zstd_compress_sequences.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. /*
  2. * Copyright (c) Yann Collet, Facebook, Inc.
  3. * All rights reserved.
  4. *
  5. * This source code is licensed under both the BSD-style license (found in the
  6. * LICENSE file in the root directory of this source tree) and the GPLv2 (found
  7. * in the COPYING file in the root directory of this source tree).
  8. * You may select, at your option, one of the above-listed licenses.
  9. */
  10. /*-*************************************
  11. * Dependencies
  12. ***************************************/
  13. #include "zstd_compress_sequences.h"
  14. /*
  15. * -log2(x / 256) lookup table for x in [0, 256).
  16. * If x == 0: Return 0
  17. * Else: Return floor(-log2(x / 256) * 256)
  18. */
  19. static unsigned const kInverseProbabilityLog256[256] = {
  20. 0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
  21. 1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
  22. 874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
  23. 724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
  24. 618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
  25. 535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
  26. 468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
  27. 411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
  28. 362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
  29. 318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
  30. 279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
  31. 244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
  32. 212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
  33. 182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
  34. 155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
  35. 130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
  36. 106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
  37. 83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
  38. 62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
  39. 42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
  40. 23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
  41. 5, 4, 2, 1,
  42. };
  43. static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
  44. void const* ptr = ctable;
  45. U16 const* u16ptr = (U16 const*)ptr;
  46. U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
  47. return maxSymbolValue;
  48. }
  49. /*
  50. * Returns true if we should use ncount=-1 else we should
  51. * use ncount=1 for low probability symbols instead.
  52. */
  53. static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
  54. {
  55. /* Heuristic: This should cover most blocks <= 16K and
  56. * start to fade out after 16K to about 32K depending on
  57. * comprssibility.
  58. */
  59. return nbSeq >= 2048;
  60. }
  61. /*
  62. * Returns the cost in bytes of encoding the normalized count header.
  63. * Returns an error if any of the helper functions return an error.
  64. */
  65. static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
  66. size_t const nbSeq, unsigned const FSELog)
  67. {
  68. BYTE wksp[FSE_NCOUNTBOUND];
  69. S16 norm[MaxSeq + 1];
  70. const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
  71. FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
  72. return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
  73. }
  74. /*
  75. * Returns the cost in bits of encoding the distribution described by count
  76. * using the entropy bound.
  77. */
  78. static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
  79. {
  80. unsigned cost = 0;
  81. unsigned s;
  82. for (s = 0; s <= max; ++s) {
  83. unsigned norm = (unsigned)((256 * count[s]) / total);
  84. if (count[s] != 0 && norm == 0)
  85. norm = 1;
  86. assert(count[s] < total);
  87. cost += count[s] * kInverseProbabilityLog256[norm];
  88. }
  89. return cost >> 8;
  90. }
  91. /*
  92. * Returns the cost in bits of encoding the distribution in count using ctable.
  93. * Returns an error if ctable cannot represent all the symbols in count.
  94. */
  95. size_t ZSTD_fseBitCost(
  96. FSE_CTable const* ctable,
  97. unsigned const* count,
  98. unsigned const max)
  99. {
  100. unsigned const kAccuracyLog = 8;
  101. size_t cost = 0;
  102. unsigned s;
  103. FSE_CState_t cstate;
  104. FSE_initCState(&cstate, ctable);
  105. if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
  106. DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
  107. ZSTD_getFSEMaxSymbolValue(ctable), max);
  108. return ERROR(GENERIC);
  109. }
  110. for (s = 0; s <= max; ++s) {
  111. unsigned const tableLog = cstate.stateLog;
  112. unsigned const badCost = (tableLog + 1) << kAccuracyLog;
  113. unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
  114. if (count[s] == 0)
  115. continue;
  116. if (bitCost >= badCost) {
  117. DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
  118. return ERROR(GENERIC);
  119. }
  120. cost += (size_t)count[s] * bitCost;
  121. }
  122. return cost >> kAccuracyLog;
  123. }
  124. /*
  125. * Returns the cost in bits of encoding the distribution in count using the
  126. * table described by norm. The max symbol support by norm is assumed >= max.
  127. * norm must be valid for every symbol with non-zero probability in count.
  128. */
  129. size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
  130. unsigned const* count, unsigned const max)
  131. {
  132. unsigned const shift = 8 - accuracyLog;
  133. size_t cost = 0;
  134. unsigned s;
  135. assert(accuracyLog <= 8);
  136. for (s = 0; s <= max; ++s) {
  137. unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
  138. unsigned const norm256 = normAcc << shift;
  139. assert(norm256 > 0);
  140. assert(norm256 < 256);
  141. cost += count[s] * kInverseProbabilityLog256[norm256];
  142. }
  143. return cost >> 8;
  144. }
  145. symbolEncodingType_e
  146. ZSTD_selectEncodingType(
  147. FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
  148. size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
  149. FSE_CTable const* prevCTable,
  150. short const* defaultNorm, U32 defaultNormLog,
  151. ZSTD_defaultPolicy_e const isDefaultAllowed,
  152. ZSTD_strategy const strategy)
  153. {
  154. ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
  155. if (mostFrequent == nbSeq) {
  156. *repeatMode = FSE_repeat_none;
  157. if (isDefaultAllowed && nbSeq <= 2) {
  158. /* Prefer set_basic over set_rle when there are 2 or less symbols,
  159. * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
  160. * If basic encoding isn't possible, always choose RLE.
