pmu.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/types.h>
  3. #include <linux/interrupt.h>
  4. #include <asm/xen/hypercall.h>
  5. #include <xen/xen.h>
  6. #include <xen/page.h>
  7. #include <xen/interface/xen.h>
  8. #include <xen/interface/vcpu.h>
  9. #include <xen/interface/xenpmu.h>
  10. #include "xen-ops.h"
  11. #include "pmu.h"
  12. /* x86_pmu.handle_irq definition */
  13. #include "../events/perf_event.h"
  14. #define XENPMU_IRQ_PROCESSING 1
  15. struct xenpmu {
  16. /* Shared page between hypervisor and domain */
  17. struct xen_pmu_data *xenpmu_data;
  18. uint8_t flags;
  19. };
  20. static DEFINE_PER_CPU(struct xenpmu, xenpmu_shared);
  21. #define get_xenpmu_data() (this_cpu_ptr(&xenpmu_shared)->xenpmu_data)
  22. #define get_xenpmu_flags() (this_cpu_ptr(&xenpmu_shared)->flags)
  23. /* Macro for computing address of a PMU MSR bank */
  24. #define field_offset(ctxt, field) ((void *)((uintptr_t)ctxt + \
  25. (uintptr_t)ctxt->field))
  26. /* AMD PMU */
  27. #define F15H_NUM_COUNTERS 6
  28. #define F10H_NUM_COUNTERS 4
  29. static __read_mostly uint32_t amd_counters_base;
  30. static __read_mostly uint32_t amd_ctrls_base;
  31. static __read_mostly int amd_msr_step;
  32. static __read_mostly int k7_counters_mirrored;
  33. static __read_mostly int amd_num_counters;
  34. /* Intel PMU */
  35. #define MSR_TYPE_COUNTER 0
  36. #define MSR_TYPE_CTRL 1
  37. #define MSR_TYPE_GLOBAL 2
  38. #define MSR_TYPE_ARCH_COUNTER 3
  39. #define MSR_TYPE_ARCH_CTRL 4
  40. /* Number of general pmu registers (CPUID.EAX[0xa].EAX[8..15]) */
  41. #define PMU_GENERAL_NR_SHIFT 8
  42. #define PMU_GENERAL_NR_BITS 8
  43. #define PMU_GENERAL_NR_MASK (((1 << PMU_GENERAL_NR_BITS) - 1) \
  44. << PMU_GENERAL_NR_SHIFT)
  45. /* Number of fixed pmu registers (CPUID.EDX[0xa].EDX[0..4]) */
  46. #define PMU_FIXED_NR_SHIFT 0
  47. #define PMU_FIXED_NR_BITS 5
  48. #define PMU_FIXED_NR_MASK (((1 << PMU_FIXED_NR_BITS) - 1) \
  49. << PMU_FIXED_NR_SHIFT)
  50. /* Alias registers (0x4c1) for full-width writes to PMCs */
  51. #define MSR_PMC_ALIAS_MASK (~(MSR_IA32_PERFCTR0 ^ MSR_IA32_PMC0))
  52. #define INTEL_PMC_TYPE_SHIFT 30
  53. static __read_mostly int intel_num_arch_counters, intel_num_fixed_counters;
  54. static void xen_pmu_arch_init(void)
  55. {
  56. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
  57. switch (boot_cpu_data.x86) {
  58. case 0x15:
  59. amd_num_counters = F15H_NUM_COUNTERS;
  60. amd_counters_base = MSR_F15H_PERF_CTR;
  61. amd_ctrls_base = MSR_F15H_PERF_CTL;
  62. amd_msr_step = 2;
  63. k7_counters_mirrored = 1;
  64. break;
  65. case 0x10:
  66. case 0x12:
  67. case 0x14:
  68. case 0x16:
  69. default:
  70. amd_num_counters = F10H_NUM_COUNTERS;
  71. amd_counters_base = MSR_K7_PERFCTR0;
  72. amd_ctrls_base = MSR_K7_EVNTSEL0;
  73. amd_msr_step = 1;
  74. k7_counters_mirrored = 0;
  75. break;
  76. }
  77. } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
  78. amd_num_counters = F10H_NUM_COUNTERS;
  79. amd_counters_base = MSR_K7_PERFCTR0;
  80. amd_ctrls_base = MSR_K7_EVNTSEL0;
  81. amd_msr_step = 1;
  82. k7_counters_mirrored = 0;
  83. } else {
  84. uint32_t eax, ebx, ecx, edx;
  85. cpuid(0xa, &eax, &ebx, &ecx, &edx);
  86. intel_num_arch_counters = (eax & PMU_GENERAL_NR_MASK) >>
