123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323 |
- // SPDX-License-Identifier: GPL-2.0-only
- #include <linux/init.h>
- #include <linux/mm.h>
- #include <linux/spinlock.h>
- #include <linux/smp.h>
- #include <linux/interrupt.h>
- #include <linux/export.h>
- #include <linux/cpu.h>
- #include <linux/debugfs.h>
- #include <linux/sched/smt.h>
- #include <linux/task_work.h>
- #include <asm/tlbflush.h>
- #include <asm/mmu_context.h>
- #include <asm/nospec-branch.h>
- #include <asm/cache.h>
- #include <asm/cacheflush.h>
- #include <asm/apic.h>
- #include <asm/perf_event.h>
- #include "mm_internal.h"
- #ifdef CONFIG_PARAVIRT
- # define STATIC_NOPV
- #else
- # define STATIC_NOPV static
- # define __flush_tlb_local native_flush_tlb_local
- # define __flush_tlb_global native_flush_tlb_global
- # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
- # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
- #endif
- /*
- * TLB flushing, formerly SMP-only
- * c/o Linus Torvalds.
- *
- * These mean you can really definitely utterly forget about
- * writing to user space from interrupts. (Its not allowed anyway).
- *
- * Optimizations Manfred Spraul <[email protected]>
- *
- * More scalable flush, from Andi Kleen
- *
- * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
- */
- /*
- * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
- * stored in cpu_tlb_state.last_user_mm_spec.
- */
- #define LAST_USER_MM_IBPB 0x1UL
- #define LAST_USER_MM_L1D_FLUSH 0x2UL
- #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
- /* Bits to set when tlbstate and flush is (re)initialized */
- #define LAST_USER_MM_INIT LAST_USER_MM_IBPB
- /*
- * The x86 feature is called PCID (Process Context IDentifier). It is similar
- * to what is traditionally called ASID on the RISC processors.
- *
- * We don't use the traditional ASID implementation, where each process/mm gets
- * its own ASID and flush/restart when we run out of ASID space.
- *
- * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
- * that came by on this CPU, allowing cheaper switch_mm between processes on
- * this CPU.
- *
- * We end up with different spaces for different things. To avoid confusion we
- * use different names for each of them:
- *
- * ASID - [0, TLB_NR_DYN_ASIDS-1]
- * the canonical identifier for an mm
- *
- * kPCID - [1, TLB_NR_DYN_ASIDS]
- * the value we write into the PCID part of CR3; corresponds to the
- * ASID+1, because PCID 0 is special.
- *
- * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
- * for KPTI each mm has two address spaces and thus needs two
- * PCID values, but we can still do with a single ASID denomination
- * for each mm. Corresponds to kPCID + 2048.
- *
- */
- /* There are 12 bits of space for ASIDS in CR3 */
- #define CR3_HW_ASID_BITS 12
- /*
- * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
- * user/kernel switches
- */
- #ifdef CONFIG_PAGE_TABLE_ISOLATION
- # define PTI_CONSUMED_PCID_BITS 1
- #else
- # define PTI_CONSUMED_PCID_BITS 0
- #endif
- #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
- /*
- * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
- * for them being zero-based. Another -1 is because PCID 0 is reserved for
- * use by non-PCID-aware users.
- */
- #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
- /*
- * Given @asid, compute kPCID
- */
- static inline u16 kern_pcid(u16 asid)
- {
- VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
- #ifdef CONFIG_PAGE_TABLE_ISOLATION
- /*
- * Make sure that the dynamic ASID space does not conflict with the
- * bit we are using to switch between user and kernel ASIDs.
- */
- BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
- /*
- * The ASID being passed in here should have respected the
- * MAX_ASID_AVAILABLE and thus never have the switch bit set.
- */
- VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
- #endif
- /*
- * The dynamically-assigned ASIDs that get passed in are small
- * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
- * so do not bother to clear it.
- *
- * If PCID is on, ASID-aware code paths put the ASID+1 into the
- * PCID bits. This serves two purposes. It prevents a nasty
- * situation in which PCID-unaware code saves CR3, loads some other
- * value (with PCID == 0), and then restores CR3, thus corrupting
- * the TLB for ASID 0 if the saved ASID was nonzero. It also means
- * that any bugs involving loading a PCID-enabled CR3 with
- * CR4.PCIDE off will trigger deterministically.
