bpf_jit_comp32.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Just-In-Time compiler for eBPF filters on IA32 (32bit x86)
  4. *
  5. * Author: Wang YanQing ([email protected])
  6. * The code based on code and ideas from:
  7. * Eric Dumazet ([email protected])
  8. * and from:
  9. * Shubham Bansal <[email protected]>
  10. */
  11. #include <linux/netdevice.h>
  12. #include <linux/filter.h>
  13. #include <linux/if_vlan.h>
  14. #include <asm/cacheflush.h>
  15. #include <asm/set_memory.h>
  16. #include <asm/nospec-branch.h>
  17. #include <asm/asm-prototypes.h>
  18. #include <linux/bpf.h>
  19. /*
  20. * eBPF prog stack layout:
  21. *
  22. * high
  23. * original ESP => +-----+
  24. * | | callee saved registers
  25. * +-----+
  26. * | ... | eBPF JIT scratch space
  27. * BPF_FP,IA32_EBP => +-----+
  28. * | ... | eBPF prog stack
  29. * +-----+
  30. * |RSVD | JIT scratchpad
  31. * current ESP => +-----+
  32. * | |
  33. * | ... | Function call stack
  34. * | |
  35. * +-----+
  36. * low
  37. *
  38. * The callee saved registers:
  39. *
  40. * high
  41. * original ESP => +------------------+ \
  42. * | ebp | |
  43. * current EBP => +------------------+ } callee saved registers
  44. * | ebx,esi,edi | |
  45. * +------------------+ /
  46. * low
  47. */
  48. static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  49. {
  50. if (len == 1)
  51. *ptr = bytes;
  52. else if (len == 2)
  53. *(u16 *)ptr = bytes;
  54. else {
  55. *(u32 *)ptr = bytes;
  56. barrier();
  57. }
  58. return ptr + len;
  59. }
  60. #define EMIT(bytes, len) \
  61. do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
  62. #define EMIT1(b1) EMIT(b1, 1)
  63. #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
  64. #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  65. #define EMIT4(b1, b2, b3, b4) \
  66. EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  67. #define EMIT1_off32(b1, off) \
  68. do { EMIT1(b1); EMIT(off, 4); } while (0)
  69. #define EMIT2_off32(b1, b2, off) \
  70. do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
  71. #define EMIT3_off32(b1, b2, b3, off) \
  72. do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
  73. #define EMIT4_off32(b1, b2, b3, b4, off) \
  74. do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
  75. #define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len)
  76. static bool is_imm8(int value)
  77. {
  78. return value <= 127 && value >= -128;
  79. }
  80. static bool is_simm32(s64 value)
  81. {
  82. return value == (s64) (s32) value;
  83. }
  84. #define STACK_OFFSET(k) (k)
  85. #define TCALL_CNT (MAX_BPF_JIT_REG + 0) /* Tail Call Count */
  86. #define IA32_EAX (0x0)
  87. #define IA32_EBX (0x3)
  88. #define IA32_ECX (0x1)
  89. #define IA32_EDX (0x2)
  90. #define IA32_ESI (0x6)
  91. #define IA32_EDI (0x7)
  92. #define IA32_EBP (0x5)
  93. #define IA32_ESP (0x4)
  94. /*
  95. * List of x86 cond jumps opcodes (. + s8)
  96. * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  97. */
  98. #define IA32_JB 0x72
  99. #define IA32_JAE 0x73
  100. #define IA32_JE 0x74
  101. #define IA32_JNE 0x75
  102. #define IA32_JBE 0x76
  103. #define IA32_JA 0x77
  104. #define IA32_JL 0x7C
  105. #define IA32_JGE 0x7D
  106. #define IA32_JLE 0x7E
  107. #define IA32_JG 0x7F
  108. #define COND_JMP_OPCODE_INVALID (0xFF)
  109. /*
  110. * Map eBPF registers to IA32 32bit registers or stack scratch space.
  111. *
  112. * 1. All the registers, R0-R10, are mapped to scratch space on stack.
  113. * 2. We need two 64 bit temp registers to do complex operations on eBPF
  114. * registers.
  115. * 3. For performance reason, the BPF_REG_AX for blinding constant, is
  116. * mapped to real hardware register pair, IA32_ESI and IA32_EDI.
  117. *
  118. * As the eBPF registers are all 64 bit registers and IA32 has only 32 bit
  119. * registers, we have to map each eBPF registers with two IA32 32 bit regs
  120. * or scratch memory space and we have to build eBPF 64 bit register from those.
  121. *
  122. * We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers.
  123. */
  124. static const u8 bpf2ia32[][2] = {
  125. /* Return value from in-kernel function, and exit value from eBPF */
  126. [BPF_REG_0] = {STACK_OFFSET(0), STACK_OFFSET(4)},
  127. /* The arguments from eBPF program to in-kernel function */
  128. /* Stored on stack scratch space */
  129. [BPF_REG_1] = {STACK_OFFSET(8), STACK_OFFSET(12)},
  130. [BPF_REG_2] = {STACK_OFFSET(16), STACK_OFFSET(20)},
  131. [BPF_REG_3] = {STACK_OFFSET(24), STACK_OFFSET(28)},
  132. [BPF_REG_4] = {STACK_OFFSET(32), STACK_OFFSET(36)},
  133. [BPF_REG_5] = {STACK_OFFSET(40), STACK_OFFSET(44)},
  134. /* Callee saved registers that in-kernel function will preserve */
  135. /* Stored on stack scratch space */
  136. [BPF_REG_6] = {STACK_OFFSET(48), STACK_OFFSET(52)},
  137. [BPF_REG_7] = {STACK_OFFSET(56), STACK_OFFSET(60)},
  138. [BPF_REG_8] = {STACK_OFFSET(64), STACK_OFFSET(68)},
  139. [BPF_REG_9] = {STACK_OFFSET(72), STACK_OFFSET(76)},
  140. /* Read only Frame Pointer to access Stack */
  141. [BPF_REG_FP] = {STACK_OFFSET(80), STACK_OFFSET(84)},
  142. /* Temporary register for blinding constants. */
  143. [BPF_REG_AX] = {IA32_ESI, IA32_EDI},
  144. /* Tail call count. Stored on stack scratch space. */
  145. [TCALL_CNT] = {STACK_OFFSET(88), STACK_OFFSET(92)},
  146. };
  147. #define dst_lo dst[0]
  148. #define dst_hi dst[1]
  149. #define src_lo src[0]
  150. #define src_hi src[1]
  151. #define STACK_ALIGNMENT 8
  152. /*
  153. * Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4,
  154. * BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9,
  155. * BPF_REG_FP, BPF_REG_AX and Tail call counts.
  156. */
  157. #define SCRATCH_SIZE 96
  158. /* Total stack size used in JITed code */
  159. #define _STACK_SIZE (stack_depth + SCRATCH_SIZE)
  160. #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
  161. /* Get the offset of eBPF REGISTERs stored on scratch space. */
  162. #define STACK_VAR(off) (off)
  163. /* Encode 'dst_reg' register into IA32 opcode 'byte' */
  164. static u8 add_1reg(u8 byte, u32 dst_reg)
  165. {
  166. return byte + dst_reg;
  167. }
  168. /* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */
  169. static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
  170. {
  171. return byte + dst_reg + (src_reg << 3);
  172. }
  173. static void jit_fill_hole(void *area, unsigned int size)
  174. {
  175. /* Fill whole space with int3 instructions */
  176. memset(area, 0xcc, size);
  177. }
  178. static inline void emit_ia32_mov_i(const u8 dst, const u32 val, bool dstk,
  179. u8 **pprog)
  180. {
  181. u8 *prog = *pprog;
  182. int cnt = 0;
  183. if (dstk) {
  184. if (val == 0) {
  185. /* xor eax,eax */
  186. EMIT2(0x33, add_2reg(0xC0, IA32_EAX, IA32_EAX));
  187. /* mov dword ptr [ebp+off],eax */
  188. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  189. STACK_VAR(dst));
  190. } else {
  191. EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP),
  192. STACK_VAR(dst), val);
  193. }
  194. } else {
  195. if (val == 0)
  196. EMIT2(0x33, add_2reg(0xC0, dst, dst));
  197. else
  198. EMIT2_off32(0xC7, add_1reg(0xC0, dst),
  199. val);
  200. }
  201. *pprog = prog;
  202. }
  203. /* dst = imm (4 bytes)*/
  204. static inline void emit_ia32_mov_r(const u8 dst, const u8 src, bool dstk,
  205. bool sstk, u8 **pprog)
  206. {
  207. u8 *prog = *pprog;
  208. int cnt = 0;
  209. u8 sreg = sstk ? IA32_EAX : src;
  210. if (sstk)
  211. /* mov eax,dword ptr [ebp+off] */
  212. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
  213. if (dstk)
  214. /* mov dword ptr [ebp+off],eax */
  215. EMIT3(0x89, add_2reg(0x40, IA32_EBP, sreg), STACK_VAR(dst));
  216. else
  217. /* mov dst,sreg */
  218. EMIT2(0x89, add_2reg(0xC0, dst, sreg));
  219. *pprog = prog;
  220. }
  221. /* dst = src */
  222. static inline void emit_ia32_mov_r64(const bool is64, const u8 dst[],
  223. const u8 src[], bool dstk,
  224. bool sstk, u8 **pprog,
  225. const struct bpf_prog_aux *aux)
  226. {
  227. emit_ia32_mov_r(dst_lo, src_lo, dstk, sstk, pprog);
  228. if (is64)
  229. /* complete 8 byte move */
  230. emit_ia32_mov_r(dst_hi, src_hi, dstk, sstk, pprog);
  231. else if (!aux->verifier_zext)
  232. /* zero out high 4 bytes */
  233. emit_ia32_mov_i(dst_hi, 0, dstk, pprog);
  234. }
  235. /* Sign extended move */
  236. static inline void emit_ia32_mov_i64(const bool is64, const u8 dst[],
  237. const u32 val, bool dstk, u8 **pprog)
  238. {
  239. u32 hi = 0;
  240. if (is64 && (val & (1<<31)))
  241. hi = (u32)~0;
  242. emit_ia32_mov_i(dst_lo, val, dstk, pprog);
  243. emit_ia32_mov_i(dst_hi, hi, dstk, pprog);
  244. }
  245. /*
  246. * ALU operation (32 bit)
  247. * dst = dst * src
  248. */
  249. static inline void emit_ia32_mul_r(const u8 dst, const u8 src, bool dstk,
  250. bool sstk, u8 **pprog)
  251. {
  252. u8 *prog = *pprog;
  253. int cnt = 0;
  254. u8 sreg = sstk ? IA32_ECX : src;
  255. if (sstk)
  256. /* mov ecx,dword ptr [ebp+off] */
  257. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
  258. if (dstk)
  259. /* mov eax,dword ptr [ebp+off] */
  260. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
  261. else
  262. /* mov eax,dst */
  263. EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
  264. EMIT2(0xF7, add_1reg(0xE0, sreg));
  265. if (dstk)
  266. /* mov dword ptr [ebp+off],eax */
  267. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  268. STACK_VAR(dst));
  269. else
  270. /* mov dst,eax */
  271. EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
  272. *pprog = prog;
  273. }
  274. static inline void emit_ia32_to_le_r64(const u8 dst[], s32 val,
  275. bool dstk, u8 **pprog,
  276. const struct bpf_prog_aux *aux)
  277. {
  278. u8 *prog = *pprog;
  279. int cnt = 0;
  280. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  281. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  282. if (dstk && val != 64) {
  283. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  284. STACK_VAR(dst_lo));
  285. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  286. STACK_VAR(dst_hi));
  287. }
  288. switch (val) {
  289. case 16:
  290. /*
  291. * Emit 'movzwl eax,ax' to zero extend 16-bit
  292. * into 64 bit
  293. */
  294. EMIT2(0x0F, 0xB7);
  295. EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
  296. if (!aux->verifier_zext)
  297. /* xor dreg_hi,dreg_hi */
  298. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  299. break;
  300. case 32:
  301. if (!aux->verifier_zext)
  302. /* xor dreg_hi,dreg_hi */
  303. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  304. break;
  305. case 64:
  306. /* nop */
  307. break;
  308. }
  309. if (dstk && val != 64) {
  310. /* mov dword ptr [ebp+off],dreg_lo */
  311. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  312. STACK_VAR(dst_lo));
  313. /* mov dword ptr [ebp+off],dreg_hi */
  314. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  315. STACK_VAR(dst_hi));
  316. }
  317. *pprog = prog;
  318. }
  319. static inline void emit_ia32_to_be_r64(const u8 dst[], s32 val,
  320. bool dstk, u8 **pprog,
  321. const struct bpf_prog_aux *aux)
  322. {
  323. u8 *prog = *pprog;
  324. int cnt = 0;
  325. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  326. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  327. if (dstk) {
  328. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  329. STACK_VAR(dst_lo));
  330. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  331. STACK_VAR(dst_hi));
  332. }
  333. switch (val) {
  334. case 16:
  335. /* Emit 'ror %ax, 8' to swap lower 2 bytes */
  336. EMIT1(0x66);
  337. EMIT3(0xC1, add_1reg(0xC8, dreg_lo), 8);
  338. EMIT2(0x0F, 0xB7);
  339. EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
  340. if (!aux->verifier_zext)
  341. /* xor dreg_hi,dreg_hi */
  342. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  343. break;
  344. case 32:
  345. /* Emit 'bswap eax' to swap lower 4 bytes */
  346. EMIT1(0x0F);
  347. EMIT1(add_1reg(0xC8, dreg_lo));
  348. if (!aux->verifier_zext)
