kasan_init_64.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. // SPDX-License-Identifier: GPL-2.0
  2. #define DISABLE_BRANCH_PROFILING
  3. #define pr_fmt(fmt) "kasan: " fmt
  4. /* cpu_feature_enabled() cannot be used this early */
  5. #define USE_EARLY_PGTABLE_L5
  6. #include <linux/memblock.h>
  7. #include <linux/kasan.h>
  8. #include <linux/kdebug.h>
  9. #include <linux/mm.h>
  10. #include <linux/sched.h>
  11. #include <linux/sched/task.h>
  12. #include <linux/vmalloc.h>
  13. #include <asm/e820/types.h>
  14. #include <asm/pgalloc.h>
  15. #include <asm/tlbflush.h>
  16. #include <asm/sections.h>
  17. #include <asm/cpu_entry_area.h>
  18. extern struct range pfn_mapped[E820_MAX_ENTRIES];
  19. static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
  20. static __init void *early_alloc(size_t size, int nid, bool should_panic)
  21. {
  22. void *ptr = memblock_alloc_try_nid(size, size,
  23. __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
  24. if (!ptr && should_panic)
  25. panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
  26. (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
  27. return ptr;
  28. }
  29. static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
  30. unsigned long end, int nid)
  31. {
  32. pte_t *pte;
  33. if (pmd_none(*pmd)) {
  34. void *p;
  35. if (boot_cpu_has(X86_FEATURE_PSE) &&
  36. ((end - addr) == PMD_SIZE) &&
  37. IS_ALIGNED(addr, PMD_SIZE)) {
  38. p = early_alloc(PMD_SIZE, nid, false);
  39. if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
  40. return;
  41. memblock_free(p, PMD_SIZE);
  42. }
  43. p = early_alloc(PAGE_SIZE, nid, true);
  44. pmd_populate_kernel(&init_mm, pmd, p);
  45. }
  46. pte = pte_offset_kernel(pmd, addr);
  47. do {
  48. pte_t entry;
  49. void *p;
  50. if (!pte_none(*pte))
  51. continue;
  52. p = early_alloc(PAGE_SIZE, nid, true);
  53. entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
  54. set_pte_at(&init_mm, addr, pte, entry);
  55. } while (pte++, addr += PAGE_SIZE, addr != end);
  56. }
  57. static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
  58. unsigned long end, int nid)
  59. {
  60. pmd_t *pmd;
  61. unsigned long next;
  62. if (pud_none(*pud)) {
  63. void *p;
  64. if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
  65. ((end - addr) == PUD_SIZE) &&
  66. IS_ALIGNED(addr, PUD_SIZE)) {
  67. p = early_alloc(PUD_SIZE, nid, false);
  68. if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
  69. return;
  70. memblock_free(p, PUD_SIZE);
  71. }
  72. p = early_alloc(PAGE_SIZE, nid, true);
  73. pud_populate(&init_mm, pud, p);
  74. }
  75. pmd = pmd_offset(pud, addr);
  76. do {
  77. next = pmd_addr_end(addr, end);
  78. if (!pmd_large(*pmd))
  79. kasan_populate_pmd(pmd, addr, next, nid);
  80. } while (pmd++, addr = next, addr != end);
  81. }
  82. static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
  83. unsigned long end, int nid)
  84. {
  85. pud_t *pud;
  86. unsigned long next;
  87. if (p4d_none(*p4d)) {
  88. void *p = early_alloc(PAGE_SIZE, nid, true);
  89. p4d_populate(&init_mm, p4d, p);
  90. }
  91. pud = pud_offset(p4d, addr);
  92. do {
  93. next = pud_addr_end(addr, end);
  94. if (!pud_large(*pud))
  95. kasan_populate_pud(pud, addr, next, nid);
  96. } while (pud++, addr = next, addr != end);
  97. }
  98. static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
  99. unsigned long end, int nid)
  100. {
  101. void *p;
  102. p4d_t *p4d;
  103. unsigned long next;
  104. if (pgd_none(*pgd)) {
  105. p = early_alloc(PAGE_SIZE, nid, true);
  106. pgd_populate(&init_mm, pgd, p);
  107. }
  108. p4d = p4d_offset(pgd, addr);
  109. do {
  110. next = p4d_addr_end(addr, end);
  111. kasan_populate_p4d(p4d, addr, next, nid);
  112. } while (p4d++, addr = next, addr != end);
  113. }
  114. static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
  115. int nid)
  116. {
  117. pgd_t *pgd;
  118. unsigned long next;
  119. addr = addr & PAGE_MASK;
  120. end = round_up(end, PAGE_SIZE);
  121. pgd = pgd_offset_k(addr);
  122. do {
  123. next = pgd_addr_end(addr, end);
  124. kasan_populate_pgd(pgd, addr, next, nid);
  125. } while (pgd++, addr = next, addr != end);
  126. }
  127. static void __init map_range(struct range *range)
  128. {
  129. unsigned long start;
  130. unsigned long end;
  131. start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
  132. end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
  133. kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
  134. }
  135. static void __init clear_pgds(unsigned long start,
  136. unsigned long end)
  137. {
  138. pgd_t *pgd;
  139. /* See comment in kasan_init() */
  140. unsigned long pgd_end = end & PGDIR_MASK;
  141. for (; start < pgd_end; start += PGDIR_SIZE) {
  142. pgd = pgd_offset_k(start);
  143. /*
  144. * With folded p4d, pgd_clear() is nop, use p4d_clear()
  145. * instead.