  87. PMU_GENERAL_NR_SHIFT;
  88. intel_num_fixed_counters = (edx & PMU_FIXED_NR_MASK) >>
  89. PMU_FIXED_NR_SHIFT;
  90. }
  91. }
  92. static inline uint32_t get_fam15h_addr(u32 addr)
  93. {
  94. switch (addr) {
  95. case MSR_K7_PERFCTR0:
  96. case MSR_K7_PERFCTR1:
  97. case MSR_K7_PERFCTR2:
  98. case MSR_K7_PERFCTR3:
  99. return MSR_F15H_PERF_CTR + (addr - MSR_K7_PERFCTR0);
  100. case MSR_K7_EVNTSEL0:
  101. case MSR_K7_EVNTSEL1:
  102. case MSR_K7_EVNTSEL2:
  103. case MSR_K7_EVNTSEL3:
  104. return MSR_F15H_PERF_CTL + (addr - MSR_K7_EVNTSEL0);
  105. default:
  106. break;
  107. }
  108. return addr;
  109. }
  110. static inline bool is_amd_pmu_msr(unsigned int msr)
  111. {
  112. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
  113. boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
  114. return false;
  115. if ((msr >= MSR_F15H_PERF_CTL &&
  116. msr < MSR_F15H_PERF_CTR + (amd_num_counters * 2)) ||
  117. (msr >= MSR_K7_EVNTSEL0 &&
  118. msr < MSR_K7_PERFCTR0 + amd_num_counters))
  119. return true;
  120. return false;
  121. }
  122. static bool is_intel_pmu_msr(u32 msr_index, int *type, int *index)
  123. {
  124. u32 msr_index_pmc;
  125. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
  126. boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR &&
  127. boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
  128. return false;
  129. switch (msr_index) {
  130. case MSR_CORE_PERF_FIXED_CTR_CTRL:
  131. case MSR_IA32_DS_AREA:
  132. case MSR_IA32_PEBS_ENABLE:
  133. *type = MSR_TYPE_CTRL;
  134. return true;
  135. case MSR_CORE_PERF_GLOBAL_CTRL:
  136. case MSR_CORE_PERF_GLOBAL_STATUS:
  137. case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
  138. *type = MSR_TYPE_GLOBAL;
  139. return true;
  140. default:
  141. if ((msr_index >= MSR_CORE_PERF_FIXED_CTR0) &&
  142. (msr_index < MSR_CORE_PERF_FIXED_CTR0 +
  143. intel_num_fixed_counters)) {
  144. *index = msr_index - MSR_CORE_PERF_FIXED_CTR0;
  145. *type = MSR_TYPE_COUNTER;
  146. return true;
  147. }
  148. if ((msr_index >= MSR_P6_EVNTSEL0) &&
  149. (msr_index < MSR_P6_EVNTSEL0 + intel_num_arch_counters)) {
  150. *index = msr_index - MSR_P6_EVNTSEL0;
  151. *type = MSR_TYPE_ARCH_CTRL;
  152. return true;
  153. }
  154. msr_index_pmc = msr_index & MSR_PMC_ALIAS_MASK;
  155. if ((msr_index_pmc >= MSR_IA32_PERFCTR0) &&
  156. (msr_index_pmc < MSR_IA32_PERFCTR0 +
  157. intel_num_arch_counters)) {
  158. *type = MSR_TYPE_ARCH_COUNTER;
  159. *index = msr_index_pmc - MSR_IA32_PERFCTR0;
  160. return true;
  161. }
  162. return false;
  163. }
  164. }
  165. static bool xen_intel_pmu_emulate(unsigned int msr, u64 *val, int type,
  166. int index, bool is_read)
  167. {
  168. uint64_t *reg = NULL;
  169. struct xen_pmu_intel_ctxt *ctxt;
  170. uint64_t *fix_counters;
  171. struct xen_pmu_cntr_pair *arch_cntr_pair;
  172. struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  173. uint8_t xenpmu_flags = get_xenpmu_flags();
  174. if (!xenpmu_data || !(xenpmu_flags & XENPMU_IRQ_PROCESSING))
  175. return false;
  176. ctxt = &xenpmu_data->pmu.c.intel;
  177. switch (msr) {
  178. case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
  179. reg = &ctxt->global_ovf_ctrl;
  180. break;
  181. case MSR_CORE_PERF_GLOBAL_STATUS:
  182. reg = &ctxt->global_status;
  183. break;
  184. case MSR_CORE_PERF_GLOBAL_CTRL:
  185. reg = &ctxt->global_ctrl;
  186. break;
  187. case MSR_CORE_PERF_FIXED_CTR_CTRL:
  188. reg = &ctxt->fixed_ctrl;
  189. break;
  190. default:
  191. switch (type) {
  192. case MSR_TYPE_COUNTER:
  193. fix_counters = field_offset(ctxt, fixed_counters);
  194. reg = &fix_counters[index];
  195. break;
  196. case MSR_TYPE_ARCH_COUNTER:
  197. arch_cntr_pair = field_offset(ctxt, arch_counters);
  198. reg = &arch_cntr_pair[index].counter;
  199. break;
  200. case MSR_TYPE_ARCH_CTRL:
  201. arch_cntr_pair = field_offset(ctxt, arch_counters);
  202. reg = &arch_cntr_pair[index].control;
  203. break;
  204. default:
  205. return false;
  206. }
  207. }
  208. if (reg) {
  209. if (is_read)
  210. *val = *reg;
  211. else {
  212. *reg = *val;
  213. if (msr == MSR_CORE_PERF_GLOBAL_OVF_CTRL)
  214. ctxt->global_status &= (~(*val));
  215. }
  216. return true;
  217. }
  218. return false;
  219. }
  220. static bool xen_amd_pmu_emulate(unsigned int msr, u64 *val, bool is_read)
  221. {
  222. uint64_t *reg = NULL;
  223. int i, off = 0;
  224. struct xen_pmu_amd_ctxt *ctxt;
  225. uint64_t *counter_regs, *ctrl_regs;
  226. struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  227. uint8_t xenpmu_flags = get_xenpmu_flags();
  228. if (!xenpmu_data || !(xenpmu_flags & XENPMU_IRQ_PROCESSING))
  229. return false;
  230. if (k7_counters_mirrored &&
  231. ((msr >= MSR_K7_EVNTSEL0) && (msr <= MSR_K7_PERFCTR3)))
  232. msr = get_fam15h_addr(msr);
  233. ctxt = &xenpmu_data->pmu.c.amd;
  234. for (i = 0; i < amd_num_counters; i++) {
  235. if (msr == amd_ctrls_base + off) {
  236. ctrl_regs = field_offset(ctxt, ctrls);
  237. reg = &ctrl_regs[i];
  238. break;
  239. } else if (msr == amd_counters_base + off) {
  240. counter_regs = field_offset(ctxt, counters);
  241. reg = &counter_regs[i];
  242. break;
  243. }
  244. off += amd_msr_step;
  245. }
  246. if (reg) {
  247. if (is_read)
  248. *val = *reg;
  249. else
  250. *reg = *val;
  251. return true;
  252. }
  253. return false;
  254. }
  255. static bool pmu_msr_chk_emulated(unsigned int msr, uint64_t *val, bool is_read,
  256. bool *emul)
  257. {
  258. int type, index = 0;
  259. if (is_amd_pmu_msr(msr))
  260. *emul = xen_amd_pmu_emulate(msr, val, is_read);
  261. else if (is_intel_pmu_msr(msr, &type, &index))
  262. *emul = xen_intel_pmu_emulate(msr, val, type, index, is_read);
  263. else
  264. return false;
  265. return true;
  266. }
  267. bool pmu_msr_read(unsigned int msr, uint64_t *val, int *err)
  268. {
  269. bool emulated;
  270. if (!pmu_msr_chk_emulated(msr, val, true, &emulated))
  271. return false;
  272. if (!emulated) {
  273. *val = err ? native_read_msr_safe(msr, err)
  274. : native_read_msr(msr);
  275. }
  276. return true;
  277. }
  278. bool pmu_msr_write(unsigned int msr, uint32_t low, uint32_t high, int *err)
  279. {
  280. uint64_t val = ((uint64_t)high << 32) | low;
  281. bool emulated;
  282. if (!pmu_msr_chk_emulated(msr, &val, false, &emulated))
  283. return false;
  284. if (!emulated) {
  285. if (err)
  286. *err = native_write_msr_safe(msr, low, high);
  287. else
  288. native_write_msr(msr, low, high);
  289. }
  290. return true;