  349. /* xor dreg_hi,dreg_hi */
  350. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  351. break;
  352. case 64:
  353. /* Emit 'bswap eax' to swap lower 4 bytes */
  354. EMIT1(0x0F);
  355. EMIT1(add_1reg(0xC8, dreg_lo));
  356. /* Emit 'bswap edx' to swap lower 4 bytes */
  357. EMIT1(0x0F);
  358. EMIT1(add_1reg(0xC8, dreg_hi));
  359. /* mov ecx,dreg_hi */
  360. EMIT2(0x89, add_2reg(0xC0, IA32_ECX, dreg_hi));
  361. /* mov dreg_hi,dreg_lo */
  362. EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
  363. /* mov dreg_lo,ecx */
  364. EMIT2(0x89, add_2reg(0xC0, dreg_lo, IA32_ECX));
  365. break;
  366. }
  367. if (dstk) {
  368. /* mov dword ptr [ebp+off],dreg_lo */
  369. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  370. STACK_VAR(dst_lo));
  371. /* mov dword ptr [ebp+off],dreg_hi */
  372. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  373. STACK_VAR(dst_hi));
  374. }
  375. *pprog = prog;
  376. }
  377. /*
  378. * ALU operation (32 bit)
  379. * dst = dst (div|mod) src
  380. */
  381. static inline void emit_ia32_div_mod_r(const u8 op, const u8 dst, const u8 src,
  382. bool dstk, bool sstk, u8 **pprog)
  383. {
  384. u8 *prog = *pprog;
  385. int cnt = 0;
  386. if (sstk)
  387. /* mov ecx,dword ptr [ebp+off] */
  388. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  389. STACK_VAR(src));
  390. else if (src != IA32_ECX)
  391. /* mov ecx,src */
  392. EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
  393. if (dstk)
  394. /* mov eax,dword ptr [ebp+off] */
  395. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  396. STACK_VAR(dst));
  397. else
  398. /* mov eax,dst */
  399. EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
  400. /* xor edx,edx */
  401. EMIT2(0x31, add_2reg(0xC0, IA32_EDX, IA32_EDX));
  402. /* div ecx */
  403. EMIT2(0xF7, add_1reg(0xF0, IA32_ECX));
  404. if (op == BPF_MOD) {
  405. if (dstk)
  406. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
  407. STACK_VAR(dst));
  408. else
  409. EMIT2(0x89, add_2reg(0xC0, dst, IA32_EDX));
  410. } else {
  411. if (dstk)
  412. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  413. STACK_VAR(dst));
  414. else
  415. EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
  416. }
  417. *pprog = prog;
  418. }
  419. /*
  420. * ALU operation (32 bit)
  421. * dst = dst (shift) src
  422. */
  423. static inline void emit_ia32_shift_r(const u8 op, const u8 dst, const u8 src,
  424. bool dstk, bool sstk, u8 **pprog)
  425. {
  426. u8 *prog = *pprog;
  427. int cnt = 0;
  428. u8 dreg = dstk ? IA32_EAX : dst;
  429. u8 b2;
  430. if (dstk)
  431. /* mov eax,dword ptr [ebp+off] */
  432. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
  433. if (sstk)
  434. /* mov ecx,dword ptr [ebp+off] */
  435. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
  436. else if (src != IA32_ECX)
  437. /* mov ecx,src */
  438. EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
  439. switch (op) {
  440. case BPF_LSH:
  441. b2 = 0xE0; break;
  442. case BPF_RSH:
  443. b2 = 0xE8; break;
  444. case BPF_ARSH:
  445. b2 = 0xF8; break;
  446. default:
  447. return;
  448. }
  449. EMIT2(0xD3, add_1reg(b2, dreg));
  450. if (dstk)
  451. /* mov dword ptr [ebp+off],dreg */
  452. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst));
  453. *pprog = prog;
  454. }
  455. /*
  456. * ALU operation (32 bit)
  457. * dst = dst (op) src
  458. */
  459. static inline void emit_ia32_alu_r(const bool is64, const bool hi, const u8 op,
  460. const u8 dst, const u8 src, bool dstk,
  461. bool sstk, u8 **pprog)
  462. {
  463. u8 *prog = *pprog;
  464. int cnt = 0;
  465. u8 sreg = sstk ? IA32_EAX : src;
  466. u8 dreg = dstk ? IA32_EDX : dst;
  467. if (sstk)
  468. /* mov eax,dword ptr [ebp+off] */
  469. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
  470. if (dstk)
  471. /* mov eax,dword ptr [ebp+off] */
  472. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst));
  473. switch (BPF_OP(op)) {
  474. /* dst = dst + src */
  475. case BPF_ADD:
  476. if (hi && is64)
  477. EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
  478. else
  479. EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
  480. break;
  481. /* dst = dst - src */
  482. case BPF_SUB:
  483. if (hi && is64)
  484. EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
  485. else
  486. EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
  487. break;
  488. /* dst = dst | src */
  489. case BPF_OR:
  490. EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
  491. break;
  492. /* dst = dst & src */
  493. case BPF_AND:
  494. EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
  495. break;
  496. /* dst = dst ^ src */
  497. case BPF_XOR:
  498. EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
  499. break;
  500. }
  501. if (dstk)
  502. /* mov dword ptr [ebp+off],dreg */
  503. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
  504. STACK_VAR(dst));
  505. *pprog = prog;
  506. }
  507. /* ALU operation (64 bit) */
  508. static inline void emit_ia32_alu_r64(const bool is64, const u8 op,
  509. const u8 dst[], const u8 src[],
  510. bool dstk, bool sstk,
  511. u8 **pprog, const struct bpf_prog_aux *aux)
  512. {
  513. u8 *prog = *pprog;
  514. emit_ia32_alu_r(is64, false, op, dst_lo, src_lo, dstk, sstk, &prog);
  515. if (is64)
  516. emit_ia32_alu_r(is64, true, op, dst_hi, src_hi, dstk, sstk,
  517. &prog);
  518. else if (!aux->verifier_zext)
  519. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  520. *pprog = prog;
  521. }
  522. /*
  523. * ALU operation (32 bit)
  524. * dst = dst (op) val
  525. */
  526. static inline void emit_ia32_alu_i(const bool is64, const bool hi, const u8 op,
  527. const u8 dst, const s32 val, bool dstk,
  528. u8 **pprog)
  529. {
  530. u8 *prog = *pprog;
  531. int cnt = 0;
  532. u8 dreg = dstk ? IA32_EAX : dst;
  533. u8 sreg = IA32_EDX;
  534. if (dstk)
  535. /* mov eax,dword ptr [ebp+off] */
  536. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
  537. if (!is_imm8(val))
  538. /* mov edx,imm32*/
  539. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX), val);
  540. switch (op) {
  541. /* dst = dst + val */
  542. case BPF_ADD:
  543. if (hi && is64) {
  544. if (is_imm8(val))
  545. EMIT3(0x83, add_1reg(0xD0, dreg), val);
  546. else
  547. EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
  548. } else {
  549. if (is_imm8(val))
  550. EMIT3(0x83, add_1reg(0xC0, dreg), val);
  551. else
  552. EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
  553. }
  554. break;
  555. /* dst = dst - val */
  556. case BPF_SUB:
  557. if (hi && is64) {
  558. if (is_imm8(val))
  559. EMIT3(0x83, add_1reg(0xD8, dreg), val);
  560. else
  561. EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
  562. } else {
  563. if (is_imm8(val))
  564. EMIT3(0x83, add_1reg(0xE8, dreg), val);
  565. else
  566. EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
  567. }
  568. break;
  569. /* dst = dst | val */
  570. case BPF_OR:
  571. if (is_imm8(val))
  572. EMIT3(0x83, add_1reg(0xC8, dreg), val);
  573. else
  574. EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
  575. break;
  576. /* dst = dst & val */
  577. case BPF_AND:
  578. if (is_imm8(val))
  579. EMIT3(0x83, add_1reg(0xE0, dreg), val);
  580. else
  581. EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
  582. break;
  583. /* dst = dst ^ val */
  584. case BPF_XOR:
  585. if (is_imm8(val))
  586. EMIT3(0x83, add_1reg(0xF0, dreg), val);
  587. else
  588. EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
  589. break;
  590. case BPF_NEG:
  591. EMIT2(0xF7, add_1reg(0xD8, dreg));
  592. break;
  593. }
  594. if (dstk)
  595. /* mov dword ptr [ebp+off],dreg */
  596. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
  597. STACK_VAR(dst));
  598. *pprog = prog;
  599. }
  600. /* ALU operation (64 bit) */
  601. static inline void emit_ia32_alu_i64(const bool is64, const u8 op,
  602. const u8 dst[], const u32 val,
  603. bool dstk, u8 **pprog,
  604. const struct bpf_prog_aux *aux)
  605. {
  606. u8 *prog = *pprog;
  607. u32 hi = 0;
  608. if (is64 && (val & (1<<31)))
  609. hi = (u32)~0;
  610. emit_ia32_alu_i(is64, false, op, dst_lo, val, dstk, &prog);
  611. if (is64)
  612. emit_ia32_alu_i(is64, true, op, dst_hi, hi, dstk, &prog);
  613. else if (!aux->verifier_zext)
  614. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  615. *pprog = prog;
  616. }
  617. /* dst = ~dst (64 bit) */
  618. static inline void emit_ia32_neg64(const u8 dst[], bool dstk, u8 **pprog)
  619. {
  620. u8 *prog = *pprog;
  621. int cnt = 0;
  622. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  623. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  624. if (dstk) {
  625. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  626. STACK_VAR(dst_lo));
  627. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  628. STACK_VAR(dst_hi));
  629. }
  630. /* neg dreg_lo */
  631. EMIT2(0xF7, add_1reg(0xD8, dreg_lo));
  632. /* adc dreg_hi,0x0 */
  633. EMIT3(0x83, add_1reg(0xD0, dreg_hi), 0x00);
  634. /* neg dreg_hi */
  635. EMIT2(0xF7, add_1reg(0xD8, dreg_hi));
  636. if (dstk) {
  637. /* mov dword ptr [ebp+off],dreg_lo */
  638. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  639. STACK_VAR(dst_lo));
  640. /* mov dword ptr [ebp+off],dreg_hi */
  641. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  642. STACK_VAR(dst_hi));
  643. }
  644. *pprog = prog;
  645. }
  646. /* dst = dst << src */
  647. static inline void emit_ia32_lsh_r64(const u8 dst[], const u8 src[],
  648. bool dstk, bool sstk, u8 **pprog)
  649. {
  650. u8 *prog = *pprog;
  651. int cnt = 0;
  652. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  653. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  654. if (dstk) {
  655. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  656. STACK_VAR(dst_lo));
  657. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  658. STACK_VAR(dst_hi));
  659. }
  660. if (sstk)
  661. /* mov ecx,dword ptr [ebp+off] */
  662. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  663. STACK_VAR(src_lo));
  664. else
  665. /* mov ecx,src_lo */
  666. EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
  667. /* shld dreg_hi,dreg_lo,cl */
  668. EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi, dreg_lo));
  669. /* shl dreg_lo,cl */
  670. EMIT2(0xD3, add_1reg(0xE0, dreg_lo));
  671. /* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */
  672. /* cmp ecx,32 */
  673. EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
  674. /* skip the next two instructions (4 bytes) when < 32 */
  675. EMIT2(IA32_JB, 4);
  676. /* mov dreg_hi,dreg_lo */
  677. EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
  678. /* xor dreg_lo,dreg_lo */
  679. EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
  680. if (dstk) {
  681. /* mov dword ptr [ebp+off],dreg_lo */
  682. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  683. STACK_VAR(dst_lo));
  684. /* mov dword ptr [ebp+off],dreg_hi */
  685. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  686. STACK_VAR(dst_hi));
  687. }
  688. /* out: */
  689. *pprog = prog;
  690. }
  691. /* dst = dst >> src (signed)*/
  692. static inline void emit_ia32_arsh_r64(const u8 dst[], const u8 src[],
  693. bool dstk, bool sstk, u8 **pprog)
  694. {
  695. u8 *prog = *pprog;
  696. int cnt = 0;
  697. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  698. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  699. if (dstk) {
  700. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  701. STACK_VAR(dst_lo));
  702. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  703. STACK_VAR(dst_hi));
  704. }
  705. if (sstk)
  706. /* mov ecx,dword ptr [ebp+off] */
  707. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  708. STACK_VAR(src_lo));
  709. else
  710. /* mov ecx,src_lo */
  711. EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
  712. /* shrd dreg_lo,dreg_hi,cl */
  713. EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
  714. /* sar dreg_hi,cl */
  715. EMIT2(0xD3, add_1reg(0xF8, dreg_hi));
