blk-flush.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Functions to sequence PREFLUSH and FUA writes.
  4. *
  5. * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
  6. * Copyright (C) 2011 Tejun Heo <[email protected]>
  7. *
  8. * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
  9. * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
  10. * properties and hardware capability.
  11. *
  12. * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
  13. * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
  14. * that the device cache should be flushed before the data is executed, and
  15. * REQ_FUA means that the data must be on non-volatile media on request
  16. * completion.
  17. *
  18. * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
  19. * difference. The requests are either completed immediately if there's no data
  20. * or executed as normal requests otherwise.
  21. *
  22. * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
  23. * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
  24. *
  25. * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
  26. * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
  27. *
  28. * The actual execution of flush is double buffered. Whenever a request
  29. * needs to execute PRE or POSTFLUSH, it queues at
  30. * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
  31. * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
  32. * completes, all the requests which were pending are proceeded to the next
  33. * step. This allows arbitrary merging of different types of PREFLUSH/FUA
  34. * requests.
  35. *
  36. * Currently, the following conditions are used to determine when to issue
  37. * flush.
  38. *
  39. * C1. At any given time, only one flush shall be in progress. This makes
  40. * double buffering sufficient.
  41. *
  42. * C2. Flush is deferred if any request is executing DATA of its sequence.
  43. * This avoids issuing separate POSTFLUSHes for requests which shared
  44. * PREFLUSH.
  45. *
  46. * C3. The second condition is ignored if there is a request which has
  47. * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
  48. * starvation in the unlikely case where there are continuous stream of
  49. * FUA (without PREFLUSH) requests.
  50. *
  51. * For devices which support FUA, it isn't clear whether C2 (and thus C3)
  52. * is beneficial.
  53. *
  54. * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
  55. * Once while executing DATA and again after the whole sequence is
  56. * complete. The first completion updates the contained bio but doesn't
  57. * finish it so that the bio submitter is notified only after the whole
  58. * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
  59. * req_bio_endio().
  60. *
  61. * The above peculiarity requires that each PREFLUSH/FUA request has only one
  62. * bio attached to it, which is guaranteed as they aren't allowed to be
  63. * merged in the usual way.
  64. */
  65. #include <linux/kernel.h>
  66. #include <linux/module.h>
  67. #include <linux/bio.h>
  68. #include <linux/blkdev.h>
  69. #include <linux/gfp.h>
  70. #include <linux/blk-mq.h>
  71. #include <linux/part_stat.h>
  72. #include "blk.h"
  73. #include "blk-mq.h"
  74. #include "blk-mq-tag.h"
  75. #include "blk-mq-sched.h"
  76. /* PREFLUSH/FUA sequences */
  77. enum {
  78. REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
  79. REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
  80. REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
  81. REQ_FSEQ_DONE = (1 << 3),
  82. REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
  83. REQ_FSEQ_POSTFLUSH,
  84. /*
  85. * If flush has been pending longer than the following timeout,
  86. * it's issued even if flush_data requests are still in flight.
  87. */
  88. FLUSH_PENDING_TIMEOUT = 5 * HZ,
  89. };
  90. static void blk_kick_flush(struct request_queue *q,
  91. struct blk_flush_queue *fq, blk_opf_t flags);
  92. static inline struct blk_flush_queue *
  93. blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
  94. {
  95. return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
  96. }
  97. static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
  98. {
  99. unsigned int policy = 0;
  100. if (blk_rq_sectors(rq))
  101. policy |= REQ_FSEQ_DATA;
  102. if (fflags & (1UL << QUEUE_FLAG_WC)) {
  103. if (rq->cmd_flags & REQ_PREFLUSH)
  104. policy |= REQ_FSEQ_PREFLUSH;
  105. if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
  106. (rq->cmd_flags & REQ_FUA))
  107. policy |= REQ_FSEQ_POSTFLUSH;
  108. }
  109. return policy;
  110. }
  111. static unsigned int blk_flush_cur_seq(struct request *rq)
  112. {
  113. return 1 << ffz(rq->flush.seq);
  114. }
  115. static void blk_flush_restore_request(struct request *rq)
  116. {
  117. /*
  118. * After flush data completion, @rq->bio is %NULL but we need to
  119. * complete the bio again. @rq->biotail is guaranteed to equal the
  120. * original @rq->bio. Restore it.
