123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Generic polynomial calculation using integer coefficients.
- *
- * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
- *
- * Authors:
- * Maxim Kaurkin <[email protected]>
- * Serge Semin <[email protected]>
- *
- */
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/polynomial.h>
- /*
- * Originally this was part of drivers/hwmon/bt1-pvt.c.
- * There the following conversion is used and should serve as an example here:
- *
- * The original translation formulae of the temperature (in degrees of Celsius)
- * to PVT data and vice-versa are following:
- *
- * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
- * 1.7204e2
- * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
- * 3.1020e-1*(N^1) - 4.838e1
- *
- * where T = [-48.380, 147.438]C and N = [0, 1023].
- *
- * They must be accordingly altered to be suitable for the integer arithmetics.
- * The technique is called 'factor redistribution', which just makes sure the
- * multiplications and divisions are made so to have a result of the operations
- * within the integer numbers limit. In addition we need to translate the
- * formulae to accept millidegrees of Celsius. Here what they look like after
- * the alterations:
- *
- * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
- * 17204e2) / 1e4
- * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
- * 48380
- * where T = [-48380, 147438] mC and N = [0, 1023].
- *
- * static const struct polynomial poly_temp_to_N = {
- * .total_divider = 10000,
- * .terms = {
- * {4, 18322, 10000, 10000},
- * {3, 2343, 10000, 10},
- * {2, 87018, 10000, 10},
- * {1, 39269, 1000, 1},
- * {0, 1720400, 1, 1}
- * }
- * };
- *
- * static const struct polynomial poly_N_to_temp = {
- * .total_divider = 1,
- * .terms = {
- * {4, -16743, 1000, 1},
- * {3, 81542, 1000, 1},
- * {2, -182010, 1000, 1},
- * {1, 310200, 1000, 1},
- * {0, -48380, 1, 1}
- * }
- * };
- */
- /**
- * polynomial_calc - calculate a polynomial using integer arithmetic
- *
- * @poly: pointer to the descriptor of the polynomial
- * @data: input value of the polynimal
- *
- * Calculate the result of a polynomial using only integer arithmetic. For
- * this to work without too much loss of precision the coefficients has to
- * be altered. This is called factor redistribution.
- *
- * Returns the result of the polynomial calculation.
- */
- long polynomial_calc(const struct polynomial *poly, long data)
- {
- const struct polynomial_term *term = poly->terms;
- long total_divider = poly->total_divider ?: 1;
- long tmp, ret = 0;
- int deg;
- /*
- * Here is the polynomial calculation function, which performs the
- * redistributed terms calculations. It's pretty straightforward.
- * We walk over each degree term up to the free one, and perform
- * the redistributed multiplication of the term coefficient, its
- * divider (as for the rationale fraction representation), data
- * power and the rational fraction divider leftover. Then all of
- * this is collected in a total sum variable, which value is
- * normalized by the total divider before being returned.
- */
- do {
- tmp = term->coef;
- for (deg = 0; deg < term->deg; ++deg)
- tmp = mult_frac(tmp, data, term->divider);
- ret += tmp / term->divider_leftover;
- } while ((term++)->deg);
- return ret / total_divider;
- }
- EXPORT_SYMBOL_GPL(polynomial_calc);
- MODULE_DESCRIPTION("Generic polynomial calculations");
- MODULE_LICENSE("GPL");
|