  146. */
  147. if (pgtable_l5_enabled())
  148. pgd_clear(pgd);
  149. else
  150. p4d_clear(p4d_offset(pgd, start));
  151. }
  152. pgd = pgd_offset_k(start);
  153. for (; start < end; start += P4D_SIZE)
  154. p4d_clear(p4d_offset(pgd, start));
  155. }
  156. static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
  157. {
  158. unsigned long p4d;
  159. if (!pgtable_l5_enabled())
  160. return (p4d_t *)pgd;
  161. p4d = pgd_val(*pgd) & PTE_PFN_MASK;
  162. p4d += __START_KERNEL_map - phys_base;
  163. return (p4d_t *)p4d + p4d_index(addr);
  164. }
  165. static void __init kasan_early_p4d_populate(pgd_t *pgd,
  166. unsigned long addr,
  167. unsigned long end)
  168. {
  169. pgd_t pgd_entry;
  170. p4d_t *p4d, p4d_entry;
  171. unsigned long next;
  172. if (pgd_none(*pgd)) {
  173. pgd_entry = __pgd(_KERNPG_TABLE |
  174. __pa_nodebug(kasan_early_shadow_p4d));
  175. set_pgd(pgd, pgd_entry);
  176. }
  177. p4d = early_p4d_offset(pgd, addr);
  178. do {
  179. next = p4d_addr_end(addr, end);
  180. if (!p4d_none(*p4d))
  181. continue;
  182. p4d_entry = __p4d(_KERNPG_TABLE |
  183. __pa_nodebug(kasan_early_shadow_pud));
  184. set_p4d(p4d, p4d_entry);
  185. } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
  186. }
  187. static void __init kasan_map_early_shadow(pgd_t *pgd)
  188. {
  189. /* See comment in kasan_init() */
  190. unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
  191. unsigned long end = KASAN_SHADOW_END;
  192. unsigned long next;
  193. pgd += pgd_index(addr);
  194. do {
  195. next = pgd_addr_end(addr, end);
  196. kasan_early_p4d_populate(pgd, addr, next);
  197. } while (pgd++, addr = next, addr != end);
  198. }
  199. static void __init kasan_shallow_populate_p4ds(pgd_t *pgd,
  200. unsigned long addr,
  201. unsigned long end)
  202. {
  203. p4d_t *p4d;
  204. unsigned long next;
  205. void *p;
  206. p4d = p4d_offset(pgd, addr);
  207. do {
  208. next = p4d_addr_end(addr, end);
  209. if (p4d_none(*p4d)) {
  210. p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
  211. p4d_populate(&init_mm, p4d, p);
  212. }
  213. } while (p4d++, addr = next, addr != end);
  214. }
  215. static void __init kasan_shallow_populate_pgds(void *start, void *end)
  216. {
  217. unsigned long addr, next;
  218. pgd_t *pgd;
  219. void *p;
  220. addr = (unsigned long)start;
  221. pgd = pgd_offset_k(addr);
  222. do {
  223. next = pgd_addr_end(addr, (unsigned long)end);
  224. if (pgd_none(*pgd)) {
  225. p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
  226. pgd_populate(&init_mm, pgd, p);
  227. }
  228. /*
  229. * we need to populate p4ds to be synced when running in
  230. * four level mode - see sync_global_pgds_l4()
  231. */
  232. kasan_shallow_populate_p4ds(pgd, addr, next);
  233. } while (pgd++, addr = next, addr != (unsigned long)end);
  234. }
  235. void __init kasan_early_init(void)
  236. {
  237. int i;
  238. pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
  239. __PAGE_KERNEL | _PAGE_ENC;
  240. pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
  241. pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
  242. p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
  243. /* Mask out unsupported __PAGE_KERNEL bits: */
  244. pte_val &= __default_kernel_pte_mask;
  245. pmd_val &= __default_kernel_pte_mask;
  246. pud_val &= __default_kernel_pte_mask;
  247. p4d_val &= __default_kernel_pte_mask;
  248. for (i = 0; i < PTRS_PER_PTE; i++)
  249. kasan_early_shadow_pte[i] = __pte(pte_val);
  250. for (i = 0; i < PTRS_PER_PMD; i++)
  251. kasan_early_shadow_pmd[i] = __pmd(pmd_val);
  252. for (i = 0; i < PTRS_PER_PUD; i++)
  253. kasan_early_shadow_pud[i] = __pud(pud_val);
  254. for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
  255. kasan_early_shadow_p4d[i] = __p4d(p4d_val);
  256. kasan_map_early_shadow(early_top_pgt);
  257. kasan_map_early_shadow(init_top_pgt);
  258. }
  259. void __init kasan_init(void)
  260. {
  261. int i;
  262. void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
  263. memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
  264. /*
  265. * We use the same shadow offset for 4- and 5-level paging to
  266. * facilitate boot-time switching between paging modes.