  121. */
  122. rq->bio = rq->biotail;
  123. /* make @rq a normal request */
  124. rq->rq_flags &= ~RQF_FLUSH_SEQ;
  125. rq->end_io = rq->flush.saved_end_io;
  126. }
  127. static void blk_flush_queue_rq(struct request *rq, bool add_front)
  128. {
  129. blk_mq_add_to_requeue_list(rq, add_front, true);
  130. }
  131. static void blk_account_io_flush(struct request *rq)
  132. {
  133. struct block_device *part = rq->q->disk->part0;
  134. part_stat_lock();
  135. part_stat_inc(part, ios[STAT_FLUSH]);
  136. part_stat_add(part, nsecs[STAT_FLUSH],
  137. ktime_get_ns() - rq->start_time_ns);
  138. part_stat_unlock();
  139. }
  140. /**
  141. * blk_flush_complete_seq - complete flush sequence
  142. * @rq: PREFLUSH/FUA request being sequenced
  143. * @fq: flush queue
  144. * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
  145. * @error: whether an error occurred
  146. *
  147. * @rq just completed @seq part of its flush sequence, record the
  148. * completion and trigger the next step.
  149. *
  150. * CONTEXT:
  151. * spin_lock_irq(fq->mq_flush_lock)
  152. */
  153. static void blk_flush_complete_seq(struct request *rq,
  154. struct blk_flush_queue *fq,
  155. unsigned int seq, blk_status_t error)
  156. {
  157. struct request_queue *q = rq->q;
  158. struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
  159. blk_opf_t cmd_flags;
  160. BUG_ON(rq->flush.seq & seq);
  161. rq->flush.seq |= seq;
  162. cmd_flags = rq->cmd_flags;
  163. if (likely(!error))
  164. seq = blk_flush_cur_seq(rq);
  165. else
  166. seq = REQ_FSEQ_DONE;
  167. switch (seq) {
  168. case REQ_FSEQ_PREFLUSH:
  169. case REQ_FSEQ_POSTFLUSH:
  170. /* queue for flush */
  171. if (list_empty(pending))
  172. fq->flush_pending_since = jiffies;
  173. list_move_tail(&rq->flush.list, pending);
  174. break;
  175. case REQ_FSEQ_DATA:
  176. list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
  177. blk_flush_queue_rq(rq, true);
  178. break;
  179. case REQ_FSEQ_DONE:
  180. /*
  181. * @rq was previously adjusted by blk_insert_flush() for
  182. * flush sequencing and may already have gone through the
  183. * flush data request completion path. Restore @rq for
  184. * normal completion and end it.
  185. */
  186. list_del_init(&rq->flush.list);
  187. blk_flush_restore_request(rq);
  188. blk_mq_end_request(rq, error);
  189. break;
  190. default:
  191. BUG();
  192. }
  193. blk_kick_flush(q, fq, cmd_flags);
  194. }
  195. static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
  196. blk_status_t error)
  197. {
  198. struct request_queue *q = flush_rq->q;
  199. struct list_head *running;
  200. struct request *rq, *n;
  201. unsigned long flags = 0;
  202. struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
  203. /* release the tag's ownership to the req cloned from */
  204. spin_lock_irqsave(&fq->mq_flush_lock, flags);
  205. if (!req_ref_put_and_test(flush_rq)) {
  206. fq->rq_status = error;
  207. spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
  208. return RQ_END_IO_NONE;
  209. }
  210. blk_account_io_flush(flush_rq);
  211. /*
  212. * Flush request has to be marked as IDLE when it is really ended
  213. * because its .end_io() is called from timeout code path too for
  214. * avoiding use-after-free.
  215. */
  216. WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
  217. if (fq->rq_status != BLK_STS_OK) {
  218. error = fq->rq_status;
  219. fq->rq_status = BLK_STS_OK;
  220. }
  221. if (!q->elevator) {
  222. flush_rq->tag = BLK_MQ_NO_TAG;
  223. } else {
  224. blk_mq_put_driver_tag(flush_rq);
  225. flush_rq->internal_tag = BLK_MQ_NO_TAG;
  226. }
  227. running = &fq->flush_queue[fq->flush_running_idx];
  228. BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
  229. /* account completion of the flush request */
  230. fq->flush_running_idx ^= 1;
  231. /* and push the waiting requests to the next stage */
  232. list_for_each_entry_safe(rq, n, running, flush.list) {
  233. unsigned int seq = blk_flush_cur_seq(rq);
  234. BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
  235. blk_flush_complete_seq(rq, fq, seq, error);
  236. }
  237. spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
  238. return RQ_END_IO_NONE;
  239. }
  240. bool is_flush_rq(struct request *rq)
  241. {
  242. return rq->end_io == flush_end_io;
  243. }
  244. /**
  245. * blk_kick_flush - consider issuing flush request
  246. * @q: request_queue being kicked
  247. * @fq: flush queue
  248. * @flags: cmd_flags of the original request
  249. *
  250. * Flush related states of @q have changed, consider issuing flush request.