  716. /* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */
  717. /* cmp ecx,32 */
  718. EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
  719. /* skip the next two instructions (5 bytes) when < 32 */
  720. EMIT2(IA32_JB, 5);
  721. /* mov dreg_lo,dreg_hi */
  722. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
  723. /* sar dreg_hi,31 */
  724. EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
  725. if (dstk) {
  726. /* mov dword ptr [ebp+off],dreg_lo */
  727. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  728. STACK_VAR(dst_lo));
  729. /* mov dword ptr [ebp+off],dreg_hi */
  730. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  731. STACK_VAR(dst_hi));
  732. }
  733. /* out: */
  734. *pprog = prog;
  735. }
  736. /* dst = dst >> src */
  737. static inline void emit_ia32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
  738. bool sstk, u8 **pprog)
  739. {
  740. u8 *prog = *pprog;
  741. int cnt = 0;
  742. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  743. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  744. if (dstk) {
  745. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  746. STACK_VAR(dst_lo));
  747. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  748. STACK_VAR(dst_hi));
  749. }
  750. if (sstk)
  751. /* mov ecx,dword ptr [ebp+off] */
  752. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  753. STACK_VAR(src_lo));
  754. else
  755. /* mov ecx,src_lo */
  756. EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
  757. /* shrd dreg_lo,dreg_hi,cl */
  758. EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
  759. /* shr dreg_hi,cl */
  760. EMIT2(0xD3, add_1reg(0xE8, dreg_hi));
  761. /* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */
  762. /* cmp ecx,32 */
  763. EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
  764. /* skip the next two instructions (4 bytes) when < 32 */
  765. EMIT2(IA32_JB, 4);
  766. /* mov dreg_lo,dreg_hi */
  767. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
  768. /* xor dreg_hi,dreg_hi */
  769. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  770. if (dstk) {
  771. /* mov dword ptr [ebp+off],dreg_lo */
  772. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  773. STACK_VAR(dst_lo));
  774. /* mov dword ptr [ebp+off],dreg_hi */
  775. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  776. STACK_VAR(dst_hi));
  777. }
  778. /* out: */
  779. *pprog = prog;
  780. }
  781. /* dst = dst << val */
  782. static inline void emit_ia32_lsh_i64(const u8 dst[], const u32 val,
  783. bool dstk, u8 **pprog)
  784. {
  785. u8 *prog = *pprog;
  786. int cnt = 0;
  787. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  788. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  789. if (dstk) {
  790. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  791. STACK_VAR(dst_lo));
  792. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  793. STACK_VAR(dst_hi));
  794. }
  795. /* Do LSH operation */
  796. if (val < 32) {
  797. /* shld dreg_hi,dreg_lo,imm8 */
  798. EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi, dreg_lo), val);
  799. /* shl dreg_lo,imm8 */
  800. EMIT3(0xC1, add_1reg(0xE0, dreg_lo), val);
  801. } else if (val >= 32 && val < 64) {
  802. u32 value = val - 32;
  803. /* shl dreg_lo,imm8 */
  804. EMIT3(0xC1, add_1reg(0xE0, dreg_lo), value);
  805. /* mov dreg_hi,dreg_lo */
  806. EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
  807. /* xor dreg_lo,dreg_lo */
  808. EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
  809. } else {
  810. /* xor dreg_lo,dreg_lo */
  811. EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
  812. /* xor dreg_hi,dreg_hi */
  813. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  814. }
  815. if (dstk) {
  816. /* mov dword ptr [ebp+off],dreg_lo */
  817. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  818. STACK_VAR(dst_lo));
  819. /* mov dword ptr [ebp+off],dreg_hi */
  820. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  821. STACK_VAR(dst_hi));
  822. }
  823. *pprog = prog;
  824. }
  825. /* dst = dst >> val */
  826. static inline void emit_ia32_rsh_i64(const u8 dst[], const u32 val,
  827. bool dstk, u8 **pprog)
  828. {
  829. u8 *prog = *pprog;
  830. int cnt = 0;
  831. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  832. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  833. if (dstk) {
  834. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  835. STACK_VAR(dst_lo));
  836. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  837. STACK_VAR(dst_hi));
  838. }
  839. /* Do RSH operation */
  840. if (val < 32) {
  841. /* shrd dreg_lo,dreg_hi,imm8 */
  842. EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
  843. /* shr dreg_hi,imm8 */
  844. EMIT3(0xC1, add_1reg(0xE8, dreg_hi), val);
  845. } else if (val >= 32 && val < 64) {
  846. u32 value = val - 32;
  847. /* shr dreg_hi,imm8 */
  848. EMIT3(0xC1, add_1reg(0xE8, dreg_hi), value);
  849. /* mov dreg_lo,dreg_hi */
  850. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
  851. /* xor dreg_hi,dreg_hi */
  852. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  853. } else {
  854. /* xor dreg_lo,dreg_lo */
  855. EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
  856. /* xor dreg_hi,dreg_hi */
  857. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  858. }
  859. if (dstk) {
  860. /* mov dword ptr [ebp+off],dreg_lo */
  861. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  862. STACK_VAR(dst_lo));
  863. /* mov dword ptr [ebp+off],dreg_hi */
  864. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  865. STACK_VAR(dst_hi));
  866. }
  867. *pprog = prog;
  868. }
  869. /* dst = dst >> val (signed) */
  870. static inline void emit_ia32_arsh_i64(const u8 dst[], const u32 val,
  871. bool dstk, u8 **pprog)
  872. {
  873. u8 *prog = *pprog;
  874. int cnt = 0;
  875. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  876. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  877. if (dstk) {
  878. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  879. STACK_VAR(dst_lo));
  880. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  881. STACK_VAR(dst_hi));
  882. }
  883. /* Do RSH operation */
  884. if (val < 32) {
  885. /* shrd dreg_lo,dreg_hi,imm8 */
  886. EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
  887. /* ashr dreg_hi,imm8 */
  888. EMIT3(0xC1, add_1reg(0xF8, dreg_hi), val);
  889. } else if (val >= 32 && val < 64) {
  890. u32 value = val - 32;
  891. /* ashr dreg_hi,imm8 */
  892. EMIT3(0xC1, add_1reg(0xF8, dreg_hi), value);
  893. /* mov dreg_lo,dreg_hi */
  894. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
  895. /* ashr dreg_hi,imm8 */
  896. EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
  897. } else {
  898. /* ashr dreg_hi,imm8 */
  899. EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
  900. /* mov dreg_lo,dreg_hi */
  901. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
  902. }
  903. if (dstk) {
  904. /* mov dword ptr [ebp+off],dreg_lo */
  905. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  906. STACK_VAR(dst_lo));
  907. /* mov dword ptr [ebp+off],dreg_hi */
  908. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  909. STACK_VAR(dst_hi));
  910. }
  911. *pprog = prog;
  912. }
  913. static inline void emit_ia32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
  914. bool sstk, u8 **pprog)
  915. {
  916. u8 *prog = *pprog;
  917. int cnt = 0;
  918. if (dstk)
  919. /* mov eax,dword ptr [ebp+off] */
  920. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  921. STACK_VAR(dst_hi));
  922. else
  923. /* mov eax,dst_hi */
  924. EMIT2(0x8B, add_2reg(0xC0, dst_hi, IA32_EAX));
  925. if (sstk)
  926. /* mul dword ptr [ebp+off] */
  927. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
  928. else
  929. /* mul src_lo */
  930. EMIT2(0xF7, add_1reg(0xE0, src_lo));
  931. /* mov ecx,eax */
  932. EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
  933. if (dstk)
  934. /* mov eax,dword ptr [ebp+off] */
  935. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  936. STACK_VAR(dst_lo));
  937. else
  938. /* mov eax,dst_lo */
  939. EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
  940. if (sstk)
  941. /* mul dword ptr [ebp+off] */
  942. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_hi));
  943. else
  944. /* mul src_hi */
  945. EMIT2(0xF7, add_1reg(0xE0, src_hi));
  946. /* add eax,eax */
  947. EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
  948. if (dstk)
  949. /* mov eax,dword ptr [ebp+off] */
  950. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  951. STACK_VAR(dst_lo));
  952. else
  953. /* mov eax,dst_lo */
  954. EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
  955. if (sstk)
  956. /* mul dword ptr [ebp+off] */
  957. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
  958. else
  959. /* mul src_lo */
  960. EMIT2(0xF7, add_1reg(0xE0, src_lo));
  961. /* add ecx,edx */
  962. EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
  963. if (dstk) {
  964. /* mov dword ptr [ebp+off],eax */
  965. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  966. STACK_VAR(dst_lo));
  967. /* mov dword ptr [ebp+off],ecx */
  968. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
  969. STACK_VAR(dst_hi));
  970. } else {
  971. /* mov dst_lo,eax */
  972. EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
  973. /* mov dst_hi,ecx */
  974. EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
  975. }
  976. *pprog = prog;
  977. }
  978. static inline void emit_ia32_mul_i64(const u8 dst[], const u32 val,
  979. bool dstk, u8 **pprog)
  980. {
  981. u8 *prog = *pprog;
  982. int cnt = 0;
  983. u32 hi;
  984. hi = val & (1<<31) ? (u32)~0 : 0;
  985. /* movl eax,imm32 */
  986. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
  987. if (dstk)
  988. /* mul dword ptr [ebp+off] */
  989. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_hi));
  990. else
  991. /* mul dst_hi */
  992. EMIT2(0xF7, add_1reg(0xE0, dst_hi));
  993. /* mov ecx,eax */
  994. EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
  995. /* movl eax,imm32 */
  996. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), hi);
  997. if (dstk)
  998. /* mul dword ptr [ebp+off] */
  999. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
  1000. else
  1001. /* mul dst_lo */
  1002. EMIT2(0xF7, add_1reg(0xE0, dst_lo));
  1003. /* add ecx,eax */
  1004. EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
  1005. /* movl eax,imm32 */
  1006. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
  1007. if (dstk)
  1008. /* mul dword ptr [ebp+off] */
  1009. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
  1010. else
  1011. /* mul dst_lo */
  1012. EMIT2(0xF7, add_1reg(0xE0, dst_lo));
  1013. /* add ecx,edx */
  1014. EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
  1015. if (dstk) {
  1016. /* mov dword ptr [ebp+off],eax */
  1017. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1018. STACK_VAR(dst_lo));
  1019. /* mov dword ptr [ebp+off],ecx */
  1020. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
  1021. STACK_VAR(dst_hi));
  1022. } else {
  1023. /* mov dword ptr [ebp+off],eax */
  1024. EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
  1025. /* mov dword ptr [ebp+off],ecx */
  1026. EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
  1027. }
  1028. *pprog = prog;
  1029. }
  1030. static int bpf_size_to_x86_bytes(int bpf_size)
  1031. {
  1032. if (bpf_size == BPF_W)
  1033. return 4;
  1034. else if (bpf_size == BPF_H)
  1035. return 2;
  1036. else if (bpf_size == BPF_B)
  1037. return 1;
  1038. else if (bpf_size == BPF_DW)
  1039. return 4; /* imm32 */
  1040. else
  1041. return 0;
  1042. }
  1043. struct jit_context {
  1044. int cleanup_addr; /* Epilogue code offset */
  1045. };
  1046. /* Maximum number of bytes emitted while JITing one eBPF insn */
  1047. #define BPF_MAX_INSN_SIZE 128
  1048. #define BPF_INSN_SAFETY 64
  1049. #define PROLOGUE_SIZE 35
  1050. /*
  1051. * Emit prologue code for BPF program and check it's size.