- */
- return asid + 1;
- }
- /*
- * Given @asid, compute uPCID
- */
- static inline u16 user_pcid(u16 asid)
- {
- u16 ret = kern_pcid(asid);
- #ifdef CONFIG_PAGE_TABLE_ISOLATION
- ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
- #endif
- return ret;
- }
- static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
- {
- if (static_cpu_has(X86_FEATURE_PCID)) {
- return __sme_pa(pgd) | kern_pcid(asid);
- } else {
- VM_WARN_ON_ONCE(asid != 0);
- return __sme_pa(pgd);
- }
- }
- static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
- {
- VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
- /*
- * Use boot_cpu_has() instead of this_cpu_has() as this function
- * might be called during early boot. This should work even after
- * boot because all CPU's the have same capabilities:
- */
- VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
- return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
- }
- /*
- * We get here when we do something requiring a TLB invalidation
- * but could not go invalidate all of the contexts. We do the
- * necessary invalidation by clearing out the 'ctx_id' which
- * forces a TLB flush when the context is loaded.
- */
- static void clear_asid_other(void)
- {
- u16 asid;
- /*
- * This is only expected to be set if we have disabled
- * kernel _PAGE_GLOBAL pages.
- */
- if (!static_cpu_has(X86_FEATURE_PTI)) {
- WARN_ON_ONCE(1);
- return;
- }
- for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
- /* Do not need to flush the current asid */
- if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
- continue;
- /*
- * Make sure the next time we go to switch to
- * this asid, we do a flush:
- */
- this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
- }
- this_cpu_write(cpu_tlbstate.invalidate_other, false);
- }
- atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
- static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
- u16 *new_asid, bool *need_flush)
- {
- u16 asid;
- if (!static_cpu_has(X86_FEATURE_PCID)) {
- *new_asid = 0;
- *need_flush = true;
- return;
- }
- if (this_cpu_read(cpu_tlbstate.invalidate_other))
- clear_asid_other();
- for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
- if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
- next->context.ctx_id)
- continue;
- *new_asid = asid;
- *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
- next_tlb_gen);
- return;
- }
- /*
- * We don't currently own an ASID slot on this CPU.
- * Allocate a slot.
- */
- *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
- if (*new_asid >= TLB_NR_DYN_ASIDS) {
- *new_asid = 0;
- this_cpu_write(cpu_tlbstate.next_asid, 1);
- }
- *need_flush = true;
- }
- /*
- * Given an ASID, flush the corresponding user ASID. We can delay this
- * until the next time we switch to it.
- *
- * See SWITCH_TO_USER_CR3.
- */
- static inline void invalidate_user_asid(u16 asid)
- {
- /* There is no user ASID if address space separation is off */
- if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
- return;
- /*
- * We only have a single ASID if PCID is off and the CR3
- * write will have flushed it.
- */
- if (!cpu_feature_enabled(X86_FEATURE_PCID))
- return;
- if (!static_cpu_has(X86_FEATURE_PTI))
- return;
- __set_bit(kern_pcid(asid),
- (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
- }
- static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
- {
- unsigned long new_mm_cr3;
- if (need_flush) {
- invalidate_user_asid(new_asid);
- new_mm_cr3 = build_cr3(pgdir, new_asid);
- } else {
- new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
- }
- /*
- * Caution: many callers of this function expect
- * that load_cr3() is serializing and orders TLB
- * fills with respect to the mm_cpumask writes.
- */
- write_cr3(new_mm_cr3);
- }
- void leave_mm(int cpu)
- {
- struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
- /*
- * It's plausible that we're in lazy TLB mode while our mm is init_mm.
- * If so, our callers still expect us to flush the TLB, but there
- * aren't any user TLB entries in init_mm to worry about.
- *
- * This needs to happen before any other sanity checks due to
- * intel_idle's shenanigans.
- */
- if (loaded_mm == &init_mm)
- return;
- /* Warn if we're not lazy. */
- WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
- switch_mm(NULL, &init_mm, NULL);
- }
- EXPORT_SYMBOL_GPL(leave_mm);
- void switch_mm(struct mm_struct *prev, struct mm_struct *next,
- struct task_struct *tsk)
- {
- unsigned long flags;
- local_irq_save(flags);
- switch_mm_irqs_off(prev, next, tsk);
- local_irq_restore(flags);
- }
- /*
- * Invoked from return to user/guest by a task that opted-in to L1D
- * flushing but ended up running on an SMT enabled core due to wrong
- * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
- * contract which this task requested.