  291. }
  292. static unsigned long long xen_amd_read_pmc(int counter)
  293. {
  294. struct xen_pmu_amd_ctxt *ctxt;
  295. uint64_t *counter_regs;
  296. struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  297. uint8_t xenpmu_flags = get_xenpmu_flags();
  298. if (!xenpmu_data || !(xenpmu_flags & XENPMU_IRQ_PROCESSING)) {
  299. uint32_t msr;
  300. int err;
  301. msr = amd_counters_base + (counter * amd_msr_step);
  302. return native_read_msr_safe(msr, &err);
  303. }
  304. ctxt = &xenpmu_data->pmu.c.amd;
  305. counter_regs = field_offset(ctxt, counters);
  306. return counter_regs[counter];
  307. }
  308. static unsigned long long xen_intel_read_pmc(int counter)
  309. {
  310. struct xen_pmu_intel_ctxt *ctxt;
  311. uint64_t *fixed_counters;
  312. struct xen_pmu_cntr_pair *arch_cntr_pair;
  313. struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  314. uint8_t xenpmu_flags = get_xenpmu_flags();
  315. if (!xenpmu_data || !(xenpmu_flags & XENPMU_IRQ_PROCESSING)) {
  316. uint32_t msr;
  317. int err;
  318. if (counter & (1 << INTEL_PMC_TYPE_SHIFT))
  319. msr = MSR_CORE_PERF_FIXED_CTR0 + (counter & 0xffff);
  320. else
  321. msr = MSR_IA32_PERFCTR0 + counter;
  322. return native_read_msr_safe(msr, &err);
  323. }
  324. ctxt = &xenpmu_data->pmu.c.intel;
  325. if (counter & (1 << INTEL_PMC_TYPE_SHIFT)) {
  326. fixed_counters = field_offset(ctxt, fixed_counters);
  327. return fixed_counters[counter & 0xffff];
  328. }
  329. arch_cntr_pair = field_offset(ctxt, arch_counters);
  330. return arch_cntr_pair[counter].counter;
  331. }
  332. unsigned long long xen_read_pmc(int counter)
  333. {
  334. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  335. return xen_amd_read_pmc(counter);
  336. else
  337. return xen_intel_read_pmc(counter);
  338. }
  339. int pmu_apic_update(uint32_t val)
  340. {
  341. int ret;
  342. struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  343. if (!xenpmu_data) {
  344. pr_warn_once("%s: pmudata not initialized\n", __func__);
  345. return -EINVAL;
  346. }
  347. xenpmu_data->pmu.l.lapic_lvtpc = val;
  348. if (get_xenpmu_flags() & XENPMU_IRQ_PROCESSING)
  349. return 0;
  350. ret = HYPERVISOR_xenpmu_op(XENPMU_lvtpc_set, NULL);
  351. return ret;
  352. }
  353. /* perf callbacks */
  354. static unsigned int xen_guest_state(void)
  355. {
  356. const struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  357. unsigned int state = 0;
  358. if (!xenpmu_data) {
  359. pr_warn_once("%s: pmudata not initialized\n", __func__);
  360. return state;
  361. }
  362. if (!xen_initial_domain() || (xenpmu_data->domain_id >= DOMID_SELF))
  363. return state;
  364. state |= PERF_GUEST_ACTIVE;
  365. if (xenpmu_data->pmu.pmu_flags & PMU_SAMPLE_PV) {
  366. if (xenpmu_data->pmu.pmu_flags & PMU_SAMPLE_USER)
  367. state |= PERF_GUEST_USER;
  368. } else if (xenpmu_data->pmu.r.regs.cpl & 3) {
  369. state |= PERF_GUEST_USER;
  370. }
  371. return state;
  372. }
  373. static unsigned long xen_get_guest_ip(void)
  374. {
  375. const struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  376. if (!xenpmu_data) {
  377. pr_warn_once("%s: pmudata not initialized\n", __func__);
  378. return 0;
  379. }
  380. return xenpmu_data->pmu.r.regs.ip;
  381. }
