int vcc_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
  455. int flags)
  456. {
  457. struct sock *sk = sock->sk;
  458. struct atm_vcc *vcc;
  459. struct sk_buff *skb;
  460. int copied, error = -EINVAL;
  461. if (sock->state != SS_CONNECTED)
  462. return -ENOTCONN;
  463. /* only handle MSG_DONTWAIT and MSG_PEEK */
  464. if (flags & ~(MSG_DONTWAIT | MSG_PEEK))
  465. return -EOPNOTSUPP;
  466. vcc = ATM_SD(sock);
  467. if (test_bit(ATM_VF_RELEASED, &vcc->flags) ||
  468. test_bit(ATM_VF_CLOSE, &vcc->flags) ||
  469. !test_bit(ATM_VF_READY, &vcc->flags))
  470. return 0;
  471. skb = skb_recv_datagram(sk, flags, &error);
  472. if (!skb)
  473. return error;
  474. copied = skb->len;
  475. if (copied > size) {
  476. copied = size;
  477. msg->msg_flags |= MSG_TRUNC;
  478. }
  479. error = skb_copy_datagram_msg(skb, 0, msg, copied);
  480. if (error)
  481. return error;
  482. sock_recv_cmsgs(msg, sk, skb);
  483. if (!(flags & MSG_PEEK)) {
  484. pr_debug("%d -= %d\n", atomic_read(&sk->sk_rmem_alloc),
  485. skb->truesize);
  486. atm_return(vcc, skb->truesize);
  487. }
  488. skb_free_datagram(sk, skb);
  489. return copied;
  490. }
  491. int vcc_sendmsg(struct socket *sock, struct msghdr *m, size_t size)
  492. {
  493. struct sock *sk = sock->sk;
  494. DEFINE_WAIT(wait);
  495. struct atm_vcc *vcc;
  496. struct sk_buff *skb;
  497. int eff, error;
  498. lock_sock(sk);
  499. if (sock->state != SS_CONNECTED) {
  500. error = -ENOTCONN;
  501. goto out;
  502. }
  503. if (m->msg_name) {
  504. error = -EISCONN;
  505. goto out;
  506. }
  507. vcc = ATM_SD(sock);
  508. if (test_bit(ATM_VF_RELEASED, &vcc->flags) ||
  509. test_bit(ATM_VF_CLOSE, &vcc->flags) ||
  510. !test_bit(ATM_VF_READY, &vcc->flags)) {
  511. error = -EPIPE;
  512. send_sig(SIGPIPE, current, 0);
  513. goto out;
  514. }
  515. if (!size) {
  516. error = 0;
  517. goto out;
  518. }
  519. if (size > vcc->qos.txtp.max_sdu) {
  520. error = -EMSGSIZE;
  521. goto out;
  522. }
  523. eff = (size+3) & ~3; /* align to word boundary */
  524. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  525. error = 0;
  526. while (!vcc_tx_ready(vcc, eff)) {
  527. if (m->msg_flags & MSG_DONTWAIT) {
  528. error = -EAGAIN;
  529. break;
  530. }
  531. schedule();
  532. if (signal_pending(current)) {
  533. error = -ERESTARTSYS;
  534. break;
  535. }
  536. if (test_bit(ATM_VF_RELEASED, &vcc->flags) ||
  537. test_bit(ATM_VF_CLOSE, &vcc->flags) ||
  538. !test_bit(ATM_VF_READY, &vcc->flags)) {
  539. error = -EPIPE;
  540. send_sig(SIGPIPE, current, 0);
  541. break;
  542. }
  543. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  544. }
  545. finish_wait(sk_sleep(sk), &wait);
  546. if (error)
  547. goto out;
  548. skb = alloc_skb(eff, GFP_KERNEL);
  549. if (!skb) {
  550. error = -ENOMEM;
  551. goto out;
  552. }
  553. pr_debug("%d += %d\n", sk_wmem_alloc_get(sk), skb->truesize);
  554. atm_account_tx(vcc, skb);
  555. skb->dev = NULL; /* for paths shared with net_device interfaces */
  556. if (!copy_from_iter_full(skb_put(skb, size), size, &m->msg_iter)) {
  557. kfree_skb(skb);
  558. error = -EFAULT;
  559. goto out;
  560. }
  561. if (eff != size)
  562. memset(skb->data + size, 0, eff-size);
  563. error = vcc->dev->ops->send(vcc, skb);
  564. error = error ? error : size;
  565. out:
  566. release_sock(sk);
  567. return error;
  568. }
  569. __poll_t vcc_poll(struct file *file, struct socket *sock, poll_table *wait)
  570. {
  571. struct sock *sk = sock->sk;
  572. struct atm_vcc *vcc;
  573. __poll_t mask;
  574. sock_poll_wait(file, sock, wait);
  575. mask = 0;
  576. vcc = ATM_SD(sock);
  577. /* exceptional events */
  578. if (sk->sk_err)
  579. mask = EPOLLERR;
  580. if (test_bit(ATM_VF_RELEASED, &vcc->flags) ||
  581. test_bit(ATM_VF_CLOSE, &vcc->flags))
  582. mask |= EPOLLHUP;
  583. /* readable? */
  584. if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
  585. mask |= EPOLLIN | EPOLLRDNORM;
  586. /* writable? */
  587. if (sock->state == SS_CONNECTING &&
  588. test_bit(ATM_VF_WAITING, &vcc->flags))
  589. return mask;
  590. if (vcc->qos.txtp.traffic_class != ATM_NONE &&
  591. vcc_writable(sk))
  592. mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
  593. return mask;
  594. }
  595. static int atm_change_qos(struct atm_vcc *vcc, struct atm_qos *qos)
  596. {
  597. int error;
  598. /*
  599. * Don't let the QoS change the already connected AAL type nor the
  600. * traffic class.
