mmu_pv.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Xen mmu operations
  4. *
  5. * This file contains the various mmu fetch and update operations.
  6. * The most important job they must perform is the mapping between the
  7. * domain's pfn and the overall machine mfns.
  8. *
  9. * Xen allows guests to directly update the pagetable, in a controlled
  10. * fashion. In other words, the guest modifies the same pagetable
  11. * that the CPU actually uses, which eliminates the overhead of having
  12. * a separate shadow pagetable.
  13. *
  14. * In order to allow this, it falls on the guest domain to map its
  15. * notion of a "physical" pfn - which is just a domain-local linear
  16. * address - into a real "machine address" which the CPU's MMU can
  17. * use.
  18. *
  19. * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  20. * inserted directly into the pagetable. When creating a new
  21. * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
  22. * when reading the content back with __(pgd|pmd|pte)_val, it converts
  23. * the mfn back into a pfn.
  24. *
  25. * The other constraint is that all pages which make up a pagetable
  26. * must be mapped read-only in the guest. This prevents uncontrolled
  27. * guest updates to the pagetable. Xen strictly enforces this, and
  28. * will disallow any pagetable update which will end up mapping a
  29. * pagetable page RW, and will disallow using any writable page as a
  30. * pagetable.
  31. *
  32. * Naively, when loading %cr3 with the base of a new pagetable, Xen
  33. * would need to validate the whole pagetable before going on.
  34. * Naturally, this is quite slow. The solution is to "pin" a
  35. * pagetable, which enforces all the constraints on the pagetable even
  36. * when it is not actively in use. This menas that Xen can be assured
  37. * that it is still valid when you do load it into %cr3, and doesn't
  38. * need to revalidate it.
  39. *
  40. * Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007
  41. */
  42. #include <linux/sched/mm.h>
  43. #include <linux/debugfs.h>
  44. #include <linux/bug.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/export.h>
  47. #include <linux/init.h>
  48. #include <linux/gfp.h>
  49. #include <linux/memblock.h>
  50. #include <linux/seq_file.h>
  51. #include <linux/crash_dump.h>
  52. #include <linux/pgtable.h>
  53. #ifdef CONFIG_KEXEC_CORE
  54. #include <linux/kexec.h>
  55. #endif
  56. #include <trace/events/xen.h>
  57. #include <asm/tlbflush.h>
  58. #include <asm/fixmap.h>
  59. #include <asm/mmu_context.h>
  60. #include <asm/setup.h>
  61. #include <asm/paravirt.h>
  62. #include <asm/e820/api.h>
  63. #include <asm/linkage.h>
  64. #include <asm/page.h>
  65. #include <asm/init.h>
  66. #include <asm/memtype.h>
  67. #include <asm/smp.h>
  68. #include <asm/tlb.h>
  69. #include <asm/xen/hypercall.h>
  70. #include <asm/xen/hypervisor.h>
  71. #include <xen/xen.h>
  72. #include <xen/page.h>
  73. #include <xen/interface/xen.h>
  74. #include <xen/interface/hvm/hvm_op.h>
  75. #include <xen/interface/version.h>
  76. #include <xen/interface/memory.h>
  77. #include <xen/hvc-console.h>
  78. #include <xen/swiotlb-xen.h>
  79. #include "multicalls.h"
  80. #include "mmu.h"
  81. #include "debugfs.h"
  82. #ifdef CONFIG_X86_VSYSCALL_EMULATION
  83. /* l3 pud for userspace vsyscall mapping */
  84. static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
  85. #endif
  86. /*
  87. * Protects atomic reservation decrease/increase against concurrent increases.
  88. * Also protects non-atomic updates of current_pages and balloon lists.
  89. */
  90. static DEFINE_SPINLOCK(xen_reservation_lock);
  91. /*
  92. * Note about cr3 (pagetable base) values:
  93. *
  94. * xen_cr3 contains the current logical cr3 value; it contains the
  95. * last set cr3. This may not be the current effective cr3, because
  96. * its update may be being lazily deferred. However, a vcpu looking
  97. * at its own cr3 can use this value knowing that it everything will
  98. * be self-consistent.
  99. *
  100. * xen_current_cr3 contains the actual vcpu cr3; it is set once the
  101. * hypercall to set the vcpu cr3 is complete (so it may be a little
  102. * out of date, but it will never be set early). If one vcpu is
  103. * looking at another vcpu's cr3 value, it should use this variable.
  104. */
  105. DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
  106. DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
  107. static phys_addr_t xen_pt_base, xen_pt_size __initdata;
  108. static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
  109. /*
  110. * Just beyond the highest usermode address. STACK_TOP_MAX has a
  111. * redzone above it, so round it up to a PGD boundary.
  112. */
  113. #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
  114. void make_lowmem_page_readonly(void *vaddr)
  115. {
  116. pte_t *pte, ptev;
  117. unsigned long address = (unsigned long)vaddr;
  118. unsigned int level;
  119. pte = lookup_address(address, &level);
  120. if (pte == NULL)
  121. return; /* vaddr missing */
  122. ptev = pte_wrprotect(*pte);
  123. if (HYPERVISOR_update_va_mapping(address, ptev, 0))
  124. BUG();
  125. }
  126. void make_lowmem_page_readwrite(void *vaddr)
  127. {
  128. pte_t *pte, ptev;
  129. unsigned long address = (unsigned long)vaddr;
  130. unsigned int level;
  131. pte = lookup_address(address, &level);
  132. if (pte == NULL)
  133. return; /* vaddr missing */
  134. ptev = pte_mkwrite(*pte);
  135. if (HYPERVISOR_update_va_mapping(address, ptev, 0))
  136. BUG();
  137. }
  138. /*
  139. * During early boot all page table pages are pinned, but we do not have struct
  140. * pages, so return true until struct pages are ready.
  141. */
  142. static bool xen_page_pinned(void *ptr)
  143. {
  144. if (static_branch_likely(&xen_struct_pages_ready)) {
  145. struct page *page = virt_to_page(ptr);
  146. return PagePinned(page);
  147. }
  148. return true;
  149. }
  150. static void xen_extend_mmu_update(const struct mmu_update *update)
  151. {
  152. struct multicall_space mcs;
  153. struct mmu_update *u;
  154. mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
  155. if (mcs.mc != NULL) {
  156. mcs.mc->args[1]++;
  157. } else {
  158. mcs = __xen_mc_entry(sizeof(*u));
  159. MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
  160. }
  161. u = mcs.args;
  162. *u = *update;
  163. }
  164. static void xen_extend_mmuext_op(const struct mmuext_op *op)
  165. {
  166. struct multicall_space mcs;
  167. struct mmuext_op *u;
  168. mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
  169. if (mcs.mc != NULL) {
  170. mcs.mc->args[1]++;
  171. } else {
  172. mcs = __xen_mc_entry(sizeof(*u));
  173. MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
  174. }
  175. u = mcs.args;
  176. *u = *op;
  177. }
  178. static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
  179. {
  180. struct mmu_update u;
  181. preempt_disable();
  182. xen_mc_batch();
  183. /* ptr may be ioremapped for 64-bit pagetable setup */
  184. u.ptr = arbitrary_virt_to_machine(ptr).maddr;
  185. u.val = pmd_val_ma(val);
  186. xen_extend_mmu_update(&u);
  187. xen_mc_issue(PARAVIRT_LAZY_MMU);
  188. preempt_enable();
  189. }
  190. static void xen_set_pmd(pmd_t *ptr, pmd_t val)
  191. {
  192. trace_xen_mmu_set_pmd(ptr, val);
  193. /* If page is not pinned, we can just update the entry
  194. directly */
  195. if (!xen_page_pinned(ptr)) {
  196. *ptr = val;
  197. return;
  198. }
  199. xen_set_pmd_hyper(ptr, val);
  200. }
  201. /*
  202. * Associate a virtual page frame with a given physical page frame
  203. * and protection flags for that frame.
  204. */
  205. void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
  206. {
  207. if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags),
  208. UVMF_INVLPG))
  209. BUG();
  210. }
  211. static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
  212. {
  213. struct mmu_update u;
  214. if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
  215. return false;
  216. xen_mc_batch();
  217. u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
  218. u.val = pte_val_ma(pteval);
  219. xen_extend_mmu_update(&u);
  220. xen_mc_issue(PARAVIRT_LAZY_MMU);
  221. return true;
  222. }
  223. static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
  224. {
  225. if (!xen_batched_set_pte(ptep, pteval)) {
  226. /*
  227. * Could call native_set_pte() here and trap and
  228. * emulate the PTE write, but a hypercall is much cheaper.
  229. */
  230. struct mmu_update u;
  231. u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
  232. u.val = pte_val_ma(pteval);
  233. HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
  234. }
  235. }
  236. static void xen_set_pte(pte_t *ptep, pte_t pteval)
  237. {
  238. trace_xen_mmu_set_pte(ptep, pteval);
  239. __xen_set_pte(ptep, pteval);
  240. }
  241. pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
  242. unsigned long addr, pte_t *ptep)
  243. {
  244. /* Just return the pte as-is. We preserve the bits on commit */
  245. trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
  246. return *ptep;
  247. }
  248. void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
  249. pte_t *ptep, pte_t pte)
  250. {
  251. struct mmu_update u;
  252. trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
  253. xen_mc_batch();
  254. u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
  255. u.val = pte_val_ma(pte);
  256. xen_extend_mmu_update(&u);
  257. xen_mc_issue(PARAVIRT_LAZY_MMU);
  258. }
  259. /* Assume pteval_t is equivalent to all the other *val_t types. */
  260. static pteval_t pte_mfn_to_pfn(pteval_t val)
  261. {
  262. if (val & _PAGE_PRESENT) {
  263. unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
  264. unsigned long pfn = mfn_to_pfn(mfn);
  265. pteval_t flags = val & PTE_FLAGS_MASK;
  266. if (unlikely(pfn == ~0))
  267. val = flags & ~_PAGE_PRESENT;
  268. else
  269. val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
  270. }
  271. return val;
  272. }
  273. static pteval_t pte_pfn_to_mfn(pteval_t val)
  274. {
  275. if (val & _PAGE_PRESENT) {
  276. unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
  277. pteval_t flags = val & PTE_FLAGS_MASK;
  278. unsigned long mfn;
  279. mfn = __pfn_to_mfn(pfn);
  280. /*
  281. * If there's no mfn for the pfn, then just create an
  282. * empty non-present pte. Unfortunately this loses
  283. * information about the original pfn, so
  284. * pte_mfn_to_pfn is asymmetric.
