x509_public_key.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /* Instantiate a public key crypto key from an X.509 Certificate
  3. *
  4. * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
  5. * Written by David Howells ([email protected])
  6. */
  7. #define pr_fmt(fmt) "X.509: "fmt
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <keys/asymmetric-subtype.h>
  12. #include <keys/asymmetric-parser.h>
  13. #include <keys/system_keyring.h>
  14. #include <crypto/hash.h>
  15. #include "asymmetric_keys.h"
  16. #include "x509_parser.h"
  17. /*
  18. * Set up the signature parameters in an X.509 certificate. This involves
  19. * digesting the signed data and extracting the signature.
  20. */
  21. int x509_get_sig_params(struct x509_certificate *cert)
  22. {
  23. struct public_key_signature *sig = cert->sig;
  24. struct crypto_shash *tfm;
  25. struct shash_desc *desc;
  26. size_t desc_size;
  27. int ret;
  28. pr_devel("==>%s()\n", __func__);
  29. sig->data = cert->tbs;
  30. sig->data_size = cert->tbs_size;
  31. sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
  32. if (!sig->s)
  33. return -ENOMEM;
  34. sig->s_size = cert->raw_sig_size;
  35. /* Allocate the hashing algorithm we're going to need and find out how
  36. * big the hash operational data will be.
  37. */
  38. tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
  39. if (IS_ERR(tfm)) {
  40. if (PTR_ERR(tfm) == -ENOENT) {
  41. cert->unsupported_sig = true;
  42. return 0;
  43. }
  44. return PTR_ERR(tfm);
  45. }
  46. desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
  47. sig->digest_size = crypto_shash_digestsize(tfm);
  48. ret = -ENOMEM;
  49. sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
  50. if (!sig->digest)
  51. goto error;
  52. desc = kzalloc(desc_size, GFP_KERNEL);
  53. if (!desc)
  54. goto error;
  55. desc->tfm = tfm;
  56. ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size, sig->digest);
  57. if (ret < 0)
  58. goto error_2;
  59. ret = is_hash_blacklisted(sig->digest, sig->digest_size,
  60. BLACKLIST_HASH_X509_TBS);
  61. if (ret == -EKEYREJECTED) {
  62. pr_err("Cert %*phN is blacklisted\n",
  63. sig->digest_size, sig->digest);
  64. cert->blacklisted = true;
  65. ret = 0;
  66. }
  67. error_2:
  68. kfree(desc);
  69. error:
  70. crypto_free_shash(tfm);
  71. pr_devel("<==%s() = %d\n", __func__, ret);
  72. return ret;
  73. }
  74. /*
  75. * Check for self-signedness in an X.509 cert and if found, check the signature
  76. * immediately if we can.
  77. */
  78. int x509_check_for_self_signed(struct x509_certificate *cert)
  79. {
  80. int ret = 0;
  81. pr_devel("==>%s()\n", __func__);
  82. if (cert->raw_subject_size != cert->raw_issuer_size ||
  83. memcmp(cert->raw_subject, cert->raw_issuer,
  84. cert->raw_issuer_size) != 0)
  85. goto not_self_signed;
  86. if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
  87. /* If the AKID is present it may have one or two parts. If
  88. * both are supplied, both must match.
  89. */
  90. bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
  91. bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
  92. if (!a && !b)
  93. goto not_self_signed;
  94. ret = -EKEYREJECTED;
  95. if (((a && !b) || (b && !a)) &&
  96. cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
  97. goto out;
  98. }
  99. if (cert->unsupported_sig) {
  100. ret = 0;
  101. goto out;
  102. }
  103. ret = public_key_verify_signature(cert->pub, cert->sig);
  104. if (ret < 0) {
  105. if (ret == -ENOPKG) {
  106. cert->unsupported_sig = true;
  107. ret = 0;
  108. }
  109. goto out;
  110. }
  111. pr_devel("Cert Self-signature verified");
  112. cert->self_signed = true;
  113. out:
  114. pr_devel("<==%s() = %d\n", __func__, ret);
  115. return ret;
  116. not_self_signed:
  117. pr_devel("<==%s() = 0 [not]\n", __func__);
  118. return 0;
  119. }
  120. /*
  121. * Attempt to parse a data blob for a key as an X509 certificate.