  251. * Please read the comment at the top of this file for more info.
  252. *
  253. * CONTEXT:
  254. * spin_lock_irq(fq->mq_flush_lock)
  255. *
  256. */
  257. static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
  258. blk_opf_t flags)
  259. {
  260. struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
  261. struct request *first_rq =
  262. list_first_entry(pending, struct request, flush.list);
  263. struct request *flush_rq = fq->flush_rq;
  264. /* C1 described at the top of this file */
  265. if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
  266. return;
  267. /* C2 and C3 */
  268. if (!list_empty(&fq->flush_data_in_flight) &&
  269. time_before(jiffies,
  270. fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
  271. return;
  272. /*
  273. * Issue flush and toggle pending_idx. This makes pending_idx
  274. * different from running_idx, which means flush is in flight.
  275. */
  276. fq->flush_pending_idx ^= 1;
  277. blk_rq_init(q, flush_rq);
  278. /*
  279. * In case of none scheduler, borrow tag from the first request
  280. * since they can't be in flight at the same time. And acquire
  281. * the tag's ownership for flush req.
  282. *
  283. * In case of IO scheduler, flush rq need to borrow scheduler tag
  284. * just for cheating put/get driver tag.
  285. */
  286. flush_rq->mq_ctx = first_rq->mq_ctx;
  287. flush_rq->mq_hctx = first_rq->mq_hctx;
  288. if (!q->elevator) {
  289. flush_rq->tag = first_rq->tag;
  290. /*
  291. * We borrow data request's driver tag, so have to mark
  292. * this flush request as INFLIGHT for avoiding double
  293. * account of this driver tag
  294. */
  295. flush_rq->rq_flags |= RQF_MQ_INFLIGHT;
  296. } else
  297. flush_rq->internal_tag = first_rq->internal_tag;
  298. flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
  299. flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
  300. flush_rq->rq_flags |= RQF_FLUSH_SEQ;
  301. flush_rq->end_io = flush_end_io;
  302. /*
  303. * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
  304. * implied in refcount_inc_not_zero() called from
  305. * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
  306. * and READ flush_rq->end_io
  307. */
  308. smp_wmb();
  309. req_ref_set(flush_rq, 1);
  310. blk_flush_queue_rq(flush_rq, false);
  311. }
  312. static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
  313. blk_status_t error)
  314. {
  315. struct request_queue *q = rq->q;
  316. struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
  317. struct blk_mq_ctx *ctx = rq->mq_ctx;
  318. unsigned long flags;
  319. struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
  320. if (q->elevator) {
  321. WARN_ON(rq->tag < 0);
  322. blk_mq_put_driver_tag(rq);
  323. }
  324. /*
  325. * After populating an empty queue, kick it to avoid stall. Read
  326. * the comment in flush_end_io().
  327. */
  328. spin_lock_irqsave(&fq->mq_flush_lock, flags);
  329. blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
  330. spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
  331. blk_mq_sched_restart(hctx);
  332. return RQ_END_IO_NONE;
  333. }
  334. /**
  335. * blk_insert_flush - insert a new PREFLUSH/FUA request
  336. * @rq: request to insert
  337. *
  338. * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
  339. * or __blk_mq_run_hw_queue() to dispatch request.
  340. * @rq is being submitted. Analyze what needs to be done and put it on the
  341. * right queue.
  342. */
  343. void blk_insert_flush(struct request *rq)
  344. {
  345. struct request_queue *q = rq->q;
  346. unsigned long fflags = q->queue_flags; /* may change, cache */
  347. unsigned int policy = blk_flush_policy(fflags, rq);
  348. struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
  349. /*
  350. * @policy now records what operations need to be done. Adjust
  351. * REQ_PREFLUSH and FUA for the driver.