  285. */
  286. if (unlikely(mfn == INVALID_P2M_ENTRY)) {
  287. mfn = 0;
  288. flags = 0;
  289. } else
  290. mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
  291. val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
  292. }
  293. return val;
  294. }
  295. __visible pteval_t xen_pte_val(pte_t pte)
  296. {
  297. pteval_t pteval = pte.pte;
  298. return pte_mfn_to_pfn(pteval);
  299. }
  300. PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
  301. __visible pgdval_t xen_pgd_val(pgd_t pgd)
  302. {
  303. return pte_mfn_to_pfn(pgd.pgd);
  304. }
  305. PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
  306. __visible pte_t xen_make_pte(pteval_t pte)
  307. {
  308. pte = pte_pfn_to_mfn(pte);
  309. return native_make_pte(pte);
  310. }
  311. PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
  312. __visible pgd_t xen_make_pgd(pgdval_t pgd)
  313. {
  314. pgd = pte_pfn_to_mfn(pgd);
  315. return native_make_pgd(pgd);
  316. }
  317. PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
  318. __visible pmdval_t xen_pmd_val(pmd_t pmd)
  319. {
  320. return pte_mfn_to_pfn(pmd.pmd);
  321. }
  322. PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
  323. static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
  324. {
  325. struct mmu_update u;
  326. preempt_disable();
  327. xen_mc_batch();
  328. /* ptr may be ioremapped for 64-bit pagetable setup */
  329. u.ptr = arbitrary_virt_to_machine(ptr).maddr;
  330. u.val = pud_val_ma(val);
  331. xen_extend_mmu_update(&u);
  332. xen_mc_issue(PARAVIRT_LAZY_MMU);
  333. preempt_enable();
  334. }
  335. static void xen_set_pud(pud_t *ptr, pud_t val)
  336. {
  337. trace_xen_mmu_set_pud(ptr, val);
  338. /* If page is not pinned, we can just update the entry
  339. directly */
  340. if (!xen_page_pinned(ptr)) {
  341. *ptr = val;
  342. return;
  343. }
  344. xen_set_pud_hyper(ptr, val);
  345. }
  346. __visible pmd_t xen_make_pmd(pmdval_t pmd)
  347. {
  348. pmd = pte_pfn_to_mfn(pmd);
  349. return native_make_pmd(pmd);
  350. }
  351. PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
  352. __visible pudval_t xen_pud_val(pud_t pud)
  353. {
  354. return pte_mfn_to_pfn(pud.pud);
  355. }
  356. PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
  357. __visible pud_t xen_make_pud(pudval_t pud)
  358. {
  359. pud = pte_pfn_to_mfn(pud);
  360. return native_make_pud(pud);
  361. }
  362. PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
  363. static pgd_t *xen_get_user_pgd(pgd_t *pgd)
  364. {
  365. pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
  366. unsigned offset = pgd - pgd_page;
  367. pgd_t *user_ptr = NULL;
  368. if (offset < pgd_index(USER_LIMIT)) {
  369. struct page *page = virt_to_page(pgd_page);
  370. user_ptr = (pgd_t *)page->private;
  371. if (user_ptr)
  372. user_ptr += offset;
  373. }
  374. return user_ptr;
  375. }
  376. static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
  377. {
  378. struct mmu_update u;
  379. u.ptr = virt_to_machine(ptr).maddr;
  380. u.val = p4d_val_ma(val);
  381. xen_extend_mmu_update(&u);
  382. }
  383. /*
  384. * Raw hypercall-based set_p4d, intended for in early boot before
  385. * there's a page structure. This implies:
  386. * 1. The only existing pagetable is the kernel's
  387. * 2. It is always pinned
  388. * 3. It has no user pagetable attached to it
  389. */
  390. static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
  391. {
  392. preempt_disable();
  393. xen_mc_batch();
  394. __xen_set_p4d_hyper(ptr, val);
  395. xen_mc_issue(PARAVIRT_LAZY_MMU);
  396. preempt_enable();
  397. }
  398. static void xen_set_p4d(p4d_t *ptr, p4d_t val)
  399. {
  400. pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
  401. pgd_t pgd_val;
  402. trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
  403. /* If page is not pinned, we can just update the entry
  404. directly */
  405. if (!xen_page_pinned(ptr)) {
  406. *ptr = val;
  407. if (user_ptr) {
  408. WARN_ON(xen_page_pinned(user_ptr));
  409. pgd_val.pgd = p4d_val_ma(val);
  410. *user_ptr = pgd_val;
  411. }
  412. return;
  413. }
  414. /* If it's pinned, then we can at least batch the kernel and
  415. user updates together. */
  416. xen_mc_batch();
  417. __xen_set_p4d_hyper(ptr, val);
  418. if (user_ptr)
  419. __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
  420. xen_mc_issue(PARAVIRT_LAZY_MMU);
  421. }
  422. #if CONFIG_PGTABLE_LEVELS >= 5
  423. __visible p4dval_t xen_p4d_val(p4d_t p4d)
  424. {
  425. return pte_mfn_to_pfn(p4d.p4d);
  426. }
  427. PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
  428. __visible p4d_t xen_make_p4d(p4dval_t p4d)
  429. {
  430. p4d = pte_pfn_to_mfn(p4d);
  431. return native_make_p4d(p4d);
  432. }
  433. PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
  434. #endif /* CONFIG_PGTABLE_LEVELS >= 5 */
  435. static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
  436. void (*func)(struct mm_struct *mm, struct page *,
  437. enum pt_level),
  438. bool last, unsigned long limit)
  439. {
  440. int i, nr;
  441. nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
  442. for (i = 0; i < nr; i++) {
  443. if (!pmd_none(pmd[i]))
  444. (*func)(mm, pmd_page(pmd[i]), PT_PTE);
  445. }
  446. }
  447. static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
  448. void (*func)(struct mm_struct *mm, struct page *,
  449. enum pt_level),
  450. bool last, unsigned long limit)
  451. {
  452. int i, nr;
  453. nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
  454. for (i = 0; i < nr; i++) {
  455. pmd_t *pmd;
  456. if (pud_none(pud[i]))
  457. continue;
  458. pmd = pmd_offset(&pud[i], 0);
  459. if (PTRS_PER_PMD > 1)
  460. (*func)(mm, virt_to_page(pmd), PT_PMD);
  461. xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
  462. }
  463. }
  464. static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
  465. void (*func)(struct mm_struct *mm, struct page *,
  466. enum pt_level),
  467. bool last, unsigned long limit)
  468. {
  469. pud_t *pud;
  470. if (p4d_none(*p4d))
  471. return;
  472. pud = pud_offset(p4d, 0);
  473. if (PTRS_PER_PUD > 1)
  474. (*func)(mm, virt_to_page(pud), PT_PUD);
  475. xen_pud_walk(mm, pud, func, last, limit);
  476. }
  477. /*
  478. * (Yet another) pagetable walker. This one is intended for pinning a
  479. * pagetable. This means that it walks a pagetable and calls the
  480. * callback function on each page it finds making up the page table,
  481. * at every level. It walks the entire pagetable, but it only bothers
  482. * pinning pte pages which are below limit. In the normal case this
  483. * will be STACK_TOP_MAX, but at boot we need to pin up to
  484. * FIXADDR_TOP.
  485. *
  486. * We must skip the Xen hole in the middle of the address space, just after
  487. * the big x86-64 virtual hole.
  488. */
  489. static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
  490. void (*func)(struct mm_struct *mm, struct page *,
  491. enum pt_level),
  492. unsigned long limit)
  493. {
  494. int i, nr;
  495. unsigned hole_low = 0, hole_high = 0;
  496. /* The limit is the last byte to be touched */
  497. limit--;
  498. BUG_ON(limit >= FIXADDR_TOP);
  499. /*
  500. * 64-bit has a great big hole in the middle of the address
  501. * space, which contains the Xen mappings.
  502. */
  503. hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
  504. hole_high = pgd_index(GUARD_HOLE_END_ADDR);
  505. nr = pgd_index(limit) + 1;
  506. for (i = 0; i < nr; i++) {
  507. p4d_t *p4d;
  508. if (i >= hole_low && i < hole_high)
  509. continue;
  510. if (pgd_none(pgd[i]))
  511. continue;
  512. p4d = p4d_offset(&pgd[i], 0);
  513. xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
  514. }
  515. /* Do the top level last, so that the callbacks can use it as
  516. a cue to do final things like tlb flushes. */
  517. (*func)(mm, virt_to_page(pgd), PT_PGD);
  518. }
  519. static void xen_pgd_walk(struct mm_struct *mm,
  520. void (*func)(struct mm_struct *mm, struct page *,
  521. enum pt_level),
  522. unsigned long limit)
  523. {
  524. __xen_pgd_walk(mm, mm->pgd, func, limit);
  525. }
  526. /* If we're using split pte locks, then take the page's lock and
  527. return a pointer to it. Otherwise return NULL. */
  528. static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
  529. {
  530. spinlock_t *ptl = NULL;
  531. #if USE_SPLIT_PTE_PTLOCKS
  532. ptl = ptlock_ptr(page);
  533. spin_lock_nest_lock(ptl, &mm->page_table_lock);
  534. #endif
  535. return ptl;
  536. }
  537. static void xen_pte_unlock(void *v)
  538. {
  539. spinlock_t *ptl = v;
  540. spin_unlock(ptl);
  541. }
  542. static void xen_do_pin(unsigned level, unsigned long pfn)
  543. {
  544. struct mmuext_op op;
  545. op.cmd = level;
  546. op.arg1.mfn = pfn_to_mfn(pfn);
  547. xen_extend_mmuext_op(&op);
  548. }
  549. static void xen_pin_page(struct mm_struct *mm, struct page *page,
  550. enum pt_level level)
  551. {
  552. unsigned pgfl = TestSetPagePinned(page);
  553. if (!pgfl) {
  554. void *pt = lowmem_page_address(page);
  555. unsigned long pfn = page_to_pfn(page);
  556. struct multicall_space mcs = __xen_mc_entry(0);
  557. spinlock_t *ptl;
  558. /*
  559. * We need to hold the pagetable lock between the time
  560. * we make the pagetable RO and when we actually pin
  561. * it. If we don't, then other users may come in and
  562. * attempt to update the pagetable by writing it,
  563. * which will fail because the memory is RO but not
  564. * pinned, so Xen won't do the trap'n'emulate.