  1052. * bpf_tail_call helper will skip it while jumping into another program.
  1053. */
  1054. static void emit_prologue(u8 **pprog, u32 stack_depth)
  1055. {
  1056. u8 *prog = *pprog;
  1057. int cnt = 0;
  1058. const u8 *r1 = bpf2ia32[BPF_REG_1];
  1059. const u8 fplo = bpf2ia32[BPF_REG_FP][0];
  1060. const u8 fphi = bpf2ia32[BPF_REG_FP][1];
  1061. const u8 *tcc = bpf2ia32[TCALL_CNT];
  1062. /* push ebp */
  1063. EMIT1(0x55);
  1064. /* mov ebp,esp */
  1065. EMIT2(0x89, 0xE5);
  1066. /* push edi */
  1067. EMIT1(0x57);
  1068. /* push esi */
  1069. EMIT1(0x56);
  1070. /* push ebx */
  1071. EMIT1(0x53);
  1072. /* sub esp,STACK_SIZE */
  1073. EMIT2_off32(0x81, 0xEC, STACK_SIZE);
  1074. /* sub ebp,SCRATCH_SIZE+12*/
  1075. EMIT3(0x83, add_1reg(0xE8, IA32_EBP), SCRATCH_SIZE + 12);
  1076. /* xor ebx,ebx */
  1077. EMIT2(0x31, add_2reg(0xC0, IA32_EBX, IA32_EBX));
  1078. /* Set up BPF prog stack base register */
  1079. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBP), STACK_VAR(fplo));
  1080. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(fphi));
  1081. /* Move BPF_CTX (EAX) to BPF_REG_R1 */
  1082. /* mov dword ptr [ebp+off],eax */
  1083. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
  1084. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(r1[1]));
  1085. /* Initialize Tail Count */
  1086. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[0]));
  1087. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
  1088. BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
  1089. *pprog = prog;
  1090. }
  1091. /* Emit epilogue code for BPF program */
  1092. static void emit_epilogue(u8 **pprog, u32 stack_depth)
  1093. {
  1094. u8 *prog = *pprog;
  1095. const u8 *r0 = bpf2ia32[BPF_REG_0];
  1096. int cnt = 0;
  1097. /* mov eax,dword ptr [ebp+off]*/
  1098. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0]));
  1099. /* mov edx,dword ptr [ebp+off]*/
  1100. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1]));
  1101. /* add ebp,SCRATCH_SIZE+12*/
  1102. EMIT3(0x83, add_1reg(0xC0, IA32_EBP), SCRATCH_SIZE + 12);
  1103. /* mov ebx,dword ptr [ebp-12]*/
  1104. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), -12);
  1105. /* mov esi,dword ptr [ebp-8]*/
  1106. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ESI), -8);
  1107. /* mov edi,dword ptr [ebp-4]*/
  1108. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDI), -4);
  1109. EMIT1(0xC9); /* leave */
  1110. EMIT1(0xC3); /* ret */
  1111. *pprog = prog;
  1112. }
  1113. static int emit_jmp_edx(u8 **pprog, u8 *ip)
  1114. {
  1115. u8 *prog = *pprog;
  1116. int cnt = 0;
  1117. #ifdef CONFIG_RETPOLINE
  1118. EMIT1_off32(0xE9, (u8 *)__x86_indirect_thunk_edx - (ip + 5));
  1119. #else
  1120. EMIT2(0xFF, 0xE2);
  1121. #endif
  1122. *pprog = prog;
  1123. return cnt;
  1124. }
  1125. /*
  1126. * Generate the following code:
  1127. * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
  1128. * if (index >= array->map.max_entries)
  1129. * goto out;
  1130. * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
  1131. * goto out;
  1132. * prog = array->ptrs[index];
  1133. * if (prog == NULL)
  1134. * goto out;
  1135. * goto *(prog->bpf_func + prologue_size);
  1136. * out:
  1137. */
  1138. static void emit_bpf_tail_call(u8 **pprog, u8 *ip)
  1139. {
  1140. u8 *prog = *pprog;
  1141. int cnt = 0;
  1142. const u8 *r1 = bpf2ia32[BPF_REG_1];
  1143. const u8 *r2 = bpf2ia32[BPF_REG_2];
  1144. const u8 *r3 = bpf2ia32[BPF_REG_3];
  1145. const u8 *tcc = bpf2ia32[TCALL_CNT];
  1146. u32 lo, hi;
  1147. static int jmp_label1 = -1;
  1148. /*
  1149. * if (index >= array->map.max_entries)
  1150. * goto out;
  1151. */
  1152. /* mov eax,dword ptr [ebp+off] */
  1153. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r2[0]));
  1154. /* mov edx,dword ptr [ebp+off] */
  1155. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r3[0]));
  1156. /* cmp dword ptr [eax+off],edx */
  1157. EMIT3(0x39, add_2reg(0x40, IA32_EAX, IA32_EDX),
  1158. offsetof(struct bpf_array, map.max_entries));
  1159. /* jbe out */
  1160. EMIT2(IA32_JBE, jmp_label(jmp_label1, 2));
  1161. /*
  1162. * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
  1163. * goto out;
  1164. */
  1165. lo = (u32)MAX_TAIL_CALL_CNT;
  1166. hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
  1167. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
  1168. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
  1169. /* cmp edx,hi */
  1170. EMIT3(0x83, add_1reg(0xF8, IA32_EBX), hi);
  1171. EMIT2(IA32_JNE, 3);
  1172. /* cmp ecx,lo */
  1173. EMIT3(0x83, add_1reg(0xF8, IA32_ECX), lo);
  1174. /* jae out */
  1175. EMIT2(IA32_JAE, jmp_label(jmp_label1, 2));
  1176. /* add eax,0x1 */
  1177. EMIT3(0x83, add_1reg(0xC0, IA32_ECX), 0x01);
  1178. /* adc ebx,0x0 */
  1179. EMIT3(0x83, add_1reg(0xD0, IA32_EBX), 0x00);
  1180. /* mov dword ptr [ebp+off],eax */
  1181. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
  1182. /* mov dword ptr [ebp+off],edx */
  1183. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
  1184. /* prog = array->ptrs[index]; */
  1185. /* mov edx, [eax + edx * 4 + offsetof(...)] */
  1186. EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array, ptrs));
  1187. /*
  1188. * if (prog == NULL)
  1189. * goto out;
  1190. */
  1191. /* test edx,edx */
  1192. EMIT2(0x85, add_2reg(0xC0, IA32_EDX, IA32_EDX));
  1193. /* je out */
  1194. EMIT2(IA32_JE, jmp_label(jmp_label1, 2));
  1195. /* goto *(prog->bpf_func + prologue_size); */
  1196. /* mov edx, dword ptr [edx + 32] */
  1197. EMIT3(0x8B, add_2reg(0x40, IA32_EDX, IA32_EDX),
  1198. offsetof(struct bpf_prog, bpf_func));
  1199. /* add edx,prologue_size */
  1200. EMIT3(0x83, add_1reg(0xC0, IA32_EDX), PROLOGUE_SIZE);
  1201. /* mov eax,dword ptr [ebp+off] */
  1202. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
  1203. /*
  1204. * Now we're ready to jump into next BPF program:
  1205. * eax == ctx (1st arg)
  1206. * edx == prog->bpf_func + prologue_size
  1207. */
  1208. cnt += emit_jmp_edx(&prog, ip + cnt);
  1209. if (jmp_label1 == -1)
  1210. jmp_label1 = cnt;
  1211. /* out: */
  1212. *pprog = prog;
  1213. }
  1214. /* Push the scratch stack register on top of the stack. */
  1215. static inline void emit_push_r64(const u8 src[], u8 **pprog)
  1216. {
  1217. u8 *prog = *pprog;
  1218. int cnt = 0;
  1219. /* mov ecx,dword ptr [ebp+off] */
  1220. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_hi));
  1221. /* push ecx */
  1222. EMIT1(0x51);
  1223. /* mov ecx,dword ptr [ebp+off] */
  1224. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
  1225. /* push ecx */
  1226. EMIT1(0x51);
  1227. *pprog = prog;
  1228. }
  1229. static void emit_push_r32(const u8 src[], u8 **pprog)
  1230. {
  1231. u8 *prog = *pprog;
  1232. int cnt = 0;
  1233. /* mov ecx,dword ptr [ebp+off] */
  1234. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
  1235. /* push ecx */
  1236. EMIT1(0x51);
  1237. *pprog = prog;
  1238. }
  1239. static u8 get_cond_jmp_opcode(const u8 op, bool is_cmp_lo)
  1240. {
  1241. u8 jmp_cond;
  1242. /* Convert BPF opcode to x86 */
  1243. switch (op) {
  1244. case BPF_JEQ:
  1245. jmp_cond = IA32_JE;
  1246. break;
  1247. case BPF_JSET:
  1248. case BPF_JNE:
  1249. jmp_cond = IA32_JNE;
  1250. break;
  1251. case BPF_JGT:
  1252. /* GT is unsigned '>', JA in x86 */
  1253. jmp_cond = IA32_JA;
  1254. break;
  1255. case BPF_JLT:
  1256. /* LT is unsigned '<', JB in x86 */
  1257. jmp_cond = IA32_JB;
  1258. break;
  1259. case BPF_JGE:
  1260. /* GE is unsigned '>=', JAE in x86 */
  1261. jmp_cond = IA32_JAE;
  1262. break;
  1263. case BPF_JLE:
  1264. /* LE is unsigned '<=', JBE in x86 */
  1265. jmp_cond = IA32_JBE;
  1266. break;
  1267. case BPF_JSGT:
  1268. if (!is_cmp_lo)
  1269. /* Signed '>', GT in x86 */
  1270. jmp_cond = IA32_JG;
  1271. else
  1272. /* GT is unsigned '>', JA in x86 */
  1273. jmp_cond = IA32_JA;
  1274. break;
  1275. case BPF_JSLT:
  1276. if (!is_cmp_lo)
  1277. /* Signed '<', LT in x86 */
  1278. jmp_cond = IA32_JL;
  1279. else
  1280. /* LT is unsigned '<', JB in x86 */
  1281. jmp_cond = IA32_JB;
  1282. break;
  1283. case BPF_JSGE:
  1284. if (!is_cmp_lo)
  1285. /* Signed '>=', GE in x86 */
  1286. jmp_cond = IA32_JGE;
  1287. else
  1288. /* GE is unsigned '>=', JAE in x86 */
  1289. jmp_cond = IA32_JAE;
  1290. break;
  1291. case BPF_JSLE:
  1292. if (!is_cmp_lo)
  1293. /* Signed '<=', LE in x86 */
  1294. jmp_cond = IA32_JLE;
  1295. else
  1296. /* LE is unsigned '<=', JBE in x86 */
  1297. jmp_cond = IA32_JBE;
  1298. break;
  1299. default: /* to silence GCC warning */
  1300. jmp_cond = COND_JMP_OPCODE_INVALID;
  1301. break;
  1302. }
  1303. return jmp_cond;
  1304. }
  1305. /* i386 kernel compiles with "-mregparm=3". From gcc document:
  1306. *
  1307. * ==== snippet ====
  1308. * regparm (number)
  1309. * On x86-32 targets, the regparm attribute causes the compiler
  1310. * to pass arguments number one to (number) if they are of integral
  1311. * type in registers EAX, EDX, and ECX instead of on the stack.