- */
- static void l1d_flush_force_sigbus(struct callback_head *ch)
- {
- force_sig(SIGBUS);
- }
- static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
- struct task_struct *next)
- {
- /* Flush L1D if the outgoing task requests it */
- if (prev_mm & LAST_USER_MM_L1D_FLUSH)
- wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
- /* Check whether the incoming task opted in for L1D flush */
- if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
- return;
- /*
- * Validate that it is not running on an SMT sibling as this would
- * make the excercise pointless because the siblings share L1D. If
- * it runs on a SMT sibling, notify it with SIGBUS on return to
- * user/guest
- */
- if (this_cpu_read(cpu_info.smt_active)) {
- clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
- next->l1d_flush_kill.func = l1d_flush_force_sigbus;
- task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
- }
- }
- static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
- {
- unsigned long next_tif = read_task_thread_flags(next);
- unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
- /*
- * Ensure that the bit shift above works as expected and the two flags
- * end up in bit 0 and 1.
- */
- BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
- return (unsigned long)next->mm | spec_bits;
- }
- static void cond_mitigation(struct task_struct *next)
- {
- unsigned long prev_mm, next_mm;
- if (!next || !next->mm)
- return;
- next_mm = mm_mangle_tif_spec_bits(next);
- prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
- /*
- * Avoid user/user BTB poisoning by flushing the branch predictor
- * when switching between processes. This stops one process from
- * doing Spectre-v2 attacks on another.
- *
- * Both, the conditional and the always IBPB mode use the mm
- * pointer to avoid the IBPB when switching between tasks of the
- * same process. Using the mm pointer instead of mm->context.ctx_id
- * opens a hypothetical hole vs. mm_struct reuse, which is more or
- * less impossible to control by an attacker. Aside of that it
- * would only affect the first schedule so the theoretically
- * exposed data is not really interesting.
- */
- if (static_branch_likely(&switch_mm_cond_ibpb)) {
- /*
- * This is a bit more complex than the always mode because
- * it has to handle two cases:
- *
- * 1) Switch from a user space task (potential attacker)
- * which has TIF_SPEC_IB set to a user space task
- * (potential victim) which has TIF_SPEC_IB not set.
- *
- * 2) Switch from a user space task (potential attacker)
- * which has TIF_SPEC_IB not set to a user space task
- * (potential victim) which has TIF_SPEC_IB set.
- *
- * This could be done by unconditionally issuing IBPB when
- * a task which has TIF_SPEC_IB set is either scheduled in
- * or out. Though that results in two flushes when:
- *
- * - the same user space task is scheduled out and later
- * scheduled in again and only a kernel thread ran in
- * between.
- *
- * - a user space task belonging to the same process is
- * scheduled in after a kernel thread ran in between
- *
- * - a user space task belonging to the same process is
- * scheduled in immediately.
- *
- * Optimize this with reasonably small overhead for the
- * above cases. Mangle the TIF_SPEC_IB bit into the mm
- * pointer of the incoming task which is stored in
- * cpu_tlbstate.last_user_mm_spec for comparison.
- *
- * Issue IBPB only if the mm's are different and one or
- * both have the IBPB bit set.
- */
- if (next_mm != prev_mm &&
- (next_mm | prev_mm) & LAST_USER_MM_IBPB)
- indirect_branch_prediction_barrier();
- }
- if (static_branch_unlikely(&switch_mm_always_ibpb)) {
- /*
- * Only flush when switching to a user space task with a
- * different context than the user space task which ran
- * last on this CPU.
- */
- if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
- (unsigned long)next->mm)
- indirect_branch_prediction_barrier();
- }
- if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
- /*
- * Flush L1D when the outgoing task requested it and/or
- * check whether the incoming task requested L1D flushing
- * and ended up on an SMT sibling.
- */
- if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
- l1d_flush_evaluate(prev_mm, next_mm, next);
- }
- this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
- }
- #ifdef CONFIG_PERF_EVENTS
- static inline void cr4_update_pce_mm(struct mm_struct *mm)
- {
- if (static_branch_unlikely(&rdpmc_always_available_key) ||
- (!static_branch_unlikely(&rdpmc_never_available_key) &&
- atomic_read(&mm->context.perf_rdpmc_allowed))) {
- /*
- * Clear the existing dirty counters to
- * prevent the leak for an RDPMC task.