  565. *
  566. * If we're using split pte locks, we can't hold the
  567. * entire pagetable's worth of locks during the
  568. * traverse, because we may wrap the preempt count (8
  569. * bits). The solution is to mark RO and pin each PTE
  570. * page while holding the lock. This means the number
  571. * of locks we end up holding is never more than a
  572. * batch size (~32 entries, at present).
  573. *
  574. * If we're not using split pte locks, we needn't pin
  575. * the PTE pages independently, because we're
  576. * protected by the overall pagetable lock.
  577. */
  578. ptl = NULL;
  579. if (level == PT_PTE)
  580. ptl = xen_pte_lock(page, mm);
  581. MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
  582. pfn_pte(pfn, PAGE_KERNEL_RO),
  583. level == PT_PGD ? UVMF_TLB_FLUSH : 0);
  584. if (ptl) {
  585. xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
  586. /* Queue a deferred unlock for when this batch
  587. is completed. */
  588. xen_mc_callback(xen_pte_unlock, ptl);
  589. }
  590. }
  591. }
  592. /* This is called just after a mm has been created, but it has not
  593. been used yet. We need to make sure that its pagetable is all
  594. read-only, and can be pinned. */
  595. static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
  596. {
  597. pgd_t *user_pgd = xen_get_user_pgd(pgd);
  598. trace_xen_mmu_pgd_pin(mm, pgd);
  599. xen_mc_batch();
  600. __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
  601. xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
  602. if (user_pgd) {
  603. xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
  604. xen_do_pin(MMUEXT_PIN_L4_TABLE,
  605. PFN_DOWN(__pa(user_pgd)));
  606. }
  607. xen_mc_issue(0);
  608. }
  609. static void xen_pgd_pin(struct mm_struct *mm)
  610. {
  611. __xen_pgd_pin(mm, mm->pgd);
  612. }
  613. /*
  614. * On save, we need to pin all pagetables to make sure they get their
  615. * mfns turned into pfns. Search the list for any unpinned pgds and pin
  616. * them (unpinned pgds are not currently in use, probably because the
  617. * process is under construction or destruction).
  618. *
  619. * Expected to be called in stop_machine() ("equivalent to taking
  620. * every spinlock in the system"), so the locking doesn't really
  621. * matter all that much.
  622. */
  623. void xen_mm_pin_all(void)
  624. {
  625. struct page *page;
  626. spin_lock(&pgd_lock);
  627. list_for_each_entry(page, &pgd_list, lru) {
  628. if (!PagePinned(page)) {
  629. __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
  630. SetPageSavePinned(page);
  631. }
  632. }
  633. spin_unlock(&pgd_lock);
  634. }
  635. static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
  636. enum pt_level level)
  637. {
  638. SetPagePinned(page);
  639. }
  640. /*
  641. * The init_mm pagetable is really pinned as soon as its created, but
  642. * that's before we have page structures to store the bits. So do all
  643. * the book-keeping now once struct pages for allocated pages are
  644. * initialized. This happens only after memblock_free_all() is called.
  645. */
  646. static void __init xen_after_bootmem(void)
  647. {
  648. static_branch_enable(&xen_struct_pages_ready);
  649. #ifdef CONFIG_X86_VSYSCALL_EMULATION
  650. SetPagePinned(virt_to_page(level3_user_vsyscall));
  651. #endif
  652. xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
  653. }
  654. static void xen_unpin_page(struct mm_struct *mm, struct page *page,
  655. enum pt_level level)
  656. {
  657. unsigned pgfl = TestClearPagePinned(page);
  658. if (pgfl) {
  659. void *pt = lowmem_page_address(page);
  660. unsigned long pfn = page_to_pfn(page);
  661. spinlock_t *ptl = NULL;
  662. struct multicall_space mcs;
  663. /*
  664. * Do the converse to pin_page. If we're using split
  665. * pte locks, we must be holding the lock for while
  666. * the pte page is unpinned but still RO to prevent
  667. * concurrent updates from seeing it in this
  668. * partially-pinned state.
  669. */
  670. if (level == PT_PTE) {
  671. ptl = xen_pte_lock(page, mm);
  672. if (ptl)
  673. xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
  674. }
  675. mcs = __xen_mc_entry(0);
  676. MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
  677. pfn_pte(pfn, PAGE_KERNEL),
  678. level == PT_PGD ? UVMF_TLB_FLUSH : 0);
  679. if (ptl) {
  680. /* unlock when batch completed */
  681. xen_mc_callback(xen_pte_unlock, ptl);
  682. }
  683. }
  684. }
  685. /* Release a pagetables pages back as normal RW */
  686. static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
  687. {
  688. pgd_t *user_pgd = xen_get_user_pgd(pgd);
  689. trace_xen_mmu_pgd_unpin(mm, pgd);
  690. xen_mc_batch();
  691. xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  692. if (user_pgd) {
  693. xen_do_pin(MMUEXT_UNPIN_TABLE,
  694. PFN_DOWN(__pa(user_pgd)));
  695. xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
  696. }
  697. __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
  698. xen_mc_issue(0);
  699. }
  700. static void xen_pgd_unpin(struct mm_struct *mm)
  701. {
  702. __xen_pgd_unpin(mm, mm->pgd);
  703. }
  704. /*
  705. * On resume, undo any pinning done at save, so that the rest of the
  706. * kernel doesn't see any unexpected pinned pagetables.
  707. */
  708. void xen_mm_unpin_all(void)
  709. {
  710. struct page *page;
  711. spin_lock(&pgd_lock);
  712. list_for_each_entry(page, &pgd_list, lru) {
  713. if (PageSavePinned(page)) {
  714. BUG_ON(!PagePinned(page));
  715. __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
  716. ClearPageSavePinned(page);
  717. }
  718. }
  719. spin_unlock(&pgd_lock);
  720. }
  721. static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
  722. {
  723. spin_lock(&next->page_table_lock);
  724. xen_pgd_pin(next);
  725. spin_unlock(&next->page_table_lock);
  726. }
  727. static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
  728. {
  729. spin_lock(&mm->page_table_lock);
  730. xen_pgd_pin(mm);
  731. spin_unlock(&mm->page_table_lock);
  732. }
  733. static void drop_mm_ref_this_cpu(void *info)
  734. {
  735. struct mm_struct *mm = info;
  736. if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
  737. leave_mm(smp_processor_id());
  738. /*
  739. * If this cpu still has a stale cr3 reference, then make sure
  740. * it has been flushed.
  741. */
  742. if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
  743. xen_mc_flush();
  744. }
  745. #ifdef CONFIG_SMP
  746. /*
  747. * Another cpu may still have their %cr3 pointing at the pagetable, so
  748. * we need to repoint it somewhere else before we can unpin it.
  749. */
  750. static void xen_drop_mm_ref(struct mm_struct *mm)
  751. {
  752. cpumask_var_t mask;
  753. unsigned cpu;
  754. drop_mm_ref_this_cpu(mm);
  755. /* Get the "official" set of cpus referring to our pagetable. */
  756. if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
  757. for_each_online_cpu(cpu) {
  758. if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
  759. continue;
  760. smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
  761. }
  762. return;
  763. }
  764. /*
  765. * It's possible that a vcpu may have a stale reference to our
  766. * cr3, because its in lazy mode, and it hasn't yet flushed
  767. * its set of pending hypercalls yet. In this case, we can
  768. * look at its actual current cr3 value, and force it to flush
  769. * if needed.
  770. */
  771. cpumask_clear(mask);
  772. for_each_online_cpu(cpu) {
  773. if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
  774. cpumask_set_cpu(cpu, mask);
  775. }
  776. smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
  777. free_cpumask_var(mask);
  778. }
  779. #else
  780. static void xen_drop_mm_ref(struct mm_struct *mm)
  781. {
  782. drop_mm_ref_this_cpu(mm);
  783. }
  784. #endif
  785. /*
  786. * While a process runs, Xen pins its pagetables, which means that the
  787. * hypervisor forces it to be read-only, and it controls all updates
  788. * to it. This means that all pagetable updates have to go via the
  789. * hypervisor, which is moderately expensive.
  790. *
  791. * Since we're pulling the pagetable down, we switch to use init_mm,
  792. * unpin old process pagetable and mark it all read-write, which
  793. * allows further operations on it to be simple memory accesses.
  794. *
  795. * The only subtle point is that another CPU may be still using the
  796. * pagetable because of lazy tlb flushing. This means we need need to
  797. * switch all CPUs off this pagetable before we can unpin it.
