neon.uc 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. /* -----------------------------------------------------------------------
  2. *
  3. * neon.uc - RAID-6 syndrome calculation using ARM NEON instructions
  4. *
  5. * Copyright (C) 2012 Rob Herring
  6. * Copyright (C) 2015 Linaro Ltd. <[email protected]>
  7. *
  8. * Based on altivec.uc:
  9. * Copyright 2002-2004 H. Peter Anvin - All Rights Reserved
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation, Inc., 53 Temple Place Ste 330,
  14. * Boston MA 02111-1307, USA; either version 2 of the License, or
  15. * (at your option) any later version; incorporated herein by reference.
  16. *
  17. * ----------------------------------------------------------------------- */
  18. /*
  19. * neon$#.c
  20. *
  21. * $#-way unrolled NEON intrinsics math RAID-6 instruction set
  22. *
  23. * This file is postprocessed using unroll.awk
  24. */
  25. #include <arm_neon.h>
  26. typedef uint8x16_t unative_t;
  27. #define NSIZE sizeof(unative_t)
  28. /*
  29. * The SHLBYTE() operation shifts each byte left by 1, *not*
  30. * rolling over into the next byte
  31. */
  32. static inline unative_t SHLBYTE(unative_t v)
  33. {
  34. return vshlq_n_u8(v, 1);
  35. }
  36. /*
  37. * The MASK() operation returns 0xFF in any byte for which the high
  38. * bit is 1, 0x00 for any byte for which the high bit is 0.
  39. */
  40. static inline unative_t MASK(unative_t v)
  41. {
  42. return (unative_t)vshrq_n_s8((int8x16_t)v, 7);
  43. }
  44. static inline unative_t PMUL(unative_t v, unative_t u)
  45. {
  46. return (unative_t)vmulq_p8((poly8x16_t)v, (poly8x16_t)u);
  47. }
  48. void raid6_neon$#_gen_syndrome_real(int disks, unsigned long bytes, void **ptrs)
  49. {
  50. uint8_t **dptr = (uint8_t **)ptrs;
  51. uint8_t *p, *q;
  52. int d, z, z0;
  53. register unative_t wd$$, wq$$, wp$$, w1$$, w2$$;
  54. const unative_t x1d = vdupq_n_u8(0x1d);
  55. z0 = disks - 3; /* Highest data disk */
  56. p = dptr[z0+1]; /* XOR parity */
  57. q = dptr[z0+2]; /* RS syndrome */
  58. for ( d = 0 ; d < bytes ; d += NSIZE*$# ) {
  59. wq$$ = wp$$ = vld1q_u8(&dptr[z0][d+$$*NSIZE]);
  60. for ( z = z0-1 ; z >= 0 ; z-- ) {
  61. wd$$ = vld1q_u8(&dptr[z][d+$$*NSIZE]);
  62. wp$$ = veorq_u8(wp$$, wd$$);
  63. w2$$ = MASK(wq$$);
  64. w1$$ = SHLBYTE(wq$$);
  65. w2$$ = vandq_u8(w2$$, x1d);
  66. w1$$ = veorq_u8(w1$$, w2$$);
  67. wq$$ = veorq_u8(w1$$, wd$$);
  68. }
  69. vst1q_u8(&p[d+NSIZE*$$], wp$$);
  70. vst1q_u8(&q[d+NSIZE*$$], wq$$);
  71. }
  72. }
  73. void raid6_neon$#_xor_syndrome_real(int disks, int start, int stop,
  74. unsigned long bytes, void **ptrs)
  75. {
  76. uint8_t **dptr = (uint8_t **)ptrs;
  77. uint8_t *p, *q;
  78. int d, z, z0;
  79. register unative_t wd$$, wq$$, wp$$, w1$$, w2$$;
  80. const unative_t x1d = vdupq_n_u8(0x1d);
  81. z0 = stop; /* P/Q right side optimization */
  82. p = dptr[disks-2]; /* XOR parity */
  83. q = dptr[disks-1]; /* RS syndrome */
  84. for ( d = 0 ; d < bytes ; d += NSIZE*$# ) {
  85. wq$$ = vld1q_u8(&dptr[z0][d+$$*NSIZE]);
  86. wp$$ = veorq_u8(vld1q_u8(&p[d+$$*NSIZE]), wq$$);
  87. /* P/Q data pages */
  88. for ( z = z0-1 ; z >= start ; z-- ) {
  89. wd$$ = vld1q_u8(&dptr[z][d+$$*NSIZE]);
  90. wp$$ = veorq_u8(wp$$, wd$$);
  91. w2$$ = MASK(wq$$);
  92. w1$$ = SHLBYTE(wq$$);
  93. w2$$ = vandq_u8(w2$$, x1d);
  94. w1$$ = veorq_u8(w1$$, w2$$);
  95. wq$$ = veorq_u8(w1$$, wd$$);
  96. }
  97. /* P/Q left side optimization */
  98. for ( z = start-1 ; z >= 3 ; z -= 4 ) {
  99. w2$$ = vshrq_n_u8(wq$$, 4);
  100. w1$$ = vshlq_n_u8(wq$$, 4);
  101. w2$$ = PMUL(w2$$, x1d);
  102. wq$$ = veorq_u8(w1$$, w2$$);
  103. }
  104. switch (z) {
  105. case 2:
  106. w2$$ = vshrq_n_u8(wq$$, 5);
  107. w1$$ = vshlq_n_u8(wq$$, 3);
  108. w2$$ = PMUL(w2$$, x1d);
  109. wq$$ = veorq_u8(w1$$, w2$$);
  110. break;
  111. case 1:
  112. w2$$ = vshrq_n_u8(wq$$, 6);
  113. w1$$ = vshlq_n_u8(wq$$, 2);
  114. w2$$ = PMUL(w2$$, x1d);
  115. wq$$ = veorq_u8(w1$$, w2$$);
  116. break;
  117. case 0:
  118. w2$$ = MASK(wq$$);
  119. w1$$ = SHLBYTE(wq$$);
  120. w2$$ = vandq_u8(w2$$, x1d);
  121. wq$$ = veorq_u8(w1$$, w2$$);
  122. }
  123. w1$$ = vld1q_u8(&q[d+NSIZE*$$]);
  124. wq$$ = veorq_u8(wq$$, w1$$);
  125. vst1q_u8(&p[d+NSIZE*$$], wp$$);
  126. vst1q_u8(&q[d+NSIZE*$$], wq$$);
  127. }
  128. }