  161. */
  162. DEBUGLOG(5, "Selected set_basic");
  163. return set_basic;
  164. }
  165. DEBUGLOG(5, "Selected set_rle");
  166. return set_rle;
  167. }
  168. if (strategy < ZSTD_lazy) {
  169. if (isDefaultAllowed) {
  170. size_t const staticFse_nbSeq_max = 1000;
  171. size_t const mult = 10 - strategy;
  172. size_t const baseLog = 3;
  173. size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
  174. assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
  175. assert(mult <= 9 && mult >= 7);
  176. if ( (*repeatMode == FSE_repeat_valid)
  177. && (nbSeq < staticFse_nbSeq_max) ) {
  178. DEBUGLOG(5, "Selected set_repeat");
  179. return set_repeat;
  180. }
  181. if ( (nbSeq < dynamicFse_nbSeq_min)
  182. || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
  183. DEBUGLOG(5, "Selected set_basic");
  184. /* The format allows default tables to be repeated, but it isn't useful.
  185. * When using simple heuristics to select encoding type, we don't want
  186. * to confuse these tables with dictionaries. When running more careful
  187. * analysis, we don't need to waste time checking both repeating tables
  188. * and default tables.
  189. */
  190. *repeatMode = FSE_repeat_none;
  191. return set_basic;
  192. }
  193. }
  194. } else {
  195. size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
  196. size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
  197. size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
  198. size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
  199. if (isDefaultAllowed) {
  200. assert(!ZSTD_isError(basicCost));
  201. assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
  202. }
  203. assert(!ZSTD_isError(NCountCost));
  204. assert(compressedCost < ERROR(maxCode));
  205. DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
  206. (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
  207. if (basicCost <= repeatCost && basicCost <= compressedCost) {
  208. DEBUGLOG(5, "Selected set_basic");
  209. assert(isDefaultAllowed);
  210. *repeatMode = FSE_repeat_none;
  211. return set_basic;
  212. }
  213. if (repeatCost <= compressedCost) {
  214. DEBUGLOG(5, "Selected set_repeat");
  215. assert(!ZSTD_isError(repeatCost));
  216. return set_repeat;
  217. }
  218. assert(compressedCost < basicCost && compressedCost < repeatCost);
  219. }
  220. DEBUGLOG(5, "Selected set_compressed");
  221. *repeatMode = FSE_repeat_check;
  222. return set_compressed;
  223. }
  224. typedef struct {
  225. S16 norm[MaxSeq + 1];
  226. U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
  227. } ZSTD_BuildCTableWksp;
  228. size_t
  229. ZSTD_buildCTable(void* dst, size_t dstCapacity,
  230. FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
  231. unsigned* count, U32 max,
  232. const BYTE* codeTable, size_t nbSeq,
  233. const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
  234. const FSE_CTable* prevCTable, size_t prevCTableSize,
  235. void* entropyWorkspace, size_t entropyWorkspaceSize)
  236. {
  237. BYTE* op = (BYTE*)dst;
  238. const BYTE* const oend = op + dstCapacity;
  239. DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
  240. switch (type) {
  241. case set_rle:
  242. FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
  243. RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
  244. *op = codeTable[0];
  245. return 1;
  246. case set_repeat:
  247. ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
  248. return 0;
  249. case set_basic:
  250. FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), ""); /* note : could be pre-calculated */
  251. return 0;
  252. case set_compressed: {
  253. ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
  254. size_t nbSeq_1 = nbSeq;
  255. const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
  256. if (count[codeTable[nbSeq-1]] > 1) {
  257. count[codeTable[nbSeq-1]]--;
  258. nbSeq_1--;
  259. }
  260. assert(nbSeq_1 > 1);
  261. assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
  262. (void)entropyWorkspaceSize;
  263. FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "");
  264. { size_t const NCountSize = FSE_writeNCount(op, oend - op, wksp->norm, max, tableLog); /* overflow protected */
  265. FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
  266. FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "");
  267. return NCountSize;
  268. }
  269. }
  270. default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
  271. }
  272. }
  273. FORCE_INLINE_TEMPLATE size_t
  274. ZSTD_encodeSequences_body(
  275. void* dst, size_t dstCapacity,
  276. FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
  277. FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
  278. FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
  279. seqDef const* sequences, size_t nbSeq, int longOffsets)
  280. {
  281. BIT_CStream_t blockStream;
  282. FSE_CState_t stateMatchLength;
  283. FSE_CState_t stateOffsetBits;
  284. FSE_CState_t stateLitLength;
  285. RETURN_ERROR_IF(
  286. ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
  287. dstSize_tooSmall, "not enough space remaining");
  288. DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
  289. (int)(blockStream.endPtr - blockStream.startPtr),
  290. (unsigned)dstCapacity);