  798. */
  799. static void xen_exit_mmap(struct mm_struct *mm)
  800. {
  801. get_cpu(); /* make sure we don't move around */
  802. xen_drop_mm_ref(mm);
  803. put_cpu();
  804. spin_lock(&mm->page_table_lock);
  805. /* pgd may not be pinned in the error exit path of execve */
  806. if (xen_page_pinned(mm->pgd))
  807. xen_pgd_unpin(mm);
  808. spin_unlock(&mm->page_table_lock);
  809. }
  810. static void xen_post_allocator_init(void);
  811. static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
  812. {
  813. struct mmuext_op op;
  814. op.cmd = cmd;
  815. op.arg1.mfn = pfn_to_mfn(pfn);
  816. if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
  817. BUG();
  818. }
  819. static void __init xen_cleanhighmap(unsigned long vaddr,
  820. unsigned long vaddr_end)
  821. {
  822. unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  823. pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
  824. /* NOTE: The loop is more greedy than the cleanup_highmap variant.
  825. * We include the PMD passed in on _both_ boundaries. */
  826. for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
  827. pmd++, vaddr += PMD_SIZE) {
  828. if (pmd_none(*pmd))
  829. continue;
  830. if (vaddr < (unsigned long) _text || vaddr > kernel_end)
  831. set_pmd(pmd, __pmd(0));
  832. }
  833. /* In case we did something silly, we should crash in this function
  834. * instead of somewhere later and be confusing. */
  835. xen_mc_flush();
  836. }
  837. /*
  838. * Make a page range writeable and free it.
  839. */
  840. static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
  841. {
  842. void *vaddr = __va(paddr);
  843. void *vaddr_end = vaddr + size;
  844. for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
  845. make_lowmem_page_readwrite(vaddr);
  846. memblock_phys_free(paddr, size);
  847. }
  848. static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
  849. {
  850. unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
  851. if (unpin)
  852. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
  853. ClearPagePinned(virt_to_page(__va(pa)));
  854. xen_free_ro_pages(pa, PAGE_SIZE);
  855. }
  856. static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
  857. {
  858. unsigned long pa;
  859. pte_t *pte_tbl;
  860. int i;
  861. if (pmd_large(*pmd)) {
  862. pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
  863. xen_free_ro_pages(pa, PMD_SIZE);
  864. return;
  865. }
  866. pte_tbl = pte_offset_kernel(pmd, 0);
  867. for (i = 0; i < PTRS_PER_PTE; i++) {
  868. if (pte_none(pte_tbl[i]))
  869. continue;
  870. pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
  871. xen_free_ro_pages(pa, PAGE_SIZE);
  872. }
  873. set_pmd(pmd, __pmd(0));
  874. xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
  875. }
  876. static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
  877. {
  878. unsigned long pa;
  879. pmd_t *pmd_tbl;
  880. int i;
  881. if (pud_large(*pud)) {
  882. pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
  883. xen_free_ro_pages(pa, PUD_SIZE);
  884. return;
  885. }
  886. pmd_tbl = pmd_offset(pud, 0);
  887. for (i = 0; i < PTRS_PER_PMD; i++) {
  888. if (pmd_none(pmd_tbl[i]))
  889. continue;
  890. xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
  891. }
  892. set_pud(pud, __pud(0));
  893. xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
  894. }
  895. static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
  896. {
  897. unsigned long pa;
  898. pud_t *pud_tbl;
  899. int i;
  900. if (p4d_large(*p4d)) {
  901. pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
  902. xen_free_ro_pages(pa, P4D_SIZE);
  903. return;
  904. }
  905. pud_tbl = pud_offset(p4d, 0);
  906. for (i = 0; i < PTRS_PER_PUD; i++) {
  907. if (pud_none(pud_tbl[i]))
  908. continue;
  909. xen_cleanmfnmap_pud(pud_tbl + i, unpin);
  910. }
  911. set_p4d(p4d, __p4d(0));
  912. xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
  913. }
  914. /*
  915. * Since it is well isolated we can (and since it is perhaps large we should)
  916. * also free the page tables mapping the initial P->M table.
  917. */
  918. static void __init xen_cleanmfnmap(unsigned long vaddr)
  919. {
  920. pgd_t *pgd;
  921. p4d_t *p4d;
  922. bool unpin;
  923. unpin = (vaddr == 2 * PGDIR_SIZE);
  924. vaddr &= PMD_MASK;
  925. pgd = pgd_offset_k(vaddr);
  926. p4d = p4d_offset(pgd, 0);
  927. if (!p4d_none(*p4d))
  928. xen_cleanmfnmap_p4d(p4d, unpin);
  929. }
  930. static void __init xen_pagetable_p2m_free(void)
  931. {
  932. unsigned long size;
  933. unsigned long addr;
  934. size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
  935. /* No memory or already called. */
  936. if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
  937. return;
  938. /* using __ka address and sticking INVALID_P2M_ENTRY! */
  939. memset((void *)xen_start_info->mfn_list, 0xff, size);
  940. addr = xen_start_info->mfn_list;
  941. /*
  942. * We could be in __ka space.
  943. * We roundup to the PMD, which means that if anybody at this stage is
  944. * using the __ka address of xen_start_info or
  945. * xen_start_info->shared_info they are in going to crash. Fortunately
  946. * we have already revectored in xen_setup_kernel_pagetable.
  947. */
  948. size = roundup(size, PMD_SIZE);
  949. if (addr >= __START_KERNEL_map) {
  950. xen_cleanhighmap(addr, addr + size);
  951. size = PAGE_ALIGN(xen_start_info->nr_pages *
  952. sizeof(unsigned long));
  953. memblock_free((void *)addr, size);
  954. } else {
  955. xen_cleanmfnmap(addr);
  956. }
  957. }
  958. static void __init xen_pagetable_cleanhighmap(void)
  959. {
  960. unsigned long size;
  961. unsigned long addr;
  962. /* At this stage, cleanup_highmap has already cleaned __ka space
  963. * from _brk_limit way up to the max_pfn_mapped (which is the end of
  964. * the ramdisk). We continue on, erasing PMD entries that point to page
  965. * tables - do note that they are accessible at this stage via __va.
  966. * As Xen is aligning the memory end to a 4MB boundary, for good
  967. * measure we also round up to PMD_SIZE * 2 - which means that if
  968. * anybody is using __ka address to the initial boot-stack - and try
  969. * to use it - they are going to crash. The xen_start_info has been
  970. * taken care of already in xen_setup_kernel_pagetable. */
  971. addr = xen_start_info->pt_base;
  972. size = xen_start_info->nr_pt_frames * PAGE_SIZE;
  973. xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
  974. xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
  975. }
  976. static void __init xen_pagetable_p2m_setup(void)
  977. {
  978. xen_vmalloc_p2m_tree();
  979. xen_pagetable_p2m_free();
  980. xen_pagetable_cleanhighmap();
  981. /* And revector! Bye bye old array */
  982. xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
  983. }
  984. static void __init xen_pagetable_init(void)
  985. {
  986. /*
  987. * The majority of further PTE writes is to pagetables already
  988. * announced as such to Xen. Hence it is more efficient to use
  989. * hypercalls for these updates.
  990. */
  991. pv_ops.mmu.set_pte = __xen_set_pte;
  992. paging_init();
  993. xen_post_allocator_init();
  994. xen_pagetable_p2m_setup();
  995. /* Allocate and initialize top and mid mfn levels for p2m structure */
  996. xen_build_mfn_list_list();
  997. /* Remap memory freed due to conflicts with E820 map */
  998. xen_remap_memory();
  999. xen_setup_mfn_list_list();
  1000. }
  1001. static noinstr void xen_write_cr2(unsigned long cr2)
  1002. {
  1003. this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
  1004. }
  1005. static noinline void xen_flush_tlb(void)
  1006. {
  1007. struct mmuext_op *op;
  1008. struct multicall_space mcs;
  1009. preempt_disable();
  1010. mcs = xen_mc_entry(sizeof(*op));
  1011. op = mcs.args;
  1012. op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
  1013. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  1014. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1015. preempt_enable();
  1016. }
  1017. static void xen_flush_tlb_one_user(unsigned long addr)
  1018. {
  1019. struct mmuext_op *op;
  1020. struct multicall_space mcs;
  1021. trace_xen_mmu_flush_tlb_one_user(addr);
  1022. preempt_disable();
  1023. mcs = xen_mc_entry(sizeof(*op));
  1024. op = mcs.args;
  1025. op->cmd = MMUEXT_INVLPG_LOCAL;
  1026. op->arg1.linear_addr = addr & PAGE_MASK;
  1027. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  1028. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1029. preempt_enable();
  1030. }
  1031. static void xen_flush_tlb_multi(const struct cpumask *cpus,
  1032. const struct flush_tlb_info *info)
  1033. {
  1034. struct {
  1035. struct mmuext_op op;
  1036. DECLARE_BITMAP(mask, NR_CPUS);
  1037. } *args;
  1038. struct multicall_space mcs;
  1039. const size_t mc_entry_size = sizeof(args->op) +
  1040. sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
  1041. trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end);
  1042. if (cpumask_empty(cpus))
  1043. return; /* nothing to do */
  1044. mcs = xen_mc_entry(mc_entry_size);
  1045. args = mcs.args;
  1046. args->op.arg2.vcpumask = to_cpumask(args->mask);
  1047. /* Remove any offline CPUs */
  1048. cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
  1049. args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
  1050. if (info->end != TLB_FLUSH_ALL &&
  1051. (info->end - info->start) <= PAGE_SIZE) {
  1052. args->op.cmd = MMUEXT_INVLPG_MULTI;
  1053. args->op.arg1.linear_addr = info->start;
  1054. }
  1055. MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
  1056. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1057. }
  1058. static unsigned long xen_read_cr3(void)
  1059. {
  1060. return this_cpu_read(xen_cr3);
  1061. }
  1062. static void set_current_cr3(void *v)
  1063. {
  1064. this_cpu_write(xen_current_cr3, (unsigned long)v);
  1065. }
  1066. static void __xen_write_cr3(bool kernel, unsigned long cr3)
  1067. {
  1068. struct mmuext_op op;
  1069. unsigned long mfn;
  1070. trace_xen_mmu_write_cr3(kernel, cr3);
  1071. if (cr3)
  1072. mfn = pfn_to_mfn(PFN_DOWN(cr3));
  1073. else
  1074. mfn = 0;
  1075. WARN_ON(mfn == 0 && kernel);
  1076. op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
  1077. op.arg1.mfn = mfn;
  1078. xen_extend_mmuext_op(&op);
  1079. if (kernel) {
  1080. this_cpu_write(xen_cr3, cr3);
  1081. /* Update xen_current_cr3 once the batch has actually
  1082. been submitted. */
  1083. xen_mc_callback(set_current_cr3, (void *)cr3);
  1084. }
  1085. }
  1086. static void xen_write_cr3(unsigned long cr3)
  1087. {
  1088. pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
  1089. BUG_ON(preemptible());
  1090. xen_mc_batch(); /* disables interrupts */
  1091. /* Update while interrupts are disabled, so its atomic with
  1092. respect to ipis */
  1093. this_cpu_write(xen_cr3, cr3);
  1094. __xen_write_cr3(true, cr3);
  1095. if (user_pgd)
  1096. __xen_write_cr3(false, __pa(user_pgd));
  1097. else
  1098. __xen_write_cr3(false, 0);
  1099. xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
  1100. }
  1101. /*
  1102. * At the start of the day - when Xen launches a guest, it has already
  1103. * built pagetables for the guest. We diligently look over them
  1104. * in xen_setup_kernel_pagetable and graft as appropriate them in the
  1105. * init_top_pgt and its friends. Then when we are happy we load
  1106. * the new init_top_pgt - and continue on.