  122. */
  123. static int x509_key_preparse(struct key_preparsed_payload *prep)
  124. {
  125. struct asymmetric_key_ids *kids;
  126. struct x509_certificate *cert;
  127. const char *q;
  128. size_t srlen, sulen;
  129. char *desc = NULL, *p;
  130. int ret;
  131. cert = x509_cert_parse(prep->data, prep->datalen);
  132. if (IS_ERR(cert))
  133. return PTR_ERR(cert);
  134. pr_devel("Cert Issuer: %s\n", cert->issuer);
  135. pr_devel("Cert Subject: %s\n", cert->subject);
  136. pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
  137. pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
  138. cert->pub->id_type = "X509";
  139. if (cert->unsupported_sig) {
  140. public_key_signature_free(cert->sig);
  141. cert->sig = NULL;
  142. } else {
  143. pr_devel("Cert Signature: %s + %s\n",
  144. cert->sig->pkey_algo, cert->sig->hash_algo);
  145. }
  146. /* Don't permit addition of blacklisted keys */
  147. ret = -EKEYREJECTED;
  148. if (cert->blacklisted)
  149. goto error_free_cert;
  150. /* Propose a description */
  151. sulen = strlen(cert->subject);
  152. if (cert->raw_skid) {
  153. srlen = cert->raw_skid_size;
  154. q = cert->raw_skid;
  155. } else {
  156. srlen = cert->raw_serial_size;
  157. q = cert->raw_serial;
  158. }
  159. ret = -ENOMEM;
  160. desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
  161. if (!desc)
  162. goto error_free_cert;
  163. p = memcpy(desc, cert->subject, sulen);
  164. p += sulen;
  165. *p++ = ':';
  166. *p++ = ' ';
  167. p = bin2hex(p, q, srlen);
  168. *p = 0;
  169. kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
  170. if (!kids)
  171. goto error_free_desc;
  172. kids->id[0] = cert->id;
  173. kids->id[1] = cert->skid;
  174. kids->id[2] = asymmetric_key_generate_id(cert->raw_subject,
  175. cert->raw_subject_size,
  176. "", 0);
  177. if (IS_ERR(kids->id[2])) {
  178. ret = PTR_ERR(kids->id[2]);
  179. goto error_free_kids;
  180. }
  181. /* We're pinning the module by being linked against it */
  182. __module_get(public_key_subtype.owner);
  183. prep->payload.data[asym_subtype] = &public_key_subtype;
  184. prep->payload.data[asym_key_ids] = kids;
  185. prep->payload.data[asym_crypto] = cert->pub;
  186. prep->payload.data[asym_auth] = cert->sig;
  187. prep->description = desc;
  188. prep->quotalen = 100;
  189. /* We've finished with the certificate */
  190. cert->pub = NULL;
  191. cert->id = NULL;
  192. cert->skid = NULL;
  193. cert->sig = NULL;
  194. desc = NULL;
  195. kids = NULL;
  196. ret = 0;
  197. error_free_kids:
  198. kfree(kids);
  199. error_free_desc:
  200. kfree(desc);
  201. error_free_cert:
  202. x509_free_certificate(cert);
  203. return ret;
  204. }
  205. static struct asymmetric_key_parser x509_key_parser = {
  206. .owner = THIS_MODULE,
  207. .name = "x509",
  208. .parse = x509_key_preparse,
  209. };
  210. /*
  211. * Module stuff
  212. */
  213. extern int __init certs_selftest(void);
  214. static int __init x509_key_init(void)
  215. {
  216. int ret;
  217. ret = register_asymmetric_key_parser(&x509_key_parser);
  218. if (ret < 0)
  219. return ret;
  220. return fips_signature_selftest();
  221. }
  222. static void __exit x509_key_exit(void)
  223. {
  224. unregister_asymmetric_key_parser(&x509_key_parser);
  225. }
  226. module_init(x509_key_init);
  227. module_exit(x509_key_exit);
  228. MODULE_DESCRIPTION("X.509 certificate parser");
  229. MODULE_AUTHOR("Red Hat, Inc.");
  230. MODULE_LICENSE("GPL");