123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * rational fractions
- *
- * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <[email protected]>
- * Copyright (C) 2019 Trent Piepho <[email protected]>
- *
- * helper functions when coping with rational numbers
- */
- #include <linux/rational.h>
- #include <linux/compiler.h>
- #include <linux/export.h>
- #include <linux/minmax.h>
- #include <linux/limits.h>
- #include <linux/module.h>
- /*
- * calculate best rational approximation for a given fraction
- * taking into account restricted register size, e.g. to find
- * appropriate values for a pll with 5 bit denominator and
- * 8 bit numerator register fields, trying to set up with a
- * frequency ratio of 3.1415, one would say:
- *
- * rational_best_approximation(31415, 10000,
- * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
- *
- * you may look at given_numerator as a fixed point number,
- * with the fractional part size described in given_denominator.
- *
- * for theoretical background, see:
- * https://en.wikipedia.org/wiki/Continued_fraction
- */
- void rational_best_approximation(
- unsigned long given_numerator, unsigned long given_denominator,
- unsigned long max_numerator, unsigned long max_denominator,
- unsigned long *best_numerator, unsigned long *best_denominator)
- {
- /* n/d is the starting rational, which is continually
- * decreased each iteration using the Euclidean algorithm.
- *
- * dp is the value of d from the prior iteration.
- *
- * n2/d2, n1/d1, and n0/d0 are our successively more accurate
- * approximations of the rational. They are, respectively,
- * the current, previous, and two prior iterations of it.
- *
- * a is current term of the continued fraction.
- */
- unsigned long n, d, n0, d0, n1, d1, n2, d2;
- n = given_numerator;
- d = given_denominator;
- n0 = d1 = 0;
- n1 = d0 = 1;
- for (;;) {
- unsigned long dp, a;
- if (d == 0)
- break;
- /* Find next term in continued fraction, 'a', via
- * Euclidean algorithm.
- */
- dp = d;
- a = n / d;
- d = n % d;
- n = dp;
- /* Calculate the current rational approximation (aka
- * convergent), n2/d2, using the term just found and
- * the two prior approximations.
- */
- n2 = n0 + a * n1;
- d2 = d0 + a * d1;
- /* If the current convergent exceeds the maxes, then
- * return either the previous convergent or the
- * largest semi-convergent, the final term of which is
- * found below as 't'.
- */
- if ((n2 > max_numerator) || (d2 > max_denominator)) {
- unsigned long t = ULONG_MAX;
- if (d1)
- t = (max_denominator - d0) / d1;
- if (n1)
- t = min(t, (max_numerator - n0) / n1);
- /* This tests if the semi-convergent is closer than the previous
- * convergent. If d1 is zero there is no previous convergent as this
- * is the 1st iteration, so always choose the semi-convergent.
- */
- if (!d1 || 2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
- n1 = n0 + t * n1;
- d1 = d0 + t * d1;
- }
- break;
- }
- n0 = n1;
- n1 = n2;
- d0 = d1;
- d1 = d2;
- }
- *best_numerator = n1;
- *best_denominator = d1;
- }
- EXPORT_SYMBOL(rational_best_approximation);
- MODULE_LICENSE("GPL v2");
|