sse1.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /* -*- linux-c -*- ------------------------------------------------------- *
  3. *
  4. * Copyright 2002 H. Peter Anvin - All Rights Reserved
  5. *
  6. * ----------------------------------------------------------------------- */
  7. /*
  8. * raid6/sse1.c
  9. *
  10. * SSE-1/MMXEXT implementation of RAID-6 syndrome functions
  11. *
  12. * This is really an MMX implementation, but it requires SSE-1 or
  13. * AMD MMXEXT for prefetch support and a few other features. The
  14. * support for nontemporal memory accesses is enough to make this
  15. * worthwhile as a separate implementation.
  16. */
  17. #ifdef CONFIG_X86_32
  18. #include <linux/raid/pq.h>
  19. #include "x86.h"
  20. /* Defined in raid6/mmx.c */
  21. extern const struct raid6_mmx_constants {
  22. u64 x1d;
  23. } raid6_mmx_constants;
  24. static int raid6_have_sse1_or_mmxext(void)
  25. {
  26. /* Not really boot_cpu but "all_cpus" */
  27. return boot_cpu_has(X86_FEATURE_MMX) &&
  28. (boot_cpu_has(X86_FEATURE_XMM) ||
  29. boot_cpu_has(X86_FEATURE_MMXEXT));
  30. }
  31. /*
  32. * Plain SSE1 implementation
  33. */
  34. static void raid6_sse11_gen_syndrome(int disks, size_t bytes, void **ptrs)
  35. {
  36. u8 **dptr = (u8 **)ptrs;
  37. u8 *p, *q;
  38. int d, z, z0;
  39. z0 = disks - 3; /* Highest data disk */
  40. p = dptr[z0+1]; /* XOR parity */
  41. q = dptr[z0+2]; /* RS syndrome */
  42. kernel_fpu_begin();
  43. asm volatile("movq %0,%%mm0" : : "m" (raid6_mmx_constants.x1d));
  44. asm volatile("pxor %mm5,%mm5"); /* Zero temp */
  45. for ( d = 0 ; d < bytes ; d += 8 ) {
  46. asm volatile("prefetchnta %0" : : "m" (dptr[z0][d]));
  47. asm volatile("movq %0,%%mm2" : : "m" (dptr[z0][d])); /* P[0] */
  48. asm volatile("prefetchnta %0" : : "m" (dptr[z0-1][d]));
  49. asm volatile("movq %mm2,%mm4"); /* Q[0] */
  50. asm volatile("movq %0,%%mm6" : : "m" (dptr[z0-1][d]));
  51. for ( z = z0-2 ; z >= 0 ; z-- ) {
  52. asm volatile("prefetchnta %0" : : "m" (dptr[z][d]));
  53. asm volatile("pcmpgtb %mm4,%mm5");
  54. asm volatile("paddb %mm4,%mm4");
  55. asm volatile("pand %mm0,%mm5");
  56. asm volatile("pxor %mm5,%mm4");
  57. asm volatile("pxor %mm5,%mm5");
  58. asm volatile("pxor %mm6,%mm2");
  59. asm volatile("pxor %mm6,%mm4");
  60. asm volatile("movq %0,%%mm6" : : "m" (dptr[z][d]));
  61. }
  62. asm volatile("pcmpgtb %mm4,%mm5");
  63. asm volatile("paddb %mm4,%mm4");
  64. asm volatile("pand %mm0,%mm5");
  65. asm volatile("pxor %mm5,%mm4");
  66. asm volatile("pxor %mm5,%mm5");
  67. asm volatile("pxor %mm6,%mm2");
  68. asm volatile("pxor %mm6,%mm4");
  69. asm volatile("movntq %%mm2,%0" : "=m" (p[d]));
  70. asm volatile("movntq %%mm4,%0" : "=m" (q[d]));
  71. }
  72. asm volatile("sfence" : : : "memory");
  73. kernel_fpu_end();
  74. }
  75. const struct raid6_calls raid6_sse1x1 = {
  76. raid6_sse11_gen_syndrome,
  77. NULL, /* XOR not yet implemented */
  78. raid6_have_sse1_or_mmxext,
  79. "sse1x1",
  80. 1 /* Has cache hints */
  81. };
  82. /*
  83. * Unrolled-by-2 SSE1 implementation
  84. */
  85. static void raid6_sse12_gen_syndrome(int disks, size_t bytes, void **ptrs)
  86. {
  87. u8 **dptr = (u8 **)ptrs;
  88. u8 *p, *q;
  89. int d, z, z0;
  90. z0 = disks - 3; /* Highest data disk */
  91. p = dptr[z0+1]; /* XOR parity */
  92. q = dptr[z0+2]; /* RS syndrome */
  93. kernel_fpu_begin();
  94. asm volatile("movq %0,%%mm0" : : "m" (raid6_mmx_constants.x1d));
  95. asm volatile("pxor %mm5,%mm5"); /* Zero temp */
  96. asm volatile("pxor %mm7,%mm7"); /* Zero temp */
  97. /* We uniformly assume a single prefetch covers at least 16 bytes */
  98. for ( d = 0 ; d < bytes ; d += 16 ) {
  99. asm volatile("prefetchnta %0" : : "m" (dptr[z0][d]));
  100. asm volatile("movq %0,%%mm2" : : "m" (dptr[z0][d])); /* P[0] */
  101. asm volatile("movq %0,%%mm3" : : "m" (dptr[z0][d+8])); /* P[1] */
  102. asm volatile("movq %mm2,%mm4"); /* Q[0] */
  103. asm volatile("movq %mm3,%mm6"); /* Q[1] */
  104. for ( z = z0-1 ; z >= 0 ; z-- ) {
  105. asm volatile("prefetchnta %0" : : "m" (dptr[z][d]));
  106. asm volatile("pcmpgtb %mm4,%mm5");
  107. asm volatile("pcmpgtb %mm6,%mm7");
  108. asm volatile("paddb %mm4,%mm4");
  109. asm volatile("paddb %mm6,%mm6");
  110. asm volatile("pand %mm0,%mm5");
  111. asm volatile("pand %mm0,%mm7");
  112. asm volatile("pxor %mm5,%mm4");
  113. asm volatile("pxor %mm7,%mm6");
  114. asm volatile("movq %0,%%mm5" : : "m" (dptr[z][d]));
  115. asm volatile("movq %0,%%mm7" : : "m" (dptr[z][d+8]));
  116. asm volatile("pxor %mm5,%mm2");
  117. asm volatile("pxor %mm7,%mm3");
  118. asm volatile("pxor %mm5,%mm4");
  119. asm volatile("pxor %mm7,%mm6");
  120. asm volatile("pxor %mm5,%mm5");
  121. asm volatile("pxor %mm7,%mm7");
  122. }
  123. asm volatile("movntq %%mm2,%0" : "=m" (p[d]));
  124. asm volatile("movntq %%mm3,%0" : "=m" (p[d+8]));
  125. asm volatile("movntq %%mm4,%0" : "=m" (q[d]));
  126. asm volatile("movntq %%mm6,%0" : "=m" (q[d+8]));
  127. }
  128. asm volatile("sfence" : :: "memory");
  129. kernel_fpu_end();
  130. }
  131. const struct raid6_calls raid6_sse1x2 = {
  132. raid6_sse12_gen_syndrome,
  133. NULL, /* XOR not yet implemented */
  134. raid6_have_sse1_or_mmxext,
  135. "sse1x2",
  136. 1 /* Has cache hints */
  137. };
  138. #endif