- */
- perf_clear_dirty_counters();
- cr4_set_bits_irqsoff(X86_CR4_PCE);
- } else
- cr4_clear_bits_irqsoff(X86_CR4_PCE);
- }
- void cr4_update_pce(void *ignored)
- {
- cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
- }
- #else
- static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
- #endif
- void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
- struct task_struct *tsk)
- {
- struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
- u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
- bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
- unsigned cpu = smp_processor_id();
- u64 next_tlb_gen;
- bool need_flush;
- u16 new_asid;
- /*
- * NB: The scheduler will call us with prev == next when switching
- * from lazy TLB mode to normal mode if active_mm isn't changing.
- * When this happens, we don't assume that CR3 (and hence
- * cpu_tlbstate.loaded_mm) matches next.
- *
- * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
- */
- /* We don't want flush_tlb_func() to run concurrently with us. */
- if (IS_ENABLED(CONFIG_PROVE_LOCKING))
- WARN_ON_ONCE(!irqs_disabled());
- /*
- * Verify that CR3 is what we think it is. This will catch
- * hypothetical buggy code that directly switches to swapper_pg_dir
- * without going through leave_mm() / switch_mm_irqs_off() or that
- * does something like write_cr3(read_cr3_pa()).
- *
- * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
- * isn't free.
- */
- #ifdef CONFIG_DEBUG_VM
- if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
- /*
- * If we were to BUG here, we'd be very likely to kill
- * the system so hard that we don't see the call trace.
- * Try to recover instead by ignoring the error and doing
- * a global flush to minimize the chance of corruption.
- *
- * (This is far from being a fully correct recovery.
- * Architecturally, the CPU could prefetch something
- * back into an incorrect ASID slot and leave it there
- * to cause trouble down the road. It's better than
- * nothing, though.)
- */
- __flush_tlb_all();
- }
- #endif
- if (was_lazy)
- this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
- /*
- * The membarrier system call requires a full memory barrier and
- * core serialization before returning to user-space, after
- * storing to rq->curr, when changing mm. This is because
- * membarrier() sends IPIs to all CPUs that are in the target mm
- * to make them issue memory barriers. However, if another CPU
- * switches to/from the target mm concurrently with
- * membarrier(), it can cause that CPU not to receive an IPI
- * when it really should issue a memory barrier. Writing to CR3
- * provides that full memory barrier and core serializing
- * instruction.
- */
- if (real_prev == next) {
- VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
- next->context.ctx_id);
- /*
- * Even in lazy TLB mode, the CPU should stay set in the
- * mm_cpumask. The TLB shootdown code can figure out from
- * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
- */
- if (WARN_ON_ONCE(real_prev != &init_mm &&
- !cpumask_test_cpu(cpu, mm_cpumask(next))))
- cpumask_set_cpu(cpu, mm_cpumask(next));
- /*
- * If the CPU is not in lazy TLB mode, we are just switching
- * from one thread in a process to another thread in the same
- * process. No TLB flush required.
- */
- if (!was_lazy)
- return;
- /*
- * Read the tlb_gen to check whether a flush is needed.
- * If the TLB is up to date, just use it.
- * The barrier synchronizes with the tlb_gen increment in
- * the TLB shootdown code.
- */
- smp_mb();
- next_tlb_gen = atomic64_read(&next->context.tlb_gen);
- if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
- next_tlb_gen)
- return;
- /*
- * TLB contents went out of date while we were in lazy
- * mode. Fall through to the TLB switching code below.
- */
- new_asid = prev_asid;
- need_flush = true;
- } else {
- /*
- * Apply process to process speculation vulnerability
- * mitigations if applicable.
- */
- cond_mitigation(tsk);
- /*
- * Stop remote flushes for the previous mm.
- * Skip kernel threads; we never send init_mm TLB flushing IPIs,
- * but the bitmap manipulation can cause cache line contention.
- */
- if (real_prev != &init_mm) {
- VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
- mm_cpumask(real_prev)));
- cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
- }
- /*
- * Start remote flushes and then read tlb_gen.
- */
- if (next != &init_mm)
- cpumask_set_cpu(cpu, mm_cpumask(next));
- next_tlb_gen = atomic64_read(&next->context.tlb_gen);
- choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
- /* Let nmi_uaccess_okay() know that we're changing CR3. */
- this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
- barrier();
- }
- if (need_flush) {
- this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
- this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
- load_new_mm_cr3(next->pgd, new_asid, true);
- trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
- } else {
- /* The new ASID is already up to date. */
- load_new_mm_cr3(next->pgd, new_asid, false);
- trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
- }
- /* Make sure we write CR3 before loaded_mm. */
- barrier();
- this_cpu_write(cpu_tlbstate.loaded_mm, next);
- this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
- if (next != real_prev) {
- cr4_update_pce_mm(next);
- switch_ldt(real_prev, next);
- }
- }
- /*
- * Please ignore the name of this function. It should be called
- * switch_to_kernel_thread().