  352. */
  353. rq->cmd_flags &= ~REQ_PREFLUSH;
  354. if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
  355. rq->cmd_flags &= ~REQ_FUA;
  356. /*
  357. * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
  358. * of those flags, we have to set REQ_SYNC to avoid skewing
  359. * the request accounting.
  360. */
  361. rq->cmd_flags |= REQ_SYNC;
  362. /*
  363. * An empty flush handed down from a stacking driver may
  364. * translate into nothing if the underlying device does not
  365. * advertise a write-back cache. In this case, simply
  366. * complete the request.
  367. */
  368. if (!policy) {
  369. blk_mq_end_request(rq, 0);
  370. return;
  371. }
  372. BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
  373. /*
  374. * If there's data but flush is not necessary, the request can be
  375. * processed directly without going through flush machinery. Queue
  376. * for normal execution.
  377. */
  378. if ((policy & REQ_FSEQ_DATA) &&
  379. !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
  380. blk_mq_request_bypass_insert(rq, false, true);
  381. return;
  382. }
  383. /*
  384. * @rq should go through flush machinery. Mark it part of flush
  385. * sequence and submit for further processing.
  386. */
  387. memset(&rq->flush, 0, sizeof(rq->flush));
  388. INIT_LIST_HEAD(&rq->flush.list);
  389. rq->rq_flags |= RQF_FLUSH_SEQ;
  390. rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
  391. rq->end_io = mq_flush_data_end_io;
  392. spin_lock_irq(&fq->mq_flush_lock);
  393. blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
  394. spin_unlock_irq(&fq->mq_flush_lock);
  395. }
  396. /**
  397. * blkdev_issue_flush - queue a flush
  398. * @bdev: blockdev to issue flush for
  399. *
  400. * Description:
  401. * Issue a flush for the block device in question.
  402. */
  403. int blkdev_issue_flush(struct block_device *bdev)
  404. {
  405. struct bio bio;
  406. bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
  407. return submit_bio_wait(&bio);
  408. }
  409. EXPORT_SYMBOL(blkdev_issue_flush);
  410. struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
  411. gfp_t flags)
  412. {
  413. struct blk_flush_queue *fq;
  414. int rq_sz = sizeof(struct request);
  415. fq = kzalloc_node(sizeof(*fq), flags, node);
  416. if (!fq)
  417. goto fail;
  418. spin_lock_init(&fq->mq_flush_lock);
  419. rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
  420. fq->flush_rq = kzalloc_node(rq_sz, flags, node);
  421. if (!fq->flush_rq)
  422. goto fail_rq;
  423. INIT_LIST_HEAD(&fq->flush_queue[0]);
  424. INIT_LIST_HEAD(&fq->flush_queue[1]);
  425. INIT_LIST_HEAD(&fq->flush_data_in_flight);
  426. return fq;
  427. fail_rq:
  428. kfree(fq);
  429. fail:
  430. return NULL;
  431. }
  432. void blk_free_flush_queue(struct blk_flush_queue *fq)
  433. {
  434. /* bio based request queue hasn't flush queue */
  435. if (!fq)
  436. return;
  437. kfree(fq->flush_rq);
  438. kfree(fq);
  439. }
  440. /*
  441. * Allow driver to set its own lock class to fq->mq_flush_lock for
  442. * avoiding lockdep complaint.
  443. *
  444. * flush_end_io() may be called recursively from some driver, such as
  445. * nvme-loop, so lockdep may complain 'possible recursive locking' because
  446. * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
  447. * key. We need to assign different lock class for these driver's
  448. * fq->mq_flush_lock for avoiding the lockdep warning.
  449. *
  450. * Use dynamically allocated lock class key for each 'blk_flush_queue'
  451. * instance is over-kill, and more worse it introduces horrible boot delay
  452. * issue because synchronize_rcu() is implied in lockdep_unregister_key which
  453. * is called for each hctx release. SCSI probing may synchronously create and
  454. * destroy lots of MQ request_queues for non-existent devices, and some robot
  455. * test kernel always enable lockdep option. It is observed that more than half
  456. * an hour is taken during SCSI MQ probe with per-fq lock class.
  457. */
  458. void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
  459. struct lock_class_key *key)
  460. {
  461. lockdep_set_class(&hctx->fq->mq_flush_lock, key);
  462. }
  463. EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);