  1107. *
  1108. * The generic code starts (start_kernel) and 'init_mem_mapping' sets
  1109. * up the rest of the pagetables. When it has completed it loads the cr3.
  1110. * N.B. that baremetal would start at 'start_kernel' (and the early
  1111. * #PF handler would create bootstrap pagetables) - so we are running
  1112. * with the same assumptions as what to do when write_cr3 is executed
  1113. * at this point.
  1114. *
  1115. * Since there are no user-page tables at all, we have two variants
  1116. * of xen_write_cr3 - the early bootup (this one), and the late one
  1117. * (xen_write_cr3). The reason we have to do that is that in 64-bit
  1118. * the Linux kernel and user-space are both in ring 3 while the
  1119. * hypervisor is in ring 0.
  1120. */
  1121. static void __init xen_write_cr3_init(unsigned long cr3)
  1122. {
  1123. BUG_ON(preemptible());
  1124. xen_mc_batch(); /* disables interrupts */
  1125. /* Update while interrupts are disabled, so its atomic with
  1126. respect to ipis */
  1127. this_cpu_write(xen_cr3, cr3);
  1128. __xen_write_cr3(true, cr3);
  1129. xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
  1130. }
  1131. static int xen_pgd_alloc(struct mm_struct *mm)
  1132. {
  1133. pgd_t *pgd = mm->pgd;
  1134. struct page *page = virt_to_page(pgd);
  1135. pgd_t *user_pgd;
  1136. int ret = -ENOMEM;
  1137. BUG_ON(PagePinned(virt_to_page(pgd)));
  1138. BUG_ON(page->private != 0);
  1139. user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  1140. page->private = (unsigned long)user_pgd;
  1141. if (user_pgd != NULL) {
  1142. #ifdef CONFIG_X86_VSYSCALL_EMULATION
  1143. user_pgd[pgd_index(VSYSCALL_ADDR)] =
  1144. __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
  1145. #endif
  1146. ret = 0;
  1147. }
  1148. BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
  1149. return ret;
  1150. }
  1151. static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
  1152. {
  1153. pgd_t *user_pgd = xen_get_user_pgd(pgd);
  1154. if (user_pgd)
  1155. free_page((unsigned long)user_pgd);
  1156. }
  1157. /*
  1158. * Init-time set_pte while constructing initial pagetables, which
  1159. * doesn't allow RO page table pages to be remapped RW.
  1160. *
  1161. * If there is no MFN for this PFN then this page is initially
  1162. * ballooned out so clear the PTE (as in decrease_reservation() in
  1163. * drivers/xen/balloon.c).
  1164. *
  1165. * Many of these PTE updates are done on unpinned and writable pages
  1166. * and doing a hypercall for these is unnecessary and expensive. At
  1167. * this point it is rarely possible to tell if a page is pinned, so
  1168. * mostly write the PTE directly and rely on Xen trapping and
  1169. * emulating any updates as necessary.
  1170. */
  1171. static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
  1172. {
  1173. if (unlikely(is_early_ioremap_ptep(ptep)))
  1174. __xen_set_pte(ptep, pte);
  1175. else
  1176. native_set_pte(ptep, pte);
  1177. }
  1178. __visible pte_t xen_make_pte_init(pteval_t pte)
  1179. {
  1180. unsigned long pfn;
  1181. /*
  1182. * Pages belonging to the initial p2m list mapped outside the default
  1183. * address range must be mapped read-only. This region contains the
  1184. * page tables for mapping the p2m list, too, and page tables MUST be
  1185. * mapped read-only.
  1186. */
  1187. pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
  1188. if (xen_start_info->mfn_list < __START_KERNEL_map &&
  1189. pfn >= xen_start_info->first_p2m_pfn &&
  1190. pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
  1191. pte &= ~_PAGE_RW;
  1192. pte = pte_pfn_to_mfn(pte);
  1193. return native_make_pte(pte);
  1194. }
  1195. PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
  1196. /* Early in boot, while setting up the initial pagetable, assume
  1197. everything is pinned. */
  1198. static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
  1199. {
  1200. #ifdef CONFIG_FLATMEM
  1201. BUG_ON(mem_map); /* should only be used early */
  1202. #endif
  1203. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  1204. pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
  1205. }
  1206. /* Used for pmd and pud */
  1207. static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
  1208. {
  1209. #ifdef CONFIG_FLATMEM
  1210. BUG_ON(mem_map); /* should only be used early */
  1211. #endif
  1212. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  1213. }
  1214. /* Early release_pte assumes that all pts are pinned, since there's
  1215. only init_mm and anything attached to that is pinned. */
  1216. static void __init xen_release_pte_init(unsigned long pfn)
  1217. {
  1218. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
  1219. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  1220. }
  1221. static void __init xen_release_pmd_init(unsigned long pfn)
  1222. {
  1223. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  1224. }
  1225. static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
  1226. {
  1227. struct multicall_space mcs;
  1228. struct mmuext_op *op;
  1229. mcs = __xen_mc_entry(sizeof(*op));
  1230. op = mcs.args;
  1231. op->cmd = cmd;
  1232. op->arg1.mfn = pfn_to_mfn(pfn);
  1233. MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
  1234. }
  1235. static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
  1236. {
  1237. struct multicall_space mcs;
  1238. unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
  1239. mcs = __xen_mc_entry(0);
  1240. MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
  1241. pfn_pte(pfn, prot), 0);
  1242. }
  1243. /* This needs to make sure the new pte page is pinned iff its being
  1244. attached to a pinned pagetable. */
  1245. static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
  1246. unsigned level)
  1247. {
  1248. bool pinned = xen_page_pinned(mm->pgd);
  1249. trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
  1250. if (pinned) {
  1251. struct page *page = pfn_to_page(pfn);
  1252. pinned = false;
  1253. if (static_branch_likely(&xen_struct_pages_ready)) {
  1254. pinned = PagePinned(page);
  1255. SetPagePinned(page);
  1256. }
  1257. xen_mc_batch();
  1258. __set_pfn_prot(pfn, PAGE_KERNEL_RO);
  1259. if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned)
  1260. __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
  1261. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1262. }
  1263. }
  1264. static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
  1265. {
  1266. xen_alloc_ptpage(mm, pfn, PT_PTE);
  1267. }
  1268. static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
  1269. {
  1270. xen_alloc_ptpage(mm, pfn, PT_PMD);
  1271. }
  1272. /* This should never happen until we're OK to use struct page */
  1273. static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
  1274. {
  1275. struct page *page = pfn_to_page(pfn);
  1276. bool pinned = PagePinned(page);
  1277. trace_xen_mmu_release_ptpage(pfn, level, pinned);
  1278. if (pinned) {
  1279. xen_mc_batch();
  1280. if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
  1281. __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
  1282. __set_pfn_prot(pfn, PAGE_KERNEL);
  1283. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1284. ClearPagePinned(page);
  1285. }
  1286. }
  1287. static void xen_release_pte(unsigned long pfn)
  1288. {
  1289. xen_release_ptpage(pfn, PT_PTE);
  1290. }
  1291. static void xen_release_pmd(unsigned long pfn)
  1292. {
  1293. xen_release_ptpage(pfn, PT_PMD);
  1294. }
  1295. static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
  1296. {
  1297. xen_alloc_ptpage(mm, pfn, PT_PUD);
  1298. }
  1299. static void xen_release_pud(unsigned long pfn)
  1300. {
  1301. xen_release_ptpage(pfn, PT_PUD);
  1302. }
  1303. /*
  1304. * Like __va(), but returns address in the kernel mapping (which is
  1305. * all we have until the physical memory mapping has been set up.