  382. static struct perf_guest_info_callbacks xen_guest_cbs = {
  383. .state = xen_guest_state,
  384. .get_ip = xen_get_guest_ip,
  385. };
  386. /* Convert registers from Xen's format to Linux' */
  387. static void xen_convert_regs(const struct xen_pmu_regs *xen_regs,
  388. struct pt_regs *regs, uint64_t pmu_flags)
  389. {
  390. regs->ip = xen_regs->ip;
  391. regs->cs = xen_regs->cs;
  392. regs->sp = xen_regs->sp;
  393. if (pmu_flags & PMU_SAMPLE_PV) {
  394. if (pmu_flags & PMU_SAMPLE_USER)
  395. regs->cs |= 3;
  396. else
  397. regs->cs &= ~3;
  398. } else {
  399. if (xen_regs->cpl)
  400. regs->cs |= 3;
  401. else
  402. regs->cs &= ~3;
  403. }
  404. }
  405. irqreturn_t xen_pmu_irq_handler(int irq, void *dev_id)
  406. {
  407. int err, ret = IRQ_NONE;
  408. struct pt_regs regs = {0};
  409. const struct xen_pmu_data *xenpmu_data = get_xenpmu_data();
  410. uint8_t xenpmu_flags = get_xenpmu_flags();
  411. if (!xenpmu_data) {
  412. pr_warn_once("%s: pmudata not initialized\n", __func__);
  413. return ret;
  414. }
  415. this_cpu_ptr(&xenpmu_shared)->flags =
  416. xenpmu_flags | XENPMU_IRQ_PROCESSING;
  417. xen_convert_regs(&xenpmu_data->pmu.r.regs, &regs,
  418. xenpmu_data->pmu.pmu_flags);
  419. if (x86_pmu.handle_irq(&regs))
  420. ret = IRQ_HANDLED;
  421. /* Write out cached context to HW */
  422. err = HYPERVISOR_xenpmu_op(XENPMU_flush, NULL);
  423. this_cpu_ptr(&xenpmu_shared)->flags = xenpmu_flags;
  424. if (err) {
  425. pr_warn_once("%s: failed hypercall, err: %d\n", __func__, err);
  426. return IRQ_NONE;
  427. }
  428. return ret;
  429. }
  430. bool is_xen_pmu;
  431. void xen_pmu_init(int cpu)
  432. {
  433. int err;
  434. struct xen_pmu_params xp;
  435. unsigned long pfn;
  436. struct xen_pmu_data *xenpmu_data;
  437. BUILD_BUG_ON(sizeof(struct xen_pmu_data) > PAGE_SIZE);
  438. if (xen_hvm_domain() || (cpu != 0 && !is_xen_pmu))
  439. return;
  440. xenpmu_data = (struct xen_pmu_data *)get_zeroed_page(GFP_KERNEL);
  441. if (!xenpmu_data) {
  442. pr_err("VPMU init: No memory\n");
  443. return;
  444. }
  445. pfn = virt_to_pfn(xenpmu_data);
  446. xp.val = pfn_to_mfn(pfn);
  447. xp.vcpu = cpu;
  448. xp.version.maj = XENPMU_VER_MAJ;
  449. xp.version.min = XENPMU_VER_MIN;
  450. err = HYPERVISOR_xenpmu_op(XENPMU_init, &xp);
  451. if (err)
  452. goto fail;
  453. per_cpu(xenpmu_shared, cpu).xenpmu_data = xenpmu_data;
  454. per_cpu(xenpmu_shared, cpu).flags = 0;
  455. if (!is_xen_pmu) {
  456. is_xen_pmu = true;
  457. perf_register_guest_info_callbacks(&xen_guest_cbs);
  458. xen_pmu_arch_init();
  459. }
  460. return;
  461. fail:
  462. if (err == -EOPNOTSUPP || err == -ENOSYS)
  463. pr_info_once("VPMU disabled by hypervisor.\n");
  464. else
  465. pr_info_once("Could not initialize VPMU for cpu %d, error %d\n",
  466. cpu, err);
  467. free_pages((unsigned long)xenpmu_data, 0);
  468. }
  469. void xen_pmu_finish(int cpu)
  470. {
  471. struct xen_pmu_params xp;
  472. if (xen_hvm_domain())
  473. return;
  474. xp.vcpu = cpu;
  475. xp.version.maj = XENPMU_VER_MAJ;
  476. xp.version.min = XENPMU_VER_MIN;
  477. (void)HYPERVISOR_xenpmu_op(XENPMU_finish, &xp);
  478. free_pages((unsigned long)per_cpu(xenpmu_shared, cpu).xenpmu_data, 0);
  479. per_cpu(xenpmu_shared, cpu).xenpmu_data = NULL;
  480. }