- *
- * enter_lazy_tlb() is a hint from the scheduler that we are entering a
- * kernel thread or other context without an mm. Acceptable implementations
- * include doing nothing whatsoever, switching to init_mm, or various clever
- * lazy tricks to try to minimize TLB flushes.
- *
- * The scheduler reserves the right to call enter_lazy_tlb() several times
- * in a row. It will notify us that we're going back to a real mm by
- * calling switch_mm_irqs_off().
- */
- void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
- {
- if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
- return;
- this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
- }
- /*
- * Call this when reinitializing a CPU. It fixes the following potential
- * problems:
- *
- * - The ASID changed from what cpu_tlbstate thinks it is (most likely
- * because the CPU was taken down and came back up with CR3's PCID
- * bits clear. CPU hotplug can do this.
- *
- * - The TLB contains junk in slots corresponding to inactive ASIDs.
- *
- * - The CPU went so far out to lunch that it may have missed a TLB
- * flush.
- */
- void initialize_tlbstate_and_flush(void)
- {
- int i;
- struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
- u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
- unsigned long cr3 = __read_cr3();
- /* Assert that CR3 already references the right mm. */
- WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
- /*
- * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
- * doesn't work like other CR4 bits because it can only be set from
- * long mode.)
- */
- WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
- !(cr4_read_shadow() & X86_CR4_PCIDE));
- /* Force ASID 0 and force a TLB flush. */
- write_cr3(build_cr3(mm->pgd, 0));
- /* Reinitialize tlbstate. */
- this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
- this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
- this_cpu_write(cpu_tlbstate.next_asid, 1);
- this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
- this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
- for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
- this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
- }
- /*
- * flush_tlb_func()'s memory ordering requirement is that any
- * TLB fills that happen after we flush the TLB are ordered after we
- * read active_mm's tlb_gen. We don't need any explicit barriers
- * because all x86 flush operations are serializing and the
- * atomic64_read operation won't be reordered by the compiler.
- */
- static void flush_tlb_func(void *info)
- {
- /*
- * We have three different tlb_gen values in here. They are:
- *
- * - mm_tlb_gen: the latest generation.
- * - local_tlb_gen: the generation that this CPU has already caught
- * up to.
- * - f->new_tlb_gen: the generation that the requester of the flush
- * wants us to catch up to.
- */
- const struct flush_tlb_info *f = info;
- struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
- u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
- u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
- bool local = smp_processor_id() == f->initiating_cpu;
- unsigned long nr_invalidate = 0;
- u64 mm_tlb_gen;
- /* This code cannot presently handle being reentered. */
- VM_WARN_ON(!irqs_disabled());
- if (!local) {
- inc_irq_stat(irq_tlb_count);
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
- /* Can only happen on remote CPUs */
- if (f->mm && f->mm != loaded_mm)
- return;
- }
- if (unlikely(loaded_mm == &init_mm))
- return;
- VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
- loaded_mm->context.ctx_id);
- if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
- /*
- * We're in lazy mode. We need to at least flush our
- * paging-structure cache to avoid speculatively reading
- * garbage into our TLB. Since switching to init_mm is barely
- * slower than a minimal flush, just switch to init_mm.
- *
- * This should be rare, with native_flush_tlb_multi() skipping
- * IPIs to lazy TLB mode CPUs.
- */
- switch_mm_irqs_off(NULL, &init_mm, NULL);
- return;
- }
- if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
- f->new_tlb_gen <= local_tlb_gen)) {
- /*
- * The TLB is already up to date in respect to f->new_tlb_gen.
- * While the core might be still behind mm_tlb_gen, checking
- * mm_tlb_gen unnecessarily would have negative caching effects
- * so avoid it.
- */
- return;
- }
- /*
- * Defer mm_tlb_gen reading as long as possible to avoid cache
- * contention.
- */
- mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
- if (unlikely(local_tlb_gen == mm_tlb_gen)) {
- /*
- * There's nothing to do: we're already up to date. This can
- * happen if two concurrent flushes happen -- the first flush to
- * be handled can catch us all the way up, leaving no work for
- * the second flush.
- */
- goto done;
- }
- WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
- WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
- /*
- * If we get to this point, we know that our TLB is out of date.
- * This does not strictly imply that we need to flush (it's
- * possible that f->new_tlb_gen <= local_tlb_gen), but we're
- * going to need to flush in the very near future, so we might
- * as well get it over with.