  1306. */
  1307. static void * __init __ka(phys_addr_t paddr)
  1308. {
  1309. return (void *)(paddr + __START_KERNEL_map);
  1310. }
  1311. /* Convert a machine address to physical address */
  1312. static unsigned long __init m2p(phys_addr_t maddr)
  1313. {
  1314. phys_addr_t paddr;
  1315. maddr &= XEN_PTE_MFN_MASK;
  1316. paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
  1317. return paddr;
  1318. }
  1319. /* Convert a machine address to kernel virtual */
  1320. static void * __init m2v(phys_addr_t maddr)
  1321. {
  1322. return __ka(m2p(maddr));
  1323. }
  1324. /* Set the page permissions on an identity-mapped pages */
  1325. static void __init set_page_prot_flags(void *addr, pgprot_t prot,
  1326. unsigned long flags)
  1327. {
  1328. unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
  1329. pte_t pte = pfn_pte(pfn, prot);
  1330. if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
  1331. BUG();
  1332. }
  1333. static void __init set_page_prot(void *addr, pgprot_t prot)
  1334. {
  1335. return set_page_prot_flags(addr, prot, UVMF_NONE);
  1336. }
  1337. void __init xen_setup_machphys_mapping(void)
  1338. {
  1339. struct xen_machphys_mapping mapping;
  1340. if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
  1341. machine_to_phys_mapping = (unsigned long *)mapping.v_start;
  1342. machine_to_phys_nr = mapping.max_mfn + 1;
  1343. } else {
  1344. machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
  1345. }
  1346. }
  1347. static void __init convert_pfn_mfn(void *v)
  1348. {
  1349. pte_t *pte = v;
  1350. int i;
  1351. /* All levels are converted the same way, so just treat them
  1352. as ptes. */
  1353. for (i = 0; i < PTRS_PER_PTE; i++)
  1354. pte[i] = xen_make_pte(pte[i].pte);
  1355. }
  1356. static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
  1357. unsigned long addr)
  1358. {
  1359. if (*pt_base == PFN_DOWN(__pa(addr))) {
  1360. set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
  1361. clear_page((void *)addr);
  1362. (*pt_base)++;
  1363. }
  1364. if (*pt_end == PFN_DOWN(__pa(addr))) {
  1365. set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
  1366. clear_page((void *)addr);
  1367. (*pt_end)--;
  1368. }
  1369. }
  1370. /*
  1371. * Set up the initial kernel pagetable.
  1372. *
  1373. * We can construct this by grafting the Xen provided pagetable into
  1374. * head_64.S's preconstructed pagetables. We copy the Xen L2's into
  1375. * level2_ident_pgt, and level2_kernel_pgt. This means that only the
  1376. * kernel has a physical mapping to start with - but that's enough to
  1377. * get __va working. We need to fill in the rest of the physical
  1378. * mapping once some sort of allocator has been set up.
  1379. */
  1380. void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
  1381. {
  1382. pud_t *l3;
  1383. pmd_t *l2;
  1384. unsigned long addr[3];
  1385. unsigned long pt_base, pt_end;
  1386. unsigned i;
  1387. /* max_pfn_mapped is the last pfn mapped in the initial memory
  1388. * mappings. Considering that on Xen after the kernel mappings we
  1389. * have the mappings of some pages that don't exist in pfn space, we
  1390. * set max_pfn_mapped to the last real pfn mapped. */
  1391. if (xen_start_info->mfn_list < __START_KERNEL_map)
  1392. max_pfn_mapped = xen_start_info->first_p2m_pfn;
  1393. else
  1394. max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
  1395. pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
  1396. pt_end = pt_base + xen_start_info->nr_pt_frames;
  1397. /* Zap identity mapping */
  1398. init_top_pgt[0] = __pgd(0);
  1399. /* Pre-constructed entries are in pfn, so convert to mfn */
  1400. /* L4[273] -> level3_ident_pgt */
  1401. /* L4[511] -> level3_kernel_pgt */
  1402. convert_pfn_mfn(init_top_pgt);
  1403. /* L3_i[0] -> level2_ident_pgt */
  1404. convert_pfn_mfn(level3_ident_pgt);
  1405. /* L3_k[510] -> level2_kernel_pgt */
  1406. /* L3_k[511] -> level2_fixmap_pgt */
  1407. convert_pfn_mfn(level3_kernel_pgt);
  1408. /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
  1409. convert_pfn_mfn(level2_fixmap_pgt);
  1410. /* We get [511][511] and have Xen's version of level2_kernel_pgt */
  1411. l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
  1412. l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
  1413. addr[0] = (unsigned long)pgd;
  1414. addr[1] = (unsigned long)l3;
  1415. addr[2] = (unsigned long)l2;
  1416. /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
  1417. * Both L4[273][0] and L4[511][510] have entries that point to the same
  1418. * L2 (PMD) tables. Meaning that if you modify it in __va space
  1419. * it will be also modified in the __ka space! (But if you just
  1420. * modify the PMD table to point to other PTE's or none, then you
  1421. * are OK - which is what cleanup_highmap does) */
  1422. copy_page(level2_ident_pgt, l2);
  1423. /* Graft it onto L4[511][510] */
  1424. copy_page(level2_kernel_pgt, l2);
  1425. /*
  1426. * Zap execute permission from the ident map. Due to the sharing of
  1427. * L1 entries we need to do this in the L2.
  1428. */
  1429. if (__supported_pte_mask & _PAGE_NX) {
  1430. for (i = 0; i < PTRS_PER_PMD; ++i) {
  1431. if (pmd_none(level2_ident_pgt[i]))
  1432. continue;
  1433. level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
  1434. }
  1435. }
  1436. /* Copy the initial P->M table mappings if necessary. */
  1437. i = pgd_index(xen_start_info->mfn_list);
  1438. if (i && i < pgd_index(__START_KERNEL_map))
  1439. init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
  1440. /* Make pagetable pieces RO */
  1441. set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
  1442. set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
  1443. set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
  1444. set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
  1445. set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
  1446. set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
  1447. for (i = 0; i < FIXMAP_PMD_NUM; i++) {
  1448. set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
  1449. PAGE_KERNEL_RO);
  1450. }
  1451. /* Pin down new L4 */
  1452. pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
  1453. PFN_DOWN(__pa_symbol(init_top_pgt)));
  1454. /* Unpin Xen-provided one */
  1455. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  1456. #ifdef CONFIG_X86_VSYSCALL_EMULATION
  1457. /* Pin user vsyscall L3 */
  1458. set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
  1459. pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
  1460. PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
  1461. #endif
  1462. /*
  1463. * At this stage there can be no user pgd, and no page structure to
  1464. * attach it to, so make sure we just set kernel pgd.
  1465. */
  1466. xen_mc_batch();
  1467. __xen_write_cr3(true, __pa(init_top_pgt));
  1468. xen_mc_issue(PARAVIRT_LAZY_CPU);
  1469. /* We can't that easily rip out L3 and L2, as the Xen pagetables are
  1470. * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
  1471. * the initial domain. For guests using the toolstack, they are in:
  1472. * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
  1473. * rip out the [L4] (pgd), but for guests we shave off three pages.
  1474. */
  1475. for (i = 0; i < ARRAY_SIZE(addr); i++)
  1476. check_pt_base(&pt_base, &pt_end, addr[i]);
  1477. /* Our (by three pages) smaller Xen pagetable that we are using */
  1478. xen_pt_base = PFN_PHYS(pt_base);
  1479. xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
  1480. memblock_reserve(xen_pt_base, xen_pt_size);
  1481. /* Revector the xen_start_info */
  1482. xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
  1483. }
  1484. /*
  1485. * Read a value from a physical address.
  1486. */
  1487. static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
  1488. {
  1489. unsigned long *vaddr;
  1490. unsigned long val;
  1491. vaddr = early_memremap_ro(addr, sizeof(val));
  1492. val = *vaddr;
  1493. early_memunmap(vaddr, sizeof(val));
  1494. return val;
  1495. }
  1496. /*
  1497. * Translate a virtual address to a physical one without relying on mapped
  1498. * page tables. Don't rely on big pages being aligned in (guest) physical
  1499. * space!
  1500. */
  1501. static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
  1502. {
  1503. phys_addr_t pa;
  1504. pgd_t pgd;
  1505. pud_t pud;
  1506. pmd_t pmd;
  1507. pte_t pte;
  1508. pa = read_cr3_pa();
  1509. pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
  1510. sizeof(pgd)));
  1511. if (!pgd_present(pgd))
  1512. return 0;
  1513. pa = pgd_val(pgd) & PTE_PFN_MASK;
  1514. pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
  1515. sizeof(pud)));
  1516. if (!pud_present(pud))
  1517. return 0;
  1518. pa = pud_val(pud) & PTE_PFN_MASK;
  1519. if (pud_large(pud))
  1520. return pa + (vaddr & ~PUD_MASK);
  1521. pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
  1522. sizeof(pmd)));
  1523. if (!pmd_present(pmd))
  1524. return 0;
  1525. pa = pmd_val(pmd) & PTE_PFN_MASK;
  1526. if (pmd_large(pmd))
  1527. return pa + (vaddr & ~PMD_MASK);
  1528. pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
  1529. sizeof(pte)));
  1530. if (!pte_present(pte))
  1531. return 0;
  1532. pa = pte_pfn(pte) << PAGE_SHIFT;
  1533. return pa | (vaddr & ~PAGE_MASK);
  1534. }
  1535. /*
  1536. * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
  1537. * this area.
  1538. */
  1539. void __init xen_relocate_p2m(void)
  1540. {
  1541. phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
  1542. unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
  1543. int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
  1544. pte_t *pt;
  1545. pmd_t *pmd;
  1546. pud_t *pud;
  1547. pgd_t *pgd;
  1548. unsigned long *new_p2m;
  1549. size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
  1550. n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
  1551. n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
  1552. n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
  1553. n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
  1554. n_frames = n_pte + n_pt + n_pmd + n_pud;
  1555. new_area = xen_find_free_area(PFN_PHYS(n_frames));
  1556. if (!new_area) {
  1557. xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
  1558. BUG();
  1559. }
  1560. /*
  1561. * Setup the page tables for addressing the new p2m list.
  1562. * We have asked the hypervisor to map the p2m list at the user address
  1563. * PUD_SIZE. It may have done so, or it may have used a kernel space
  1564. * address depending on the Xen version.
  1565. * To avoid any possible virtual address collision, just use
  1566. * 2 * PUD_SIZE for the new area.