  601. */
  602. if (qos->aal != vcc->qos.aal ||
  603. qos->rxtp.traffic_class != vcc->qos.rxtp.traffic_class ||
  604. qos->txtp.traffic_class != vcc->qos.txtp.traffic_class)
  605. return -EINVAL;
  606. error = adjust_tp(&qos->txtp, qos->aal);
  607. if (!error)
  608. error = adjust_tp(&qos->rxtp, qos->aal);
  609. if (error)
  610. return error;
  611. if (!vcc->dev->ops->change_qos)
  612. return -EOPNOTSUPP;
  613. if (sk_atm(vcc)->sk_family == AF_ATMPVC)
  614. return vcc->dev->ops->change_qos(vcc, qos, ATM_MF_SET);
  615. return svc_change_qos(vcc, qos);
  616. }
  617. static int check_tp(const struct atm_trafprm *tp)
  618. {
  619. /* @@@ Should be merged with adjust_tp */
  620. if (!tp->traffic_class || tp->traffic_class == ATM_ANYCLASS)
  621. return 0;
  622. if (tp->traffic_class != ATM_UBR && !tp->min_pcr && !tp->pcr &&
  623. !tp->max_pcr)
  624. return -EINVAL;
  625. if (tp->min_pcr == ATM_MAX_PCR)
  626. return -EINVAL;
  627. if (tp->min_pcr && tp->max_pcr && tp->max_pcr != ATM_MAX_PCR &&
  628. tp->min_pcr > tp->max_pcr)
  629. return -EINVAL;
  630. /*
  631. * We allow pcr to be outside [min_pcr,max_pcr], because later
  632. * adjustment may still push it in the valid range.
  633. */
  634. return 0;
  635. }
  636. static int check_qos(const struct atm_qos *qos)
  637. {
  638. int error;
  639. if (!qos->txtp.traffic_class && !qos->rxtp.traffic_class)
  640. return -EINVAL;
  641. if (qos->txtp.traffic_class != qos->rxtp.traffic_class &&
  642. qos->txtp.traffic_class && qos->rxtp.traffic_class &&
  643. qos->txtp.traffic_class != ATM_ANYCLASS &&
  644. qos->rxtp.traffic_class != ATM_ANYCLASS)
  645. return -EINVAL;
  646. error = check_tp(&qos->txtp);
  647. if (error)
  648. return error;
  649. return check_tp(&qos->rxtp);
  650. }
  651. int vcc_setsockopt(struct socket *sock, int level, int optname,
  652. sockptr_t optval, unsigned int optlen)
  653. {
  654. struct atm_vcc *vcc;
  655. unsigned long value;
  656. int error;
  657. if (__SO_LEVEL_MATCH(optname, level) && optlen != __SO_SIZE(optname))
  658. return -EINVAL;
  659. vcc = ATM_SD(sock);
  660. switch (optname) {
  661. case SO_ATMQOS:
  662. {
  663. struct atm_qos qos;
  664. if (copy_from_sockptr(&qos, optval, sizeof(qos)))
  665. return -EFAULT;
  666. error = check_qos(&qos);
  667. if (error)
  668. return error;
  669. if (sock->state == SS_CONNECTED)
  670. return atm_change_qos(vcc, &qos);
  671. if (sock->state != SS_UNCONNECTED)
  672. return -EBADFD;
  673. vcc->qos = qos;
  674. set_bit(ATM_VF_HASQOS, &vcc->flags);
  675. return 0;
  676. }
  677. case SO_SETCLP:
  678. if (copy_from_sockptr(&value, optval, sizeof(value)))
  679. return -EFAULT;
  680. if (value)
  681. vcc->atm_options |= ATM_ATMOPT_CLP;
  682. else
  683. vcc->atm_options &= ~ATM_ATMOPT_CLP;
  684. return 0;
  685. default:
  686. return -EINVAL;
  687. }
  688. }
  689. int vcc_getsockopt(struct socket *sock, int level, int optname,