- *
- * The only question is whether to do a full or partial flush.
- *
- * We do a partial flush if requested and two extra conditions
- * are met:
- *
- * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
- * we've always done all needed flushes to catch up to
- * local_tlb_gen. If, for example, local_tlb_gen == 2 and
- * f->new_tlb_gen == 3, then we know that the flush needed to bring
- * us up to date for tlb_gen 3 is the partial flush we're
- * processing.
- *
- * As an example of why this check is needed, suppose that there
- * are two concurrent flushes. The first is a full flush that
- * changes context.tlb_gen from 1 to 2. The second is a partial
- * flush that changes context.tlb_gen from 2 to 3. If they get
- * processed on this CPU in reverse order, we'll see
- * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
- * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
- * 3, we'd be break the invariant: we'd update local_tlb_gen above
- * 1 without the full flush that's needed for tlb_gen 2.
- *
- * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
- * Partial TLB flushes are not all that much cheaper than full TLB
- * flushes, so it seems unlikely that it would be a performance win
- * to do a partial flush if that won't bring our TLB fully up to
- * date. By doing a full flush instead, we can increase
- * local_tlb_gen all the way to mm_tlb_gen and we can probably
- * avoid another flush in the very near future.
- */
- if (f->end != TLB_FLUSH_ALL &&
- f->new_tlb_gen == local_tlb_gen + 1 &&
- f->new_tlb_gen == mm_tlb_gen) {
- /* Partial flush */
- unsigned long addr = f->start;
- /* Partial flush cannot have invalid generations */
- VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
- /* Partial flush must have valid mm */
- VM_WARN_ON(f->mm == NULL);
- nr_invalidate = (f->end - f->start) >> f->stride_shift;
- while (addr < f->end) {
- flush_tlb_one_user(addr);
- addr += 1UL << f->stride_shift;
- }
- if (local)
- count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
- } else {
- /* Full flush. */
- nr_invalidate = TLB_FLUSH_ALL;
- flush_tlb_local();
- if (local)
- count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
- }
- /* Both paths above update our state to mm_tlb_gen. */
- this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
- /* Tracing is done in a unified manner to reduce the code size */
- done:
- trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
- (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
- TLB_LOCAL_MM_SHOOTDOWN,
- nr_invalidate);
- }
- static bool tlb_is_not_lazy(int cpu, void *data)
- {
- return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
- }
- DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
- EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
- STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
- const struct flush_tlb_info *info)
- {
- /*
- * Do accounting and tracing. Note that there are (and have always been)
- * cases in which a remote TLB flush will be traced, but eventually
- * would not happen.
- */
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
- if (info->end == TLB_FLUSH_ALL)
- trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
- else
- trace_tlb_flush(TLB_REMOTE_SEND_IPI,
- (info->end - info->start) >> PAGE_SHIFT);
- /*
- * If no page tables were freed, we can skip sending IPIs to
- * CPUs in lazy TLB mode. They will flush the CPU themselves
- * at the next context switch.
- *
- * However, if page tables are getting freed, we need to send the
- * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
- * up on the new contents of what used to be page tables, while
- * doing a speculative memory access.
- */
- if (info->freed_tables)
- on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
- else
- on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
- (void *)info, 1, cpumask);
- }
- void flush_tlb_multi(const struct cpumask *cpumask,
- const struct flush_tlb_info *info)
- {
- __flush_tlb_multi(cpumask, info);
- }
- /*
- * See Documentation/x86/tlb.rst for details. We choose 33
- * because it is large enough to cover the vast majority (at
- * least 95%) of allocations, and is small enough that we are
- * confident it will not cause too much overhead. Each single
- * flush is about 100 ns, so this caps the maximum overhead at
- * _about_ 3,000 ns.
- *
- * This is in units of pages.
- */
- unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
- static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
- #ifdef CONFIG_DEBUG_VM
- static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
- #endif
- static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
- unsigned long start, unsigned long end,
- unsigned int stride_shift, bool freed_tables,
- u64 new_tlb_gen)
- {
- struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
- #ifdef CONFIG_DEBUG_VM
- /*
- * Ensure that the following code is non-reentrant and flush_tlb_info
- * is not overwritten. This means no TLB flushing is initiated by
- * interrupt handlers and machine-check exception handlers.