  1567. */
  1568. pud_phys = new_area;
  1569. pmd_phys = pud_phys + PFN_PHYS(n_pud);
  1570. pt_phys = pmd_phys + PFN_PHYS(n_pmd);
  1571. p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
  1572. pgd = __va(read_cr3_pa());
  1573. new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
  1574. for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
  1575. pud = early_memremap(pud_phys, PAGE_SIZE);
  1576. clear_page(pud);
  1577. for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
  1578. idx_pmd++) {
  1579. pmd = early_memremap(pmd_phys, PAGE_SIZE);
  1580. clear_page(pmd);
  1581. for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
  1582. idx_pt++) {
  1583. pt = early_memremap(pt_phys, PAGE_SIZE);
  1584. clear_page(pt);
  1585. for (idx_pte = 0;
  1586. idx_pte < min(n_pte, PTRS_PER_PTE);
  1587. idx_pte++) {
  1588. pt[idx_pte] = pfn_pte(p2m_pfn,
  1589. PAGE_KERNEL);
  1590. p2m_pfn++;
  1591. }
  1592. n_pte -= PTRS_PER_PTE;
  1593. early_memunmap(pt, PAGE_SIZE);
  1594. make_lowmem_page_readonly(__va(pt_phys));
  1595. pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
  1596. PFN_DOWN(pt_phys));
  1597. pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
  1598. pt_phys += PAGE_SIZE;
  1599. }
  1600. n_pt -= PTRS_PER_PMD;
  1601. early_memunmap(pmd, PAGE_SIZE);
  1602. make_lowmem_page_readonly(__va(pmd_phys));
  1603. pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
  1604. PFN_DOWN(pmd_phys));
  1605. pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
  1606. pmd_phys += PAGE_SIZE;
  1607. }
  1608. n_pmd -= PTRS_PER_PUD;
  1609. early_memunmap(pud, PAGE_SIZE);
  1610. make_lowmem_page_readonly(__va(pud_phys));
  1611. pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
  1612. set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
  1613. pud_phys += PAGE_SIZE;
  1614. }
  1615. /* Now copy the old p2m info to the new area. */
  1616. memcpy(new_p2m, xen_p2m_addr, size);
  1617. xen_p2m_addr = new_p2m;
  1618. /* Release the old p2m list and set new list info. */
  1619. p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
  1620. BUG_ON(!p2m_pfn);
  1621. p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
  1622. if (xen_start_info->mfn_list < __START_KERNEL_map) {
  1623. pfn = xen_start_info->first_p2m_pfn;
  1624. pfn_end = xen_start_info->first_p2m_pfn +
  1625. xen_start_info->nr_p2m_frames;
  1626. set_pgd(pgd + 1, __pgd(0));
  1627. } else {
  1628. pfn = p2m_pfn;
  1629. pfn_end = p2m_pfn_end;
  1630. }
  1631. memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
  1632. while (pfn < pfn_end) {
  1633. if (pfn == p2m_pfn) {
  1634. pfn = p2m_pfn_end;
  1635. continue;
  1636. }
  1637. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  1638. pfn++;
  1639. }
  1640. xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
  1641. xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
  1642. xen_start_info->nr_p2m_frames = n_frames;
  1643. }
  1644. void __init xen_reserve_special_pages(void)
  1645. {
  1646. phys_addr_t paddr;
  1647. memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
  1648. if (xen_start_info->store_mfn) {
  1649. paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
  1650. memblock_reserve(paddr, PAGE_SIZE);
  1651. }
  1652. if (!xen_initial_domain()) {
  1653. paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
  1654. memblock_reserve(paddr, PAGE_SIZE);
  1655. }
  1656. }
  1657. void __init xen_pt_check_e820(void)
  1658. {
  1659. if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
  1660. xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
  1661. BUG();
  1662. }
  1663. }
  1664. static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
  1665. static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
  1666. {
  1667. pte_t pte;
  1668. unsigned long vaddr;
  1669. phys >>= PAGE_SHIFT;
  1670. switch (idx) {
  1671. case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
  1672. #ifdef CONFIG_X86_VSYSCALL_EMULATION
  1673. case VSYSCALL_PAGE:
  1674. #endif
  1675. /* All local page mappings */
  1676. pte = pfn_pte(phys, prot);
  1677. break;
  1678. #ifdef CONFIG_X86_LOCAL_APIC
  1679. case FIX_APIC_BASE: /* maps dummy local APIC */
  1680. pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
  1681. break;
  1682. #endif
  1683. #ifdef CONFIG_X86_IO_APIC
  1684. case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
  1685. /*
  1686. * We just don't map the IO APIC - all access is via
  1687. * hypercalls. Keep the address in the pte for reference.
  1688. */
  1689. pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
  1690. break;
  1691. #endif
  1692. case FIX_PARAVIRT_BOOTMAP:
  1693. /* This is an MFN, but it isn't an IO mapping from the
  1694. IO domain */
  1695. pte = mfn_pte(phys, prot);
  1696. break;
  1697. default:
  1698. /* By default, set_fixmap is used for hardware mappings */
  1699. pte = mfn_pte(phys, prot);
  1700. break;
  1701. }
  1702. vaddr = __fix_to_virt(idx);
  1703. if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG))
  1704. BUG();
  1705. #ifdef CONFIG_X86_VSYSCALL_EMULATION
  1706. /* Replicate changes to map the vsyscall page into the user
  1707. pagetable vsyscall mapping. */
  1708. if (idx == VSYSCALL_PAGE)
  1709. set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
  1710. #endif
  1711. }
  1712. static void __init xen_post_allocator_init(void)
  1713. {
  1714. pv_ops.mmu.set_pte = xen_set_pte;
  1715. pv_ops.mmu.set_pmd = xen_set_pmd;
  1716. pv_ops.mmu.set_pud = xen_set_pud;
  1717. pv_ops.mmu.set_p4d = xen_set_p4d;
  1718. /* This will work as long as patching hasn't happened yet
  1719. (which it hasn't) */
  1720. pv_ops.mmu.alloc_pte = xen_alloc_pte;
  1721. pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
  1722. pv_ops.mmu.release_pte = xen_release_pte;
  1723. pv_ops.mmu.release_pmd = xen_release_pmd;
  1724. pv_ops.mmu.alloc_pud = xen_alloc_pud;
  1725. pv_ops.mmu.release_pud = xen_release_pud;
  1726. pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
  1727. pv_ops.mmu.write_cr3 = &xen_write_cr3;
  1728. }
  1729. static void xen_leave_lazy_mmu(void)
  1730. {
  1731. preempt_disable();
  1732. xen_mc_flush();
  1733. paravirt_leave_lazy_mmu();
  1734. preempt_enable();
  1735. }
  1736. static const typeof(pv_ops) xen_mmu_ops __initconst = {
  1737. .mmu = {
  1738. .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
  1739. .write_cr2 = xen_write_cr2,
  1740. .read_cr3 = xen_read_cr3,
  1741. .write_cr3 = xen_write_cr3_init,
  1742. .flush_tlb_user = xen_flush_tlb,
  1743. .flush_tlb_kernel = xen_flush_tlb,
  1744. .flush_tlb_one_user = xen_flush_tlb_one_user,
  1745. .flush_tlb_multi = xen_flush_tlb_multi,
  1746. .tlb_remove_table = tlb_remove_table,
  1747. .pgd_alloc = xen_pgd_alloc,
  1748. .pgd_free = xen_pgd_free,
  1749. .alloc_pte = xen_alloc_pte_init,
  1750. .release_pte = xen_release_pte_init,
  1751. .alloc_pmd = xen_alloc_pmd_init,
  1752. .release_pmd = xen_release_pmd_init,
  1753. .set_pte = xen_set_pte_init,
  1754. .set_pmd = xen_set_pmd_hyper,
  1755. .ptep_modify_prot_start = xen_ptep_modify_prot_start,
  1756. .ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
  1757. .pte_val = PV_CALLEE_SAVE(xen_pte_val),
  1758. .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
  1759. .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
  1760. .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
  1761. .set_pud = xen_set_pud_hyper,
  1762. .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
  1763. .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
  1764. .pud_val = PV_CALLEE_SAVE(xen_pud_val),
  1765. .make_pud = PV_CALLEE_SAVE(xen_make_pud),
  1766. .set_p4d = xen_set_p4d_hyper,
  1767. .alloc_pud = xen_alloc_pmd_init,
  1768. .release_pud = xen_release_pmd_init,
  1769. #if CONFIG_PGTABLE_LEVELS >= 5
  1770. .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
  1771. .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
  1772. #endif
  1773. .activate_mm = xen_activate_mm,
  1774. .dup_mmap = xen_dup_mmap,
  1775. .exit_mmap = xen_exit_mmap,
  1776. .lazy_mode = {
  1777. .enter = paravirt_enter_lazy_mmu,
  1778. .leave = xen_leave_lazy_mmu,
  1779. .flush = paravirt_flush_lazy_mmu,
  1780. },
  1781. .set_fixmap = xen_set_fixmap,
  1782. },
  1783. };
  1784. void __init xen_init_mmu_ops(void)
  1785. {
  1786. x86_init.paging.pagetable_init = xen_pagetable_init;
  1787. x86_init.hyper.init_after_bootmem = xen_after_bootmem;
  1788. pv_ops.mmu = xen_mmu_ops.mmu;
  1789. memset(dummy_mapping, 0xff, PAGE_SIZE);
  1790. }
  1791. /* Protected by xen_reservation_lock. */
  1792. #define MAX_CONTIG_ORDER 9 /* 2MB */
  1793. static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
  1794. #define VOID_PTE (mfn_pte(0, __pgprot(0)))
  1795. static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
  1796. unsigned long *in_frames,
  1797. unsigned long *out_frames)
  1798. {
  1799. int i;
  1800. struct multicall_space mcs;
  1801. xen_mc_batch();
  1802. for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
  1803. mcs = __xen_mc_entry(0);
  1804. if (in_frames)
  1805. in_frames[i] = virt_to_mfn(vaddr);
  1806. MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
  1807. __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
  1808. if (out_frames)
  1809. out_frames[i] = virt_to_pfn(vaddr);
  1810. }
  1811. xen_mc_issue(0);
  1812. }
  1813. /*
  1814. * Update the pfn-to-mfn mappings for a virtual address range, either to
  1815. * point to an array of mfns, or contiguously from a single starting
  1816. * mfn.