  1312. * Functions that take a variable number of arguments continue
  1313. * to be passed all of their arguments on the stack.
  1314. * ==== snippet ====
  1315. *
  1316. * The first three args of a function will be considered for
  1317. * putting into the 32bit register EAX, EDX, and ECX.
  1318. *
  1319. * Two 32bit registers are used to pass a 64bit arg.
  1320. *
  1321. * For example,
  1322. * void foo(u32 a, u32 b, u32 c, u32 d):
  1323. * u32 a: EAX
  1324. * u32 b: EDX
  1325. * u32 c: ECX
  1326. * u32 d: stack
  1327. *
  1328. * void foo(u64 a, u32 b, u32 c):
  1329. * u64 a: EAX (lo32) EDX (hi32)
  1330. * u32 b: ECX
  1331. * u32 c: stack
  1332. *
  1333. * void foo(u32 a, u64 b, u32 c):
  1334. * u32 a: EAX
  1335. * u64 b: EDX (lo32) ECX (hi32)
  1336. * u32 c: stack
  1337. *
  1338. * void foo(u32 a, u32 b, u64 c):
  1339. * u32 a: EAX
  1340. * u32 b: EDX
  1341. * u64 c: stack
  1342. *
  1343. * The return value will be stored in the EAX (and EDX for 64bit value).
  1344. *
  1345. * For example,
  1346. * u32 foo(u32 a, u32 b, u32 c):
  1347. * return value: EAX
  1348. *
  1349. * u64 foo(u32 a, u32 b, u32 c):
  1350. * return value: EAX (lo32) EDX (hi32)
  1351. *
  1352. * Notes:
  1353. * The verifier only accepts function having integer and pointers
  1354. * as its args and return value, so it does not have
  1355. * struct-by-value.
  1356. *
  1357. * emit_kfunc_call() finds out the btf_func_model by calling
  1358. * bpf_jit_find_kfunc_model(). A btf_func_model
  1359. * has the details about the number of args, size of each arg,
  1360. * and the size of the return value.
  1361. *
  1362. * It first decides how many args can be passed by EAX, EDX, and ECX.
  1363. * That will decide what args should be pushed to the stack:
  1364. * [first_stack_regno, last_stack_regno] are the bpf regnos
  1365. * that should be pushed to the stack.
  1366. *
  1367. * It will first push all args to the stack because the push
  1368. * will need to use ECX. Then, it moves
  1369. * [BPF_REG_1, first_stack_regno) to EAX, EDX, and ECX.
  1370. *
  1371. * When emitting a call (0xE8), it needs to figure out
  1372. * the jmp_offset relative to the jit-insn address immediately
  1373. * following the call (0xE8) instruction. At this point, it knows
  1374. * the end of the jit-insn address after completely translated the
  1375. * current (BPF_JMP | BPF_CALL) bpf-insn. It is passed as "end_addr"
  1376. * to the emit_kfunc_call(). Thus, it can learn the "immediate-follow-call"
  1377. * address by figuring out how many jit-insn is generated between
  1378. * the call (0xE8) and the end_addr:
  1379. * - 0-1 jit-insn (3 bytes each) to restore the esp pointer if there
  1380. * is arg pushed to the stack.
  1381. * - 0-2 jit-insns (3 bytes each) to handle the return value.
  1382. */
  1383. static int emit_kfunc_call(const struct bpf_prog *bpf_prog, u8 *end_addr,
  1384. const struct bpf_insn *insn, u8 **pprog)
  1385. {
  1386. const u8 arg_regs[] = { IA32_EAX, IA32_EDX, IA32_ECX };
  1387. int i, cnt = 0, first_stack_regno, last_stack_regno;
  1388. int free_arg_regs = ARRAY_SIZE(arg_regs);
  1389. const struct btf_func_model *fm;
  1390. int bytes_in_stack = 0;
  1391. const u8 *cur_arg_reg;
  1392. u8 *prog = *pprog;
  1393. s64 jmp_offset;
  1394. fm = bpf_jit_find_kfunc_model(bpf_prog, insn);
  1395. if (!fm)
  1396. return -EINVAL;
  1397. first_stack_regno = BPF_REG_1;
  1398. for (i = 0; i < fm->nr_args; i++) {
  1399. int regs_needed = fm->arg_size[i] > sizeof(u32) ? 2 : 1;
  1400. if (regs_needed > free_arg_regs)
  1401. break;
  1402. free_arg_regs -= regs_needed;
  1403. first_stack_regno++;
  1404. }
  1405. /* Push the args to the stack */
  1406. last_stack_regno = BPF_REG_0 + fm->nr_args;
  1407. for (i = last_stack_regno; i >= first_stack_regno; i--) {
  1408. if (fm->arg_size[i - 1] > sizeof(u32)) {
  1409. emit_push_r64(bpf2ia32[i], &prog);
  1410. bytes_in_stack += 8;
  1411. } else {
  1412. emit_push_r32(bpf2ia32[i], &prog);
  1413. bytes_in_stack += 4;
  1414. }
  1415. }
  1416. cur_arg_reg = &arg_regs[0];
  1417. for (i = BPF_REG_1; i < first_stack_regno; i++) {
  1418. /* mov e[adc]x,dword ptr [ebp+off] */
  1419. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++),
  1420. STACK_VAR(bpf2ia32[i][0]));
  1421. if (fm->arg_size[i - 1] > sizeof(u32))
  1422. /* mov e[adc]x,dword ptr [ebp+off] */
  1423. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++),
  1424. STACK_VAR(bpf2ia32[i][1]));
  1425. }
  1426. if (bytes_in_stack)
  1427. /* add esp,"bytes_in_stack" */
  1428. end_addr -= 3;
  1429. /* mov dword ptr [ebp+off],edx */
  1430. if (fm->ret_size > sizeof(u32))
  1431. end_addr -= 3;
  1432. /* mov dword ptr [ebp+off],eax */
  1433. if (fm->ret_size)
  1434. end_addr -= 3;
  1435. jmp_offset = (u8 *)__bpf_call_base + insn->imm - end_addr;
  1436. if (!is_simm32(jmp_offset)) {
  1437. pr_err("unsupported BPF kernel function jmp_offset:%lld\n",
  1438. jmp_offset);
  1439. return -EINVAL;
  1440. }
  1441. EMIT1_off32(0xE8, jmp_offset);
  1442. if (fm->ret_size)
  1443. /* mov dword ptr [ebp+off],eax */
  1444. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1445. STACK_VAR(bpf2ia32[BPF_REG_0][0]));
  1446. if (fm->ret_size > sizeof(u32))
  1447. /* mov dword ptr [ebp+off],edx */
  1448. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1449. STACK_VAR(bpf2ia32[BPF_REG_0][1]));
  1450. if (bytes_in_stack)
  1451. /* add esp,"bytes_in_stack" */
  1452. EMIT3(0x83, add_1reg(0xC0, IA32_ESP), bytes_in_stack);
  1453. *pprog = prog;
  1454. return 0;
  1455. }
  1456. static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
  1457. int oldproglen, struct jit_context *ctx)
  1458. {
  1459. struct bpf_insn *insn = bpf_prog->insnsi;
  1460. int insn_cnt = bpf_prog->len;
  1461. bool seen_exit = false;
  1462. u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
  1463. int i, cnt = 0;
  1464. int proglen = 0;
  1465. u8 *prog = temp;
  1466. emit_prologue(&prog, bpf_prog->aux->stack_depth);
  1467. for (i = 0; i < insn_cnt; i++, insn++) {
  1468. const s32 imm32 = insn->imm;
  1469. const bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
  1470. const bool dstk = insn->dst_reg != BPF_REG_AX;
  1471. const bool sstk = insn->src_reg != BPF_REG_AX;
  1472. const u8 code = insn->code;
  1473. const u8 *dst = bpf2ia32[insn->dst_reg];
  1474. const u8 *src = bpf2ia32[insn->src_reg];
  1475. const u8 *r0 = bpf2ia32[BPF_REG_0];
  1476. s64 jmp_offset;
  1477. u8 jmp_cond;
  1478. int ilen;
  1479. u8 *func;
  1480. switch (code) {
  1481. /* ALU operations */
  1482. /* dst = src */
  1483. case BPF_ALU | BPF_MOV | BPF_K:
  1484. case BPF_ALU | BPF_MOV | BPF_X:
  1485. case BPF_ALU64 | BPF_MOV | BPF_K:
  1486. case BPF_ALU64 | BPF_MOV | BPF_X:
  1487. switch (BPF_SRC(code)) {
  1488. case BPF_X:
  1489. if (imm32 == 1) {
  1490. /* Special mov32 for zext. */
  1491. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1492. break;
  1493. }
  1494. emit_ia32_mov_r64(is64, dst, src, dstk, sstk,
  1495. &prog, bpf_prog->aux);
  1496. break;
  1497. case BPF_K:
  1498. /* Sign-extend immediate value to dst reg */
  1499. emit_ia32_mov_i64(is64, dst, imm32,
  1500. dstk, &prog);
  1501. break;
  1502. }
  1503. break;
  1504. /* dst = dst + src/imm */
  1505. /* dst = dst - src/imm */
  1506. /* dst = dst | src/imm */
  1507. /* dst = dst & src/imm */
  1508. /* dst = dst ^ src/imm */
  1509. /* dst = dst * src/imm */
  1510. /* dst = dst << src */
  1511. /* dst = dst >> src */
  1512. case BPF_ALU | BPF_ADD | BPF_K:
  1513. case BPF_ALU | BPF_ADD | BPF_X:
  1514. case BPF_ALU | BPF_SUB | BPF_K:
  1515. case BPF_ALU | BPF_SUB | BPF_X:
  1516. case BPF_ALU | BPF_OR | BPF_K:
  1517. case BPF_ALU | BPF_OR | BPF_X:
  1518. case BPF_ALU | BPF_AND | BPF_K:
  1519. case BPF_ALU | BPF_AND | BPF_X:
  1520. case BPF_ALU | BPF_XOR | BPF_K:
  1521. case BPF_ALU | BPF_XOR | BPF_X:
  1522. case BPF_ALU64 | BPF_ADD | BPF_K:
  1523. case BPF_ALU64 | BPF_ADD | BPF_X:
  1524. case BPF_ALU64 | BPF_SUB | BPF_K:
  1525. case BPF_ALU64 | BPF_SUB | BPF_X:
  1526. case BPF_ALU64 | BPF_OR | BPF_K:
  1527. case BPF_ALU64 | BPF_OR | BPF_X:
  1528. case BPF_ALU64 | BPF_AND | BPF_K:
  1529. case BPF_ALU64 | BPF_AND | BPF_X:
  1530. case BPF_ALU64 | BPF_XOR | BPF_K:
  1531. case BPF_ALU64 | BPF_XOR | BPF_X:
  1532. switch (BPF_SRC(code)) {
  1533. case BPF_X:
  1534. emit_ia32_alu_r64(is64, BPF_OP(code), dst,
  1535. src, dstk, sstk, &prog,
  1536. bpf_prog->aux);
  1537. break;
  1538. case BPF_K:
  1539. emit_ia32_alu_i64(is64, BPF_OP(code), dst,
  1540. imm32, dstk, &prog,
  1541. bpf_prog->aux);
  1542. break;
  1543. }
  1544. break;
  1545. case BPF_ALU | BPF_MUL | BPF_K:
  1546. case BPF_ALU | BPF_MUL | BPF_X:
  1547. switch (BPF_SRC(code)) {
  1548. case BPF_X:
  1549. emit_ia32_mul_r(dst_lo, src_lo, dstk,