- */
- BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
- #endif
- info->start = start;
- info->end = end;
- info->mm = mm;
- info->stride_shift = stride_shift;
- info->freed_tables = freed_tables;
- info->new_tlb_gen = new_tlb_gen;
- info->initiating_cpu = smp_processor_id();
- return info;
- }
- static void put_flush_tlb_info(void)
- {
- #ifdef CONFIG_DEBUG_VM
- /* Complete reentrancy prevention checks */
- barrier();
- this_cpu_dec(flush_tlb_info_idx);
- #endif
- }
- void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
- unsigned long end, unsigned int stride_shift,
- bool freed_tables)
- {
- struct flush_tlb_info *info;
- u64 new_tlb_gen;
- int cpu;
- cpu = get_cpu();
- /* Should we flush just the requested range? */
- if ((end == TLB_FLUSH_ALL) ||
- ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
- start = 0;
- end = TLB_FLUSH_ALL;
- }
- /* This is also a barrier that synchronizes with switch_mm(). */
- new_tlb_gen = inc_mm_tlb_gen(mm);
- info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
- new_tlb_gen);
- /*
- * flush_tlb_multi() is not optimized for the common case in which only
- * a local TLB flush is needed. Optimize this use-case by calling
- * flush_tlb_func_local() directly in this case.
- */
- if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
- flush_tlb_multi(mm_cpumask(mm), info);
- } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
- lockdep_assert_irqs_enabled();
- local_irq_disable();
- flush_tlb_func(info);
- local_irq_enable();
- }
- put_flush_tlb_info();
- put_cpu();
- }
- static void do_flush_tlb_all(void *info)
- {
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
- __flush_tlb_all();
- }
- void flush_tlb_all(void)
- {
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
- on_each_cpu(do_flush_tlb_all, NULL, 1);
- }
- static void do_kernel_range_flush(void *info)
- {
- struct flush_tlb_info *f = info;
- unsigned long addr;
- /* flush range by one by one 'invlpg' */
- for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
- flush_tlb_one_kernel(addr);
- }
- void flush_tlb_kernel_range(unsigned long start, unsigned long end)
- {
- /* Balance as user space task's flush, a bit conservative */
- if (end == TLB_FLUSH_ALL ||
- (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
- on_each_cpu(do_flush_tlb_all, NULL, 1);
- } else {
- struct flush_tlb_info *info;
- preempt_disable();
- info = get_flush_tlb_info(NULL, start, end, 0, false,
- TLB_GENERATION_INVALID);
- on_each_cpu(do_kernel_range_flush, info, 1);
- put_flush_tlb_info();
- preempt_enable();
- }
- }
- /*
- * This can be used from process context to figure out what the value of
- * CR3 is without needing to do a (slow) __read_cr3().
- *
- * It's intended to be used for code like KVM that sneakily changes CR3
- * and needs to restore it. It needs to be used very carefully.
- */
- unsigned long __get_current_cr3_fast(void)
- {
- unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
- this_cpu_read(cpu_tlbstate.loaded_mm_asid));
- /* For now, be very restrictive about when this can be called. */
- VM_WARN_ON(in_nmi() || preemptible());
- VM_BUG_ON(cr3 != __read_cr3());
- return cr3;
- }
- EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
- /*
- * Flush one page in the kernel mapping
- */
- void flush_tlb_one_kernel(unsigned long addr)
- {
- count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
- /*
- * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
- * paravirt equivalent. Even with PCID, this is sufficient: we only
- * use PCID if we also use global PTEs for the kernel mapping, and
- * INVLPG flushes global translations across all address spaces.
- *
- * If PTI is on, then the kernel is mapped with non-global PTEs, and
- * __flush_tlb_one_user() will flush the given address for the current
- * kernel address space and for its usermode counterpart, but it does
- * not flush it for other address spaces.
- */
- flush_tlb_one_user(addr);
- if (!static_cpu_has(X86_FEATURE_PTI))
- return;
- /*
- * See above. We need to propagate the flush to all other address
- * spaces. In principle, we only need to propagate it to kernelmode
- * address spaces, but the extra bookkeeping we would need is not
- * worth it.
- */
- this_cpu_write(cpu_tlbstate.invalidate_other, true);
- }
- /*
- * Flush one page in the user mapping
- */
- STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
- {
- u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
- asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
- if (!static_cpu_has(X86_FEATURE_PTI))
- return;
- /*
- * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
- * Just use invalidate_user_asid() in case we are called early.