  1817. */
  1818. static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
  1819. unsigned long *mfns,
  1820. unsigned long first_mfn)
  1821. {
  1822. unsigned i, limit;
  1823. unsigned long mfn;
  1824. xen_mc_batch();
  1825. limit = 1u << order;
  1826. for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
  1827. struct multicall_space mcs;
  1828. unsigned flags;
  1829. mcs = __xen_mc_entry(0);
  1830. if (mfns)
  1831. mfn = mfns[i];
  1832. else
  1833. mfn = first_mfn + i;
  1834. if (i < (limit - 1))
  1835. flags = 0;
  1836. else {
  1837. if (order == 0)
  1838. flags = UVMF_INVLPG | UVMF_ALL;
  1839. else
  1840. flags = UVMF_TLB_FLUSH | UVMF_ALL;
  1841. }
  1842. MULTI_update_va_mapping(mcs.mc, vaddr,
  1843. mfn_pte(mfn, PAGE_KERNEL), flags);
  1844. set_phys_to_machine(virt_to_pfn(vaddr), mfn);
  1845. }
  1846. xen_mc_issue(0);
  1847. }
  1848. /*
  1849. * Perform the hypercall to exchange a region of our pfns to point to
  1850. * memory with the required contiguous alignment. Takes the pfns as
  1851. * input, and populates mfns as output.
  1852. *
  1853. * Returns a success code indicating whether the hypervisor was able to
  1854. * satisfy the request or not.
  1855. */
  1856. static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
  1857. unsigned long *pfns_in,
  1858. unsigned long extents_out,
  1859. unsigned int order_out,
  1860. unsigned long *mfns_out,
  1861. unsigned int address_bits)
  1862. {
  1863. long rc;
  1864. int success;
  1865. struct xen_memory_exchange exchange = {
  1866. .in = {
  1867. .nr_extents = extents_in,
  1868. .extent_order = order_in,
  1869. .extent_start = pfns_in,
  1870. .domid = DOMID_SELF
  1871. },
  1872. .out = {
  1873. .nr_extents = extents_out,
  1874. .extent_order = order_out,
  1875. .extent_start = mfns_out,
  1876. .address_bits = address_bits,
  1877. .domid = DOMID_SELF
  1878. }
  1879. };
  1880. BUG_ON(extents_in << order_in != extents_out << order_out);
  1881. rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
  1882. success = (exchange.nr_exchanged == extents_in);
  1883. BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
  1884. BUG_ON(success && (rc != 0));
  1885. return success;
  1886. }
  1887. int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
  1888. unsigned int address_bits,
  1889. dma_addr_t *dma_handle)
  1890. {
  1891. unsigned long *in_frames = discontig_frames, out_frame;
  1892. unsigned long flags;
  1893. int success;
  1894. unsigned long vstart = (unsigned long)phys_to_virt(pstart);
  1895. /*
  1896. * Currently an auto-translated guest will not perform I/O, nor will
  1897. * it require PAE page directories below 4GB. Therefore any calls to
  1898. * this function are redundant and can be ignored.
  1899. */
  1900. if (unlikely(order > MAX_CONTIG_ORDER))
  1901. return -ENOMEM;
  1902. memset((void *) vstart, 0, PAGE_SIZE << order);
  1903. spin_lock_irqsave(&xen_reservation_lock, flags);
  1904. /* 1. Zap current PTEs, remembering MFNs. */
  1905. xen_zap_pfn_range(vstart, order, in_frames, NULL);
  1906. /* 2. Get a new contiguous memory extent. */
  1907. out_frame = virt_to_pfn(vstart);
  1908. success = xen_exchange_memory(1UL << order, 0, in_frames,
  1909. 1, order, &out_frame,
  1910. address_bits);
  1911. /* 3. Map the new extent in place of old pages. */
  1912. if (success)
  1913. xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
  1914. else
  1915. xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
  1916. spin_unlock_irqrestore(&xen_reservation_lock, flags);
  1917. *dma_handle = virt_to_machine(vstart).maddr;
  1918. return success ? 0 : -ENOMEM;
  1919. }
  1920. void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
  1921. {
  1922. unsigned long *out_frames = discontig_frames, in_frame;
  1923. unsigned long flags;
  1924. int success;
  1925. unsigned long vstart;
  1926. if (unlikely(order > MAX_CONTIG_ORDER))
  1927. return;
  1928. vstart = (unsigned long)phys_to_virt(pstart);
  1929. memset((void *) vstart, 0, PAGE_SIZE << order);
  1930. spin_lock_irqsave(&xen_reservation_lock, flags);
  1931. /* 1. Find start MFN of contiguous extent. */
  1932. in_frame = virt_to_mfn(vstart);
  1933. /* 2. Zap current PTEs. */
  1934. xen_zap_pfn_range(vstart, order, NULL, out_frames);
  1935. /* 3. Do the exchange for non-contiguous MFNs. */
  1936. success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
  1937. 0, out_frames, 0);
  1938. /* 4. Map new pages in place of old pages. */
  1939. if (success)
  1940. xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
  1941. else
  1942. xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
  1943. spin_unlock_irqrestore(&xen_reservation_lock, flags);
  1944. }
  1945. static noinline void xen_flush_tlb_all(void)
  1946. {
  1947. struct mmuext_op *op;
  1948. struct multicall_space mcs;
  1949. preempt_disable();
  1950. mcs = xen_mc_entry(sizeof(*op));
  1951. op = mcs.args;
  1952. op->cmd = MMUEXT_TLB_FLUSH_ALL;
  1953. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  1954. xen_mc_issue(PARAVIRT_LAZY_MMU);
  1955. preempt_enable();
  1956. }
  1957. #define REMAP_BATCH_SIZE 16
  1958. struct remap_data {
  1959. xen_pfn_t *pfn;
  1960. bool contiguous;
  1961. bool no_translate;
  1962. pgprot_t prot;
  1963. struct mmu_update *mmu_update;
  1964. };
  1965. static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
  1966. {
  1967. struct remap_data *rmd = data;
  1968. pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
  1969. /*
  1970. * If we have a contiguous range, just update the pfn itself,
  1971. * else update pointer to be "next pfn".
  1972. */
  1973. if (rmd->contiguous)
  1974. (*rmd->pfn)++;
  1975. else
  1976. rmd->pfn++;
  1977. rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
  1978. rmd->mmu_update->ptr |= rmd->no_translate ?
  1979. MMU_PT_UPDATE_NO_TRANSLATE :
  1980. MMU_NORMAL_PT_UPDATE;
  1981. rmd->mmu_update->val = pte_val_ma(pte);
  1982. rmd->mmu_update++;
  1983. return 0;
  1984. }
  1985. int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
  1986. xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
  1987. unsigned int domid, bool no_translate)
  1988. {
  1989. int err = 0;
  1990. struct remap_data rmd;
  1991. struct mmu_update mmu_update[REMAP_BATCH_SIZE];
  1992. unsigned long range;
  1993. int mapped = 0;
  1994. BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
  1995. rmd.pfn = pfn;
  1996. rmd.prot = prot;
  1997. /*
  1998. * We use the err_ptr to indicate if there we are doing a contiguous
  1999. * mapping or a discontiguous mapping.
  2000. */
  2001. rmd.contiguous = !err_ptr;
  2002. rmd.no_translate = no_translate;
  2003. while (nr) {
  2004. int index = 0;
  2005. int done = 0;
  2006. int batch = min(REMAP_BATCH_SIZE, nr);
  2007. int batch_left = batch;
  2008. range = (unsigned long)batch << PAGE_SHIFT;
  2009. rmd.mmu_update = mmu_update;
  2010. err = apply_to_page_range(vma->vm_mm, addr, range,
  2011. remap_area_pfn_pte_fn, &rmd);
  2012. if (err)
  2013. goto out;
  2014. /*
  2015. * We record the error for each page that gives an error, but
  2016. * continue mapping until the whole set is done
  2017. */
  2018. do {
  2019. int i;
  2020. err = HYPERVISOR_mmu_update(&mmu_update[index],
  2021. batch_left, &done, domid);
  2022. /*
  2023. * @err_ptr may be the same buffer as @gfn, so
  2024. * only clear it after each chunk of @gfn is
  2025. * used.
  2026. */
  2027. if (err_ptr) {
  2028. for (i = index; i < index + done; i++)
  2029. err_ptr[i] = 0;
  2030. }
  2031. if (err < 0) {
  2032. if (!err_ptr)
  2033. goto out;
  2034. err_ptr[i] = err;
  2035. done++; /* Skip failed frame. */
  2036. } else
  2037. mapped += done;
  2038. batch_left -= done;
  2039. index += done;
  2040. } while (batch_left);
  2041. nr -= batch;
  2042. addr += range;
  2043. if (err_ptr)
  2044. err_ptr += batch;
  2045. cond_resched();
  2046. }
  2047. out:
  2048. xen_flush_tlb_all();
  2049. return err < 0 ? err : mapped;
  2050. }
  2051. EXPORT_SYMBOL_GPL(xen_remap_pfn);
  2052. #ifdef CONFIG_KEXEC_CORE
  2053. phys_addr_t paddr_vmcoreinfo_note(void)
  2054. {
  2055. if (xen_pv_domain())
  2056. return virt_to_machine(vmcoreinfo_note).maddr;
  2057. else
  2058. return __pa(vmcoreinfo_note);
  2059. }
  2060. #endif /* CONFIG_KEXEC_CORE */