  267. * As result in 5-level paging mode KASAN_SHADOW_START and
  268. * KASAN_SHADOW_END are not aligned to PGD boundary.
  269. *
  270. * KASAN_SHADOW_START doesn't share PGD with anything else.
  271. * We claim whole PGD entry to make things easier.
  272. *
  273. * KASAN_SHADOW_END lands in the last PGD entry and it collides with
  274. * bunch of things like kernel code, modules, EFI mapping, etc.
  275. * We need to take extra steps to not overwrite them.
  276. */
  277. if (pgtable_l5_enabled()) {
  278. void *ptr;
  279. ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
  280. memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
  281. set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
  282. __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
  283. }
  284. load_cr3(early_top_pgt);
  285. __flush_tlb_all();
  286. clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
  287. kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
  288. kasan_mem_to_shadow((void *)PAGE_OFFSET));
  289. for (i = 0; i < E820_MAX_ENTRIES; i++) {
  290. if (pfn_mapped[i].end == 0)
  291. break;
  292. map_range(&pfn_mapped[i]);
  293. }
  294. shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
  295. shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
  296. shadow_cpu_entry_begin = (void *)round_down(
  297. (unsigned long)shadow_cpu_entry_begin, PAGE_SIZE);
  298. shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
  299. CPU_ENTRY_AREA_MAP_SIZE);
  300. shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
  301. shadow_cpu_entry_end = (void *)round_up(
  302. (unsigned long)shadow_cpu_entry_end, PAGE_SIZE);
  303. kasan_populate_early_shadow(
  304. kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
  305. kasan_mem_to_shadow((void *)VMALLOC_START));
  306. /*
  307. * If we're in full vmalloc mode, don't back vmalloc space with early
  308. * shadow pages. Instead, prepopulate pgds/p4ds so they are synced to
  309. * the global table and we can populate the lower levels on demand.
  310. */
  311. if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
  312. kasan_shallow_populate_pgds(
  313. kasan_mem_to_shadow((void *)VMALLOC_START),
  314. kasan_mem_to_shadow((void *)VMALLOC_END));
  315. else
  316. kasan_populate_early_shadow(
  317. kasan_mem_to_shadow((void *)VMALLOC_START),
  318. kasan_mem_to_shadow((void *)VMALLOC_END));
  319. kasan_populate_early_shadow(
  320. kasan_mem_to_shadow((void *)VMALLOC_END + 1),
  321. shadow_cpu_entry_begin);
  322. kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
  323. (unsigned long)shadow_cpu_entry_end, 0);
  324. kasan_populate_early_shadow(shadow_cpu_entry_end,
  325. kasan_mem_to_shadow((void *)__START_KERNEL_map));
  326. kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
  327. (unsigned long)kasan_mem_to_shadow(_end),
  328. early_pfn_to_nid(__pa(_stext)));
  329. kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
  330. (void *)KASAN_SHADOW_END);
  331. load_cr3(init_top_pgt);
  332. __flush_tlb_all();
  333. /*
  334. * kasan_early_shadow_page has been used as early shadow memory, thus
  335. * it may contain some garbage. Now we can clear and write protect it,
  336. * since after the TLB flush no one should write to it.
  337. */
  338. memset(kasan_early_shadow_page, 0, PAGE_SIZE);
  339. for (i = 0; i < PTRS_PER_PTE; i++) {
  340. pte_t pte;
  341. pgprot_t prot;
  342. prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
  343. pgprot_val(prot) &= __default_kernel_pte_mask;
  344. pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
  345. set_pte(&kasan_early_shadow_pte[i], pte);
  346. }
  347. /* Flush TLBs again to be sure that write protection applied. */
  348. __flush_tlb_all();
  349. init_task.kasan_depth = 0;
  350. pr_info("KernelAddressSanitizer initialized\n");
  351. }