- */
- if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
- invalidate_user_asid(loaded_mm_asid);
- else
- invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
- }
- void flush_tlb_one_user(unsigned long addr)
- {
- __flush_tlb_one_user(addr);
- }
- /*
- * Flush everything
- */
- STATIC_NOPV void native_flush_tlb_global(void)
- {
- unsigned long flags;
- if (static_cpu_has(X86_FEATURE_INVPCID)) {
- /*
- * Using INVPCID is considerably faster than a pair of writes
- * to CR4 sandwiched inside an IRQ flag save/restore.
- *
- * Note, this works with CR4.PCIDE=0 or 1.
- */
- invpcid_flush_all();
- return;
- }
- /*
- * Read-modify-write to CR4 - protect it from preemption and
- * from interrupts. (Use the raw variant because this code can
- * be called from deep inside debugging code.)
- */
- raw_local_irq_save(flags);
- __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
- raw_local_irq_restore(flags);
- }
- /*
- * Flush the entire current user mapping
- */
- STATIC_NOPV void native_flush_tlb_local(void)
- {
- /*
- * Preemption or interrupts must be disabled to protect the access
- * to the per CPU variable and to prevent being preempted between
- * read_cr3() and write_cr3().
- */
- WARN_ON_ONCE(preemptible());
- invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
- /* If current->mm == NULL then the read_cr3() "borrows" an mm */
- native_write_cr3(__native_read_cr3());
- }
- void flush_tlb_local(void)
- {
- __flush_tlb_local();
- }
- /*
- * Flush everything
- */
- void __flush_tlb_all(void)
- {
- /*
- * This is to catch users with enabled preemption and the PGE feature
- * and don't trigger the warning in __native_flush_tlb().
- */
- VM_WARN_ON_ONCE(preemptible());
- if (boot_cpu_has(X86_FEATURE_PGE)) {
- __flush_tlb_global();
- } else {
- /*
- * !PGE -> !PCID (setup_pcid()), thus every flush is total.
- */
- flush_tlb_local();
- }
- }
- EXPORT_SYMBOL_GPL(__flush_tlb_all);
- void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
- {
- struct flush_tlb_info *info;
- int cpu = get_cpu();
- info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
- TLB_GENERATION_INVALID);
- /*
- * flush_tlb_multi() is not optimized for the common case in which only
- * a local TLB flush is needed. Optimize this use-case by calling
- * flush_tlb_func_local() directly in this case.
- */
- if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
- flush_tlb_multi(&batch->cpumask, info);
- } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
- lockdep_assert_irqs_enabled();
- local_irq_disable();
- flush_tlb_func(info);
- local_irq_enable();
- }
- cpumask_clear(&batch->cpumask);
- put_flush_tlb_info();
- put_cpu();
- }
- /*
- * Blindly accessing user memory from NMI context can be dangerous
- * if we're in the middle of switching the current user task or
- * switching the loaded mm. It can also be dangerous if we
- * interrupted some kernel code that was temporarily using a
- * different mm.
- */
- bool nmi_uaccess_okay(void)
- {
- struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
- struct mm_struct *current_mm = current->mm;
- VM_WARN_ON_ONCE(!loaded_mm);
- /*
- * The condition we want to check is
- * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
- * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
- * is supposed to be reasonably fast.
- *
- * Instead, we check the almost equivalent but somewhat conservative
- * condition below, and we rely on the fact that switch_mm_irqs_off()
- * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
- */
- if (loaded_mm != current_mm)
- return false;
- VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
- return true;
- }
- static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
- size_t count, loff_t *ppos)
- {
- char buf[32];
- unsigned int len;
- len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
- return simple_read_from_buffer(user_buf, count, ppos, buf, len);
- }
- static ssize_t tlbflush_write_file(struct file *file,
- const char __user *user_buf, size_t count, loff_t *ppos)
- {
- char buf[32];
- ssize_t len;
- int ceiling;
- len = min(count, sizeof(buf) - 1);
- if (copy_from_user(buf, user_buf, len))
- return -EFAULT;
- buf[len] = '\0';
- if (kstrtoint(buf, 0, &ceiling))
- return -EINVAL;
- if (ceiling < 0)
- return -EINVAL;
- tlb_single_page_flush_ceiling = ceiling;
- return count;
- }
- static const struct file_operations fops_tlbflush = {
- .read = tlbflush_read_file,
- .write = tlbflush_write_file,
- .llseek = default_llseek,
- };
- static int __init create_tlb_single_page_flush_ceiling(void)
- {
- debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
- arch_debugfs_dir, NULL, &fops_tlbflush);
- return 0;
- }
- late_initcall(create_tlb_single_page_flush_ceiling);
|