  291. /* first symbols */
  292. FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
  293. FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
  294. FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
  295. BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
  296. if (MEM_32bits()) BIT_flushBits(&blockStream);
  297. BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
  298. if (MEM_32bits()) BIT_flushBits(&blockStream);
  299. if (longOffsets) {
  300. U32 const ofBits = ofCodeTable[nbSeq-1];
  301. unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
  302. if (extraBits) {
  303. BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
  304. BIT_flushBits(&blockStream);
  305. }
  306. BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
  307. ofBits - extraBits);
  308. } else {
  309. BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
  310. }
  311. BIT_flushBits(&blockStream);
  312. { size_t n;
  313. for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
  314. BYTE const llCode = llCodeTable[n];
  315. BYTE const ofCode = ofCodeTable[n];
  316. BYTE const mlCode = mlCodeTable[n];
  317. U32 const llBits = LL_bits[llCode];
  318. U32 const ofBits = ofCode;
  319. U32 const mlBits = ML_bits[mlCode];
  320. DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
  321. (unsigned)sequences[n].litLength,
  322. (unsigned)sequences[n].matchLength + MINMATCH,
  323. (unsigned)sequences[n].offset);
  324. /* 32b*/ /* 64b*/
  325. /* (7)*/ /* (7)*/
  326. FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
  327. FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
  328. if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
  329. FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
  330. if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
  331. BIT_flushBits(&blockStream); /* (7)*/
  332. BIT_addBits(&blockStream, sequences[n].litLength, llBits);
  333. if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
  334. BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
  335. if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
  336. if (longOffsets) {
  337. unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
  338. if (extraBits) {
  339. BIT_addBits(&blockStream, sequences[n].offset, extraBits);
  340. BIT_flushBits(&blockStream); /* (7)*/
  341. }
  342. BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
  343. ofBits - extraBits); /* 31 */
  344. } else {
  345. BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
  346. }
  347. BIT_flushBits(&blockStream); /* (7)*/
  348. DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
  349. } }
  350. DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
  351. FSE_flushCState(&blockStream, &stateMatchLength);
  352. DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
  353. FSE_flushCState(&blockStream, &stateOffsetBits);
  354. DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
  355. FSE_flushCState(&blockStream, &stateLitLength);
  356. { size_t const streamSize = BIT_closeCStream(&blockStream);
  357. RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
  358. return streamSize;
  359. }
  360. }
  361. static size_t
  362. ZSTD_encodeSequences_default(
  363. void* dst, size_t dstCapacity,
  364. FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
  365. FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
  366. FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
  367. seqDef const* sequences, size_t nbSeq, int longOffsets)
  368. {
  369. return ZSTD_encodeSequences_body(dst, dstCapacity,
  370. CTable_MatchLength, mlCodeTable,
  371. CTable_OffsetBits, ofCodeTable,
  372. CTable_LitLength, llCodeTable,
  373. sequences, nbSeq, longOffsets);
  374. }
  375. #if DYNAMIC_BMI2
  376. static TARGET_ATTRIBUTE("bmi2") size_t
  377. ZSTD_encodeSequences_bmi2(
  378. void* dst, size_t dstCapacity,
  379. FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
  380. FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
  381. FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
  382. seqDef const* sequences, size_t nbSeq, int longOffsets)
  383. {
  384. return ZSTD_encodeSequences_body(dst, dstCapacity,
  385. CTable_MatchLength, mlCodeTable,
  386. CTable_OffsetBits, ofCodeTable,
  387. CTable_LitLength, llCodeTable,
  388. sequences, nbSeq, longOffsets);
  389. }
  390. #endif
  391. size_t ZSTD_encodeSequences(
  392. void* dst, size_t dstCapacity,
  393. FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
  394. FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
  395. FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
  396. seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
  397. {
  398. DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
  399. #if DYNAMIC_BMI2
  400. if (bmi2) {
  401. return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
  402. CTable_MatchLength, mlCodeTable,
  403. CTable_OffsetBits, ofCodeTable,
  404. CTable_LitLength, llCodeTable,
  405. sequences, nbSeq, longOffsets);
  406. }
  407. #endif
  408. (void)bmi2;
  409. return ZSTD_encodeSequences_default(dst, dstCapacity,
  410. CTable_MatchLength, mlCodeTable,
  411. CTable_OffsetBits, ofCodeTable,
  412. CTable_LitLength, llCodeTable,
  413. sequences, nbSeq, longOffsets);
  414. }