  1550. sstk, &prog);
  1551. break;
  1552. case BPF_K:
  1553. /* mov ecx,imm32*/
  1554. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
  1555. imm32);
  1556. emit_ia32_mul_r(dst_lo, IA32_ECX, dstk,
  1557. false, &prog);
  1558. break;
  1559. }
  1560. if (!bpf_prog->aux->verifier_zext)
  1561. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1562. break;
  1563. case BPF_ALU | BPF_LSH | BPF_X:
  1564. case BPF_ALU | BPF_RSH | BPF_X:
  1565. case BPF_ALU | BPF_ARSH | BPF_K:
  1566. case BPF_ALU | BPF_ARSH | BPF_X:
  1567. switch (BPF_SRC(code)) {
  1568. case BPF_X:
  1569. emit_ia32_shift_r(BPF_OP(code), dst_lo, src_lo,
  1570. dstk, sstk, &prog);
  1571. break;
  1572. case BPF_K:
  1573. /* mov ecx,imm32*/
  1574. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
  1575. imm32);
  1576. emit_ia32_shift_r(BPF_OP(code), dst_lo,
  1577. IA32_ECX, dstk, false,
  1578. &prog);
  1579. break;
  1580. }
  1581. if (!bpf_prog->aux->verifier_zext)
  1582. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1583. break;
  1584. /* dst = dst / src(imm) */
  1585. /* dst = dst % src(imm) */
  1586. case BPF_ALU | BPF_DIV | BPF_K:
  1587. case BPF_ALU | BPF_DIV | BPF_X:
  1588. case BPF_ALU | BPF_MOD | BPF_K:
  1589. case BPF_ALU | BPF_MOD | BPF_X:
  1590. switch (BPF_SRC(code)) {
  1591. case BPF_X:
  1592. emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
  1593. src_lo, dstk, sstk, &prog);
  1594. break;
  1595. case BPF_K:
  1596. /* mov ecx,imm32*/
  1597. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
  1598. imm32);
  1599. emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
  1600. IA32_ECX, dstk, false,
  1601. &prog);
  1602. break;
  1603. }
  1604. if (!bpf_prog->aux->verifier_zext)
  1605. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1606. break;
  1607. case BPF_ALU64 | BPF_DIV | BPF_K:
  1608. case BPF_ALU64 | BPF_DIV | BPF_X:
  1609. case BPF_ALU64 | BPF_MOD | BPF_K:
  1610. case BPF_ALU64 | BPF_MOD | BPF_X:
  1611. goto notyet;
  1612. /* dst = dst >> imm */
  1613. /* dst = dst << imm */
  1614. case BPF_ALU | BPF_RSH | BPF_K:
  1615. case BPF_ALU | BPF_LSH | BPF_K:
  1616. if (unlikely(imm32 > 31))
  1617. return -EINVAL;
  1618. /* mov ecx,imm32*/
  1619. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
  1620. emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk,
  1621. false, &prog);
  1622. if (!bpf_prog->aux->verifier_zext)
  1623. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1624. break;
  1625. /* dst = dst << imm */
  1626. case BPF_ALU64 | BPF_LSH | BPF_K:
  1627. if (unlikely(imm32 > 63))
  1628. return -EINVAL;
  1629. emit_ia32_lsh_i64(dst, imm32, dstk, &prog);
  1630. break;
  1631. /* dst = dst >> imm */
  1632. case BPF_ALU64 | BPF_RSH | BPF_K:
  1633. if (unlikely(imm32 > 63))
  1634. return -EINVAL;
  1635. emit_ia32_rsh_i64(dst, imm32, dstk, &prog);
  1636. break;
  1637. /* dst = dst << src */
  1638. case BPF_ALU64 | BPF_LSH | BPF_X:
  1639. emit_ia32_lsh_r64(dst, src, dstk, sstk, &prog);
  1640. break;
  1641. /* dst = dst >> src */
  1642. case BPF_ALU64 | BPF_RSH | BPF_X:
  1643. emit_ia32_rsh_r64(dst, src, dstk, sstk, &prog);
  1644. break;
  1645. /* dst = dst >> src (signed) */
  1646. case BPF_ALU64 | BPF_ARSH | BPF_X:
  1647. emit_ia32_arsh_r64(dst, src, dstk, sstk, &prog);
  1648. break;
  1649. /* dst = dst >> imm (signed) */
  1650. case BPF_ALU64 | BPF_ARSH | BPF_K:
  1651. if (unlikely(imm32 > 63))
  1652. return -EINVAL;
  1653. emit_ia32_arsh_i64(dst, imm32, dstk, &prog);
  1654. break;
  1655. /* dst = ~dst */
  1656. case BPF_ALU | BPF_NEG:
  1657. emit_ia32_alu_i(is64, false, BPF_OP(code),
  1658. dst_lo, 0, dstk, &prog);
  1659. if (!bpf_prog->aux->verifier_zext)
  1660. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1661. break;
  1662. /* dst = ~dst (64 bit) */
  1663. case BPF_ALU64 | BPF_NEG:
  1664. emit_ia32_neg64(dst, dstk, &prog);
  1665. break;
  1666. /* dst = dst * src/imm */
  1667. case BPF_ALU64 | BPF_MUL | BPF_X:
  1668. case BPF_ALU64 | BPF_MUL | BPF_K:
  1669. switch (BPF_SRC(code)) {
  1670. case BPF_X:
  1671. emit_ia32_mul_r64(dst, src, dstk, sstk, &prog);
  1672. break;
  1673. case BPF_K:
  1674. emit_ia32_mul_i64(dst, imm32, dstk, &prog);
  1675. break;
  1676. }
  1677. break;
  1678. /* dst = htole(dst) */
  1679. case BPF_ALU | BPF_END | BPF_FROM_LE:
  1680. emit_ia32_to_le_r64(dst, imm32, dstk, &prog,
  1681. bpf_prog->aux);
  1682. break;
  1683. /* dst = htobe(dst) */
  1684. case BPF_ALU | BPF_END | BPF_FROM_BE:
  1685. emit_ia32_to_be_r64(dst, imm32, dstk, &prog,
  1686. bpf_prog->aux);
  1687. break;
  1688. /* dst = imm64 */
  1689. case BPF_LD | BPF_IMM | BPF_DW: {
  1690. s32 hi, lo = imm32;
  1691. hi = insn[1].imm;
  1692. emit_ia32_mov_i(dst_lo, lo, dstk, &prog);
  1693. emit_ia32_mov_i(dst_hi, hi, dstk, &prog);
  1694. insn++;
  1695. i++;
  1696. break;
  1697. }
  1698. /* speculation barrier */
  1699. case BPF_ST | BPF_NOSPEC:
  1700. if (boot_cpu_has(X86_FEATURE_XMM2))
  1701. /* Emit 'lfence' */
  1702. EMIT3(0x0F, 0xAE, 0xE8);
  1703. break;
  1704. /* ST: *(u8*)(dst_reg + off) = imm */
  1705. case BPF_ST | BPF_MEM | BPF_H:
  1706. case BPF_ST | BPF_MEM | BPF_B:
  1707. case BPF_ST | BPF_MEM | BPF_W:
  1708. case BPF_ST | BPF_MEM | BPF_DW:
  1709. if (dstk)
  1710. /* mov eax,dword ptr [ebp+off] */
  1711. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1712. STACK_VAR(dst_lo));
  1713. else
  1714. /* mov eax,dst_lo */
  1715. EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
  1716. switch (BPF_SIZE(code)) {
  1717. case BPF_B:
  1718. EMIT(0xC6, 1); break;
  1719. case BPF_H:
  1720. EMIT2(0x66, 0xC7); break;
  1721. case BPF_W:
  1722. case BPF_DW:
  1723. EMIT(0xC7, 1); break;
  1724. }
  1725. if (is_imm8(insn->off))
  1726. EMIT2(add_1reg(0x40, IA32_EAX), insn->off);
  1727. else
  1728. EMIT1_off32(add_1reg(0x80, IA32_EAX),
  1729. insn->off);
  1730. EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(code)));
  1731. if (BPF_SIZE(code) == BPF_DW) {
  1732. u32 hi;
  1733. hi = imm32 & (1<<31) ? (u32)~0 : 0;
  1734. EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX),
  1735. insn->off + 4);
  1736. EMIT(hi, 4);
  1737. }
  1738. break;
  1739. /* STX: *(u8*)(dst_reg + off) = src_reg */
  1740. case BPF_STX | BPF_MEM | BPF_B:
  1741. case BPF_STX | BPF_MEM | BPF_H:
  1742. case BPF_STX | BPF_MEM | BPF_W:
  1743. case BPF_STX | BPF_MEM | BPF_DW:
  1744. if (dstk)
  1745. /* mov eax,dword ptr [ebp+off] */
  1746. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1747. STACK_VAR(dst_lo));
  1748. else
  1749. /* mov eax,dst_lo */
  1750. EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
  1751. if (sstk)
  1752. /* mov edx,dword ptr [ebp+off] */
  1753. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1754. STACK_VAR(src_lo));
  1755. else
  1756. /* mov edx,src_lo */
  1757. EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EDX));
  1758. switch (BPF_SIZE(code)) {
  1759. case BPF_B:
  1760. EMIT(0x88, 1); break;
  1761. case BPF_H:
  1762. EMIT2(0x66, 0x89); break;
  1763. case BPF_W:
  1764. case BPF_DW:
  1765. EMIT(0x89, 1); break;
  1766. }
  1767. if (is_imm8(insn->off))
  1768. EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
  1769. insn->off);
  1770. else
  1771. EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
  1772. insn->off);
  1773. if (BPF_SIZE(code) == BPF_DW) {
  1774. if (sstk)
  1775. /* mov edi,dword ptr [ebp+off] */
  1776. EMIT3(0x8B, add_2reg(0x40, IA32_EBP,
  1777. IA32_EDX),
  1778. STACK_VAR(src_hi));
  1779. else
  1780. /* mov edi,src_hi */
  1781. EMIT2(0x8B, add_2reg(0xC0, src_hi,
  1782. IA32_EDX));
  1783. EMIT1(0x89);
  1784. if (is_imm8(insn->off + 4)) {
  1785. EMIT2(add_2reg(0x40, IA32_EAX,
  1786. IA32_EDX),
  1787. insn->off + 4);
  1788. } else {
  1789. EMIT1(add_2reg(0x80, IA32_EAX,
  1790. IA32_EDX));
  1791. EMIT(insn->off + 4, 4);
  1792. }
  1793. }
  1794. break;
  1795. /* LDX: dst_reg = *(u8*)(src_reg + off) */
  1796. case BPF_LDX | BPF_MEM | BPF_B:
  1797. case BPF_LDX | BPF_MEM | BPF_H:
  1798. case BPF_LDX | BPF_MEM | BPF_W:
  1799. case BPF_LDX | BPF_MEM | BPF_DW:
  1800. if (sstk)
  1801. /* mov eax,dword ptr [ebp+off] */
  1802. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1803. STACK_VAR(src_lo));
  1804. else
  1805. /* mov eax,dword ptr [ebp+off] */
  1806. EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EAX));
  1807. switch (BPF_SIZE(code)) {
  1808. case BPF_B:
  1809. EMIT2(0x0F, 0xB6); break;
  1810. case BPF_H:
  1811. EMIT2(0x0F, 0xB7); break;
  1812. case BPF_W:
  1813. case BPF_DW:
  1814. EMIT(0x8B, 1); break;
  1815. }
  1816. if (is_imm8(insn->off))
  1817. EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
  1818. insn->off);
  1819. else
  1820. EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
  1821. insn->off);
  1822. if (dstk)
  1823. /* mov dword ptr [ebp+off],edx */