  690. char __user *optval, int __user *optlen)
  691. {
  692. struct atm_vcc *vcc;
  693. int len;
  694. if (get_user(len, optlen))
  695. return -EFAULT;
  696. if (__SO_LEVEL_MATCH(optname, level) && len != __SO_SIZE(optname))
  697. return -EINVAL;
  698. vcc = ATM_SD(sock);
  699. switch (optname) {
  700. case SO_ATMQOS:
  701. if (!test_bit(ATM_VF_HASQOS, &vcc->flags))
  702. return -EINVAL;
  703. return copy_to_user(optval, &vcc->qos, sizeof(vcc->qos))
  704. ? -EFAULT : 0;
  705. case SO_SETCLP:
  706. return put_user(vcc->atm_options & ATM_ATMOPT_CLP ? 1 : 0,
  707. (unsigned long __user *)optval) ? -EFAULT : 0;
  708. case SO_ATMPVC:
  709. {
  710. struct sockaddr_atmpvc pvc;
  711. if (!vcc->dev || !test_bit(ATM_VF_ADDR, &vcc->flags))
  712. return -ENOTCONN;
  713. memset(&pvc, 0, sizeof(pvc));
  714. pvc.sap_family = AF_ATMPVC;
  715. pvc.sap_addr.itf = vcc->dev->number;
  716. pvc.sap_addr.vpi = vcc->vpi;
  717. pvc.sap_addr.vci = vcc->vci;
  718. return copy_to_user(optval, &pvc, sizeof(pvc)) ? -EFAULT : 0;
  719. }
  720. default:
  721. return -EINVAL;
  722. }
  723. }
  724. int register_atmdevice_notifier(struct notifier_block *nb)
  725. {
  726. return atomic_notifier_chain_register(&atm_dev_notify_chain, nb);
  727. }
  728. EXPORT_SYMBOL_GPL(register_atmdevice_notifier);
  729. void unregister_atmdevice_notifier(struct notifier_block *nb)
  730. {
  731. atomic_notifier_chain_unregister(&atm_dev_notify_chain, nb);
  732. }
  733. EXPORT_SYMBOL_GPL(unregister_atmdevice_notifier);
  734. static int __init atm_init(void)
  735. {
  736. int error;
  737. error = proto_register(&vcc_proto, 0);
  738. if (error < 0)
  739. goto out;
  740. error = atmpvc_init();
  741. if (error < 0) {
  742. pr_err("atmpvc_init() failed with %d\n", error);
  743. goto out_unregister_vcc_proto;
  744. }
  745. error = atmsvc_init();
  746. if (error < 0) {
  747. pr_err("atmsvc_init() failed with %d\n", error);
  748. goto out_atmpvc_exit;
  749. }
  750. error = atm_proc_init();
  751. if (error < 0) {
  752. pr_err("atm_proc_init() failed with %d\n", error);
  753. goto out_atmsvc_exit;
  754. }
  755. error = atm_sysfs_init();
  756. if (error < 0) {
  757. pr_err("atm_sysfs_init() failed with %d\n", error);
  758. goto out_atmproc_exit;
  759. }
  760. out:
  761. return error;
  762. out_atmproc_exit:
  763. atm_proc_exit();
  764. out_atmsvc_exit:
  765. atmsvc_exit();
  766. out_atmpvc_exit:
  767. atmsvc_exit();
  768. out_unregister_vcc_proto:
  769. proto_unregister(&vcc_proto);
  770. goto out;
  771. }
  772. static void __exit atm_exit(void)
  773. {
  774. atm_proc_exit();
  775. atm_sysfs_exit();
  776. atmsvc_exit();
  777. atmpvc_exit();
  778. proto_unregister(&vcc_proto);
  779. }
  780. subsys_initcall(atm_init);
  781. module_exit(atm_exit);
  782. MODULE_LICENSE("GPL");
  783. MODULE_ALIAS_NETPROTO(PF_ATMPVC);
  784. MODULE_ALIAS_NETPROTO(PF_ATMSVC);