  1824. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1825. STACK_VAR(dst_lo));
  1826. else
  1827. /* mov dst_lo,edx */
  1828. EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EDX));
  1829. switch (BPF_SIZE(code)) {
  1830. case BPF_B:
  1831. case BPF_H:
  1832. case BPF_W:
  1833. if (bpf_prog->aux->verifier_zext)
  1834. break;
  1835. if (dstk) {
  1836. EMIT3(0xC7, add_1reg(0x40, IA32_EBP),
  1837. STACK_VAR(dst_hi));
  1838. EMIT(0x0, 4);
  1839. } else {
  1840. /* xor dst_hi,dst_hi */
  1841. EMIT2(0x33,
  1842. add_2reg(0xC0, dst_hi, dst_hi));
  1843. }
  1844. break;
  1845. case BPF_DW:
  1846. EMIT2_off32(0x8B,
  1847. add_2reg(0x80, IA32_EAX, IA32_EDX),
  1848. insn->off + 4);
  1849. if (dstk)
  1850. EMIT3(0x89,
  1851. add_2reg(0x40, IA32_EBP,
  1852. IA32_EDX),
  1853. STACK_VAR(dst_hi));
  1854. else
  1855. EMIT2(0x89,
  1856. add_2reg(0xC0, dst_hi, IA32_EDX));
  1857. break;
  1858. default:
  1859. break;
  1860. }
  1861. break;
  1862. /* call */
  1863. case BPF_JMP | BPF_CALL:
  1864. {
  1865. const u8 *r1 = bpf2ia32[BPF_REG_1];
  1866. const u8 *r2 = bpf2ia32[BPF_REG_2];
  1867. const u8 *r3 = bpf2ia32[BPF_REG_3];
  1868. const u8 *r4 = bpf2ia32[BPF_REG_4];
  1869. const u8 *r5 = bpf2ia32[BPF_REG_5];
  1870. if (insn->src_reg == BPF_PSEUDO_CALL)
  1871. goto notyet;
  1872. if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
  1873. int err;
  1874. err = emit_kfunc_call(bpf_prog,
  1875. image + addrs[i],
  1876. insn, &prog);
  1877. if (err)
  1878. return err;
  1879. break;
  1880. }
  1881. func = (u8 *) __bpf_call_base + imm32;
  1882. jmp_offset = func - (image + addrs[i]);
  1883. if (!imm32 || !is_simm32(jmp_offset)) {
  1884. pr_err("unsupported BPF func %d addr %p image %p\n",
  1885. imm32, func, image);
  1886. return -EINVAL;
  1887. }
  1888. /* mov eax,dword ptr [ebp+off] */
  1889. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1890. STACK_VAR(r1[0]));
  1891. /* mov edx,dword ptr [ebp+off] */
  1892. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1893. STACK_VAR(r1[1]));
  1894. emit_push_r64(r5, &prog);
  1895. emit_push_r64(r4, &prog);
  1896. emit_push_r64(r3, &prog);
  1897. emit_push_r64(r2, &prog);
  1898. EMIT1_off32(0xE8, jmp_offset + 9);
  1899. /* mov dword ptr [ebp+off],eax */
  1900. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1901. STACK_VAR(r0[0]));
  1902. /* mov dword ptr [ebp+off],edx */
  1903. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1904. STACK_VAR(r0[1]));
  1905. /* add esp,32 */
  1906. EMIT3(0x83, add_1reg(0xC0, IA32_ESP), 32);
  1907. break;
  1908. }
  1909. case BPF_JMP | BPF_TAIL_CALL:
  1910. emit_bpf_tail_call(&prog, image + addrs[i - 1]);
  1911. break;
  1912. /* cond jump */
  1913. case BPF_JMP | BPF_JEQ | BPF_X:
  1914. case BPF_JMP | BPF_JNE | BPF_X:
  1915. case BPF_JMP | BPF_JGT | BPF_X:
  1916. case BPF_JMP | BPF_JLT | BPF_X:
  1917. case BPF_JMP | BPF_JGE | BPF_X:
  1918. case BPF_JMP | BPF_JLE | BPF_X:
  1919. case BPF_JMP32 | BPF_JEQ | BPF_X:
  1920. case BPF_JMP32 | BPF_JNE | BPF_X:
  1921. case BPF_JMP32 | BPF_JGT | BPF_X:
  1922. case BPF_JMP32 | BPF_JLT | BPF_X:
  1923. case BPF_JMP32 | BPF_JGE | BPF_X:
  1924. case BPF_JMP32 | BPF_JLE | BPF_X:
  1925. case BPF_JMP32 | BPF_JSGT | BPF_X:
  1926. case BPF_JMP32 | BPF_JSLE | BPF_X:
  1927. case BPF_JMP32 | BPF_JSLT | BPF_X:
  1928. case BPF_JMP32 | BPF_JSGE | BPF_X: {
  1929. bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
  1930. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  1931. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  1932. u8 sreg_lo = sstk ? IA32_ECX : src_lo;
  1933. u8 sreg_hi = sstk ? IA32_EBX : src_hi;
  1934. if (dstk) {
  1935. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1936. STACK_VAR(dst_lo));
  1937. if (is_jmp64)
  1938. EMIT3(0x8B,
  1939. add_2reg(0x40, IA32_EBP,
  1940. IA32_EDX),
  1941. STACK_VAR(dst_hi));
  1942. }
  1943. if (sstk) {
  1944. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  1945. STACK_VAR(src_lo));
  1946. if (is_jmp64)
  1947. EMIT3(0x8B,
  1948. add_2reg(0x40, IA32_EBP,
  1949. IA32_EBX),
  1950. STACK_VAR(src_hi));
  1951. }
  1952. if (is_jmp64) {
  1953. /* cmp dreg_hi,sreg_hi */
  1954. EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
  1955. EMIT2(IA32_JNE, 2);
  1956. }
  1957. /* cmp dreg_lo,sreg_lo */
  1958. EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
  1959. goto emit_cond_jmp;
  1960. }
  1961. case BPF_JMP | BPF_JSGT | BPF_X:
  1962. case BPF_JMP | BPF_JSLE | BPF_X:
  1963. case BPF_JMP | BPF_JSLT | BPF_X:
  1964. case BPF_JMP | BPF_JSGE | BPF_X: {
  1965. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  1966. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  1967. u8 sreg_lo = sstk ? IA32_ECX : src_lo;
  1968. u8 sreg_hi = sstk ? IA32_EBX : src_hi;
  1969. if (dstk) {
  1970. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1971. STACK_VAR(dst_lo));
  1972. EMIT3(0x8B,
  1973. add_2reg(0x40, IA32_EBP,
  1974. IA32_EDX),
  1975. STACK_VAR(dst_hi));
  1976. }
  1977. if (sstk) {
  1978. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  1979. STACK_VAR(src_lo));
  1980. EMIT3(0x8B,
  1981. add_2reg(0x40, IA32_EBP,
  1982. IA32_EBX),
  1983. STACK_VAR(src_hi));
  1984. }
  1985. /* cmp dreg_hi,sreg_hi */
  1986. EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
  1987. EMIT2(IA32_JNE, 10);
  1988. /* cmp dreg_lo,sreg_lo */
  1989. EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
  1990. goto emit_cond_jmp_signed;
  1991. }
  1992. case BPF_JMP | BPF_JSET | BPF_X:
  1993. case BPF_JMP32 | BPF_JSET | BPF_X: {
  1994. bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
  1995. u8 dreg_lo = IA32_EAX;
  1996. u8 dreg_hi = IA32_EDX;
  1997. u8 sreg_lo = sstk ? IA32_ECX : src_lo;
  1998. u8 sreg_hi = sstk ? IA32_EBX : src_hi;
  1999. if (dstk) {
  2000. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  2001. STACK_VAR(dst_lo));
  2002. if (is_jmp64)
  2003. EMIT3(0x8B,
  2004. add_2reg(0x40, IA32_EBP,
  2005. IA32_EDX),
  2006. STACK_VAR(dst_hi));
  2007. } else {
  2008. /* mov dreg_lo,dst_lo */
  2009. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
  2010. if (is_jmp64)
  2011. /* mov dreg_hi,dst_hi */
  2012. EMIT2(0x89,
  2013. add_2reg(0xC0, dreg_hi, dst_hi));
  2014. }
  2015. if (sstk) {
  2016. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  2017. STACK_VAR(src_lo));
  2018. if (is_jmp64)
  2019. EMIT3(0x8B,
  2020. add_2reg(0x40, IA32_EBP,
  2021. IA32_EBX),
  2022. STACK_VAR(src_hi));
  2023. }
  2024. /* and dreg_lo,sreg_lo */
  2025. EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
  2026. if (is_jmp64) {
  2027. /* and dreg_hi,sreg_hi */
  2028. EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
  2029. /* or dreg_lo,dreg_hi */
  2030. EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
  2031. }
  2032. goto emit_cond_jmp;
  2033. }
  2034. case BPF_JMP | BPF_JSET | BPF_K:
  2035. case BPF_JMP32 | BPF_JSET | BPF_K: {
  2036. bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
  2037. u8 dreg_lo = IA32_EAX;
  2038. u8 dreg_hi = IA32_EDX;
  2039. u8 sreg_lo = IA32_ECX;
  2040. u8 sreg_hi = IA32_EBX;
  2041. u32 hi;
  2042. if (dstk) {
  2043. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  2044. STACK_VAR(dst_lo));
  2045. if (is_jmp64)
  2046. EMIT3(0x8B,
  2047. add_2reg(0x40, IA32_EBP,
  2048. IA32_EDX),
  2049. STACK_VAR(dst_hi));
  2050. } else {
  2051. /* mov dreg_lo,dst_lo */
  2052. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
  2053. if (is_jmp64)
  2054. /* mov dreg_hi,dst_hi */
  2055. EMIT2(0x89,
  2056. add_2reg(0xC0, dreg_hi, dst_hi));
  2057. }
  2058. /* mov ecx,imm32 */
  2059. EMIT2_off32(0xC7, add_1reg(0xC0, sreg_lo), imm32);
  2060. /* and dreg_lo,sreg_lo */
  2061. EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
  2062. if (is_jmp64) {
  2063. hi = imm32 & (1 << 31) ? (u32)~0 : 0;
  2064. /* mov ebx,imm32 */
  2065. EMIT2_off32(0xC7, add_1reg(0xC0, sreg_hi), hi);
  2066. /* and dreg_hi,sreg_hi */
  2067. EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
  2068. /* or dreg_lo,dreg_hi */
  2069. EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
  2070. }
  2071. goto emit_cond_jmp;
  2072. }
  2073. case BPF_JMP | BPF_JEQ | BPF_K:
  2074. case BPF_JMP | BPF_JNE | BPF_K:
  2075. case BPF_JMP | BPF_JGT | BPF_K:
  2076. case BPF_JMP | BPF_JLT | BPF_K:
  2077. case BPF_JMP | BPF_JGE | BPF_K:
  2078. case BPF_JMP | BPF_JLE | BPF_K:
  2079. case BPF_JMP32 | BPF_JEQ | BPF_K:
  2080. case BPF_JMP32 | BPF_JNE | BPF_K:
  2081. case BPF_JMP32 | BPF_JGT | BPF_K:
  2082. case BPF_JMP32 | BPF_JLT | BPF_K:
  2083. case BPF_JMP32 | BPF_JGE | BPF_K:
  2084. case BPF_JMP32 | BPF_JLE | BPF_K:
  2085. case BPF_JMP32 | BPF_JSGT | BPF_K:
  2086. case BPF_JMP32 | BPF_JSLE | BPF_K:
  2087. case BPF_JMP32 | BPF_JSLT | BPF_K:
  2088. case BPF_JMP32 | BPF_JSGE | BPF_K: {
  2089. bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
  2090. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  2091. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  2092. u8 sreg_lo = IA32_ECX;
  2093. u8 sreg_hi = IA32_EBX;
  2094. u32 hi;
  2095. if (dstk) {
  2096. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  2097. STACK_VAR(dst_lo));
  2098. if (is_jmp64)
  2099. EMIT3(0x8B,
  2100. add_2reg(0x40, IA32_EBP,
  2101. IA32_EDX),
  2102. STACK_VAR(dst_hi));
  2103. }
  2104. /* mov ecx,imm32 */
  2105. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
  2106. if (is_jmp64) {
  2107. hi = imm32 & (1 << 31) ? (u32)~0 : 0;
  2108. /* mov ebx,imm32 */
  2109. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
  2110. /* cmp dreg_hi,sreg_hi */
  2111. EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
  2112. EMIT2(IA32_JNE, 2);
  2113. }
  2114. /* cmp dreg_lo,sreg_lo */
  2115. EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
  2116. emit_cond_jmp: jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
  2117. if (jmp_cond == COND_JMP_OPCODE_INVALID)
  2118. return -EFAULT;
  2119. jmp_offset = addrs[i + insn->off] - addrs[i];
  2120. if (is_imm8(jmp_offset)) {
  2121. EMIT2(jmp_cond, jmp_offset);
  2122. } else if (is_simm32(jmp_offset)) {
  2123. EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
  2124. } else {
  2125. pr_err("cond_jmp gen bug %llx\n", jmp_offset);
  2126. return -EFAULT;
  2127. }
  2128. break;
  2129. }
  2130. case BPF_JMP | BPF_JSGT | BPF_K:
  2131. case BPF_JMP | BPF_JSLE | BPF_K:
  2132. case BPF_JMP | BPF_JSLT | BPF_K:
  2133. case BPF_JMP | BPF_JSGE | BPF_K: {
  2134. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  2135. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  2136. u8 sreg_lo = IA32_ECX;
  2137. u8 sreg_hi = IA32_EBX;
  2138. u32 hi;
  2139. if (dstk) {
  2140. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  2141. STACK_VAR(dst_lo));
  2142. EMIT3(0x8B,
  2143. add_2reg(0x40, IA32_EBP,
  2144. IA32_EDX),
  2145. STACK_VAR(dst_hi));
  2146. }
  2147. /* mov ecx,imm32 */
  2148. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
  2149. hi = imm32 & (1 << 31) ? (u32)~0 : 0;
  2150. /* mov ebx,imm32 */
  2151. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
  2152. /* cmp dreg_hi,sreg_hi */
  2153. EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
  2154. EMIT2(IA32_JNE, 10);
  2155. /* cmp dreg_lo,sreg_lo */
  2156. EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
  2157. /*
  2158. * For simplicity of branch offset computation,
  2159. * let's use fixed jump coding here.
  2160. */
  2161. emit_cond_jmp_signed: /* Check the condition for low 32-bit comparison */
  2162. jmp_cond = get_cond_jmp_opcode(BPF_OP(code), true);
  2163. if (jmp_cond == COND_JMP_OPCODE_INVALID)
  2164. return -EFAULT;
  2165. jmp_offset = addrs[i + insn->off] - addrs[i] + 8;
  2166. if (is_simm32(jmp_offset)) {
  2167. EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
  2168. } else {
  2169. pr_err("cond_jmp gen bug %llx\n", jmp_offset);
  2170. return -EFAULT;
  2171. }
  2172. EMIT2(0xEB, 6);
  2173. /* Check the condition for high 32-bit comparison */
  2174. jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
  2175. if (jmp_cond == COND_JMP_OPCODE_INVALID)
  2176. return -EFAULT;
  2177. jmp_offset = addrs[i + insn->off] - addrs[i];
  2178. if (is_simm32(jmp_offset)) {
  2179. EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
  2180. } else {
  2181. pr_err("cond_jmp gen bug %llx\n", jmp_offset);
  2182. return -EFAULT;
  2183. }
  2184. break;
  2185. }
  2186. case BPF_JMP | BPF_JA:
  2187. if (insn->off == -1)
  2188. /* -1 jmp instructions will always jump
  2189. * backwards two bytes. Explicitly handling
  2190. * this case avoids wasting too many passes
  2191. * when there are long sequences of replaced
  2192. * dead code.
  2193. */
  2194. jmp_offset = -2;
  2195. else
  2196. jmp_offset = addrs[i + insn->off] - addrs[i];
  2197. if (!jmp_offset)
  2198. /* Optimize out nop jumps */
  2199. break;
  2200. emit_jmp:
  2201. if (is_imm8(jmp_offset)) {
  2202. EMIT2(0xEB, jmp_offset);
  2203. } else if (is_simm32(jmp_offset)) {
  2204. EMIT1_off32(0xE9, jmp_offset);
  2205. } else {
  2206. pr_err("jmp gen bug %llx\n", jmp_offset);
  2207. return -EFAULT;
  2208. }
  2209. break;
  2210. case BPF_STX | BPF_ATOMIC | BPF_W:
  2211. case BPF_STX | BPF_ATOMIC | BPF_DW:
  2212. goto notyet;
  2213. case BPF_JMP | BPF_EXIT:
  2214. if (seen_exit) {
  2215. jmp_offset = ctx->cleanup_addr - addrs[i];
  2216. goto emit_jmp;
  2217. }
  2218. seen_exit = true;
  2219. /* Update cleanup_addr */
  2220. ctx->cleanup_addr = proglen;
  2221. emit_epilogue(&prog, bpf_prog->aux->stack_depth);
  2222. break;
  2223. notyet:
  2224. pr_info_once("*** NOT YET: opcode %02x ***\n", code);
  2225. return -EFAULT;
  2226. default:
  2227. /*
  2228. * This error will be seen if new instruction was added
  2229. * to interpreter, but not to JIT or if there is junk in
  2230. * bpf_prog
  2231. */
  2232. pr_err("bpf_jit: unknown opcode %02x\n", code);
  2233. return -EINVAL;
  2234. }
  2235. ilen = prog - temp;
  2236. if (ilen > BPF_MAX_INSN_SIZE) {
  2237. pr_err("bpf_jit: fatal insn size error\n");
  2238. return -EFAULT;
  2239. }
  2240. if (image) {
  2241. /*
  2242. * When populating the image, assert that:
  2243. *
  2244. * i) We do not write beyond the allocated space, and
  2245. * ii) addrs[i] did not change from the prior run, in order
  2246. * to validate assumptions made for computing branch
  2247. * displacements.
  2248. */
  2249. if (unlikely(proglen + ilen > oldproglen ||
  2250. proglen + ilen != addrs[i])) {
  2251. pr_err("bpf_jit: fatal error\n");
  2252. return -EFAULT;
  2253. }
  2254. memcpy(image + proglen, temp, ilen);
  2255. }
  2256. proglen += ilen;
  2257. addrs[i] = proglen;
  2258. prog = temp;
  2259. }
  2260. return proglen;
  2261. }
  2262. bool bpf_jit_needs_zext(void)
  2263. {
  2264. return true;
  2265. }
  2266. struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
  2267. {
  2268. struct bpf_binary_header *header = NULL;
  2269. struct bpf_prog *tmp, *orig_prog = prog;
  2270. int proglen, oldproglen = 0;
  2271. struct jit_context ctx = {};
  2272. bool tmp_blinded = false;
  2273. u8 *image = NULL;
  2274. int *addrs;
  2275. int pass;
  2276. int i;
  2277. if (!prog->jit_requested)
  2278. return orig_prog;
  2279. tmp = bpf_jit_blind_constants(prog);
  2280. /*
  2281. * If blinding was requested and we failed during blinding,
  2282. * we must fall back to the interpreter.
  2283. */
  2284. if (IS_ERR(tmp))
  2285. return orig_prog;
  2286. if (tmp != prog) {
  2287. tmp_blinded = true;
  2288. prog = tmp;
  2289. }
  2290. addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
  2291. if (!addrs) {
  2292. prog = orig_prog;
  2293. goto out;
  2294. }
  2295. /*
  2296. * Before first pass, make a rough estimation of addrs[]
  2297. * each BPF instruction is translated to less than 64 bytes
  2298. */
  2299. for (proglen = 0, i = 0; i < prog->len; i++) {
  2300. proglen += 64;
  2301. addrs[i] = proglen;
  2302. }
  2303. ctx.cleanup_addr = proglen;
  2304. /*
  2305. * JITed image shrinks with every pass and the loop iterates
  2306. * until the image stops shrinking. Very large BPF programs
  2307. * may converge on the last pass. In such case do one more
  2308. * pass to emit the final image.
  2309. */
  2310. for (pass = 0; pass < 20 || image; pass++) {
  2311. proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
  2312. if (proglen <= 0) {
  2313. out_image:
  2314. image = NULL;
  2315. if (header)
  2316. bpf_jit_binary_free(header);
  2317. prog = orig_prog;
  2318. goto out_addrs;
  2319. }
  2320. if (image) {
  2321. if (proglen != oldproglen) {
  2322. pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
  2323. proglen, oldproglen);
  2324. goto out_image;
  2325. }
  2326. break;
  2327. }
  2328. if (proglen == oldproglen) {
  2329. header = bpf_jit_binary_alloc(proglen, &image,
  2330. 1, jit_fill_hole);
  2331. if (!header) {
  2332. prog = orig_prog;
  2333. goto out_addrs;
  2334. }
  2335. }
  2336. oldproglen = proglen;
  2337. cond_resched();
  2338. }
  2339. if (bpf_jit_enable > 1)
  2340. bpf_jit_dump(prog->len, proglen, pass + 1, image);
  2341. if (image) {
  2342. bpf_jit_binary_lock_ro(header);
  2343. prog->bpf_func = (void *)image;
  2344. prog->jited = 1;
  2345. prog->jited_len = proglen;
  2346. } else {
  2347. prog = orig_prog;
  2348. }
  2349. out_addrs:
  2350. kfree(addrs);
  2351. out:
  2352. if (tmp_blinded)
  2353. bpf_jit_prog_release_other(prog, prog == orig_prog ?
  2354. tmp : orig_prog);
  2355. return prog;
  2356. }
  2357. bool bpf_jit_supports_kfunc_call(void)
  2358. {
  2359. return true;
  2360. }