123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Copyright (C) 1995 Linus Torvalds
- * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
- * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
- */
- #include <linux/sched.h> /* test_thread_flag(), ... */
- #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
- #include <linux/kdebug.h> /* oops_begin/end, ... */
- #include <linux/extable.h> /* search_exception_tables */
- #include <linux/memblock.h> /* max_low_pfn */
- #include <linux/kfence.h> /* kfence_handle_page_fault */
- #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
- #include <linux/mmiotrace.h> /* kmmio_handler, ... */
- #include <linux/perf_event.h> /* perf_sw_event */
- #include <linux/hugetlb.h> /* hstate_index_to_shift */
- #include <linux/prefetch.h> /* prefetchw */
- #include <linux/context_tracking.h> /* exception_enter(), ... */
- #include <linux/uaccess.h> /* faulthandler_disabled() */
- #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
- #include <linux/mm_types.h>
- #include <linux/mm.h> /* find_and_lock_vma() */
- #include <asm/cpufeature.h> /* boot_cpu_has, ... */
- #include <asm/traps.h> /* dotraplinkage, ... */
- #include <asm/fixmap.h> /* VSYSCALL_ADDR */
- #include <asm/vsyscall.h> /* emulate_vsyscall */
- #include <asm/vm86.h> /* struct vm86 */
- #include <asm/mmu_context.h> /* vma_pkey() */
- #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
- #include <asm/desc.h> /* store_idt(), ... */
- #include <asm/cpu_entry_area.h> /* exception stack */
- #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
- #include <asm/kvm_para.h> /* kvm_handle_async_pf */
- #include <asm/vdso.h> /* fixup_vdso_exception() */
- #include <asm/irq_stack.h>
- #define CREATE_TRACE_POINTS
- #include <asm/trace/exceptions.h>
- /*
- * Returns 0 if mmiotrace is disabled, or if the fault is not
- * handled by mmiotrace:
- */
- static nokprobe_inline int
- kmmio_fault(struct pt_regs *regs, unsigned long addr)
- {
- if (unlikely(is_kmmio_active()))
- if (kmmio_handler(regs, addr) == 1)
- return -1;
- return 0;
- }
- /*
- * Prefetch quirks:
- *
- * 32-bit mode:
- *
- * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
- * Check that here and ignore it. This is AMD erratum #91.
- *
- * 64-bit mode:
- *
- * Sometimes the CPU reports invalid exceptions on prefetch.
- * Check that here and ignore it.
- *
- * Opcode checker based on code by Richard Brunner.
- */
- static inline int
- check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
- unsigned char opcode, int *prefetch)
- {
- unsigned char instr_hi = opcode & 0xf0;
- unsigned char instr_lo = opcode & 0x0f;
- switch (instr_hi) {
- case 0x20:
- case 0x30:
- /*
- * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
- * In X86_64 long mode, the CPU will signal invalid
- * opcode if some of these prefixes are present so
- * X86_64 will never get here anyway
- */
- return ((instr_lo & 7) == 0x6);
- #ifdef CONFIG_X86_64
- case 0x40:
- /*
- * In 64-bit mode 0x40..0x4F are valid REX prefixes
- */
- return (!user_mode(regs) || user_64bit_mode(regs));
- #endif
- case 0x60:
- /* 0x64 thru 0x67 are valid prefixes in all modes. */
- return (instr_lo & 0xC) == 0x4;
- case 0xF0:
- /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
- return !instr_lo || (instr_lo>>1) == 1;
- case 0x00:
- /* Prefetch instruction is 0x0F0D or 0x0F18 */
- if (get_kernel_nofault(opcode, instr))
- return 0;
- *prefetch = (instr_lo == 0xF) &&
- (opcode == 0x0D || opcode == 0x18);
- return 0;
- default:
- return 0;
- }
- }
- static bool is_amd_k8_pre_npt(void)
- {
- struct cpuinfo_x86 *c = &boot_cpu_data;
- return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
- c->x86_vendor == X86_VENDOR_AMD &&
- c->x86 == 0xf && c->x86_model < 0x40);
- }
- static int
- is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
- {
- unsigned char *max_instr;
- unsigned char *instr;
- int prefetch = 0;
- /* Erratum #91 affects AMD K8, pre-NPT CPUs */
- if (!is_amd_k8_pre_npt())
- return 0;
- /*
- * If it was a exec (instruction fetch) fault on NX page, then
- * do not ignore the fault:
- */
- if (error_code & X86_PF_INSTR)
- return 0;
- instr = (void *)convert_ip_to_linear(current, regs);
- max_instr = instr + 15;
- /*
- * This code has historically always bailed out if IP points to a
- * not-present page (e.g. due to a race). No one has ever
- * complained about this.
- */
- pagefault_disable();
- while (instr < max_instr) {
- unsigned char opcode;
- if (user_mode(regs)) {
- if (get_user(opcode, (unsigned char __user *) instr))
- break;
- } else {
- if (get_kernel_nofault(opcode, instr))
- break;
- }
- instr++;
- if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
- break;
- }
- pagefault_enable();
- return prefetch;
- }
- DEFINE_SPINLOCK(pgd_lock);
- LIST_HEAD(pgd_list);
- #ifdef CONFIG_X86_32
- static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
- {
- unsigned index = pgd_index(address);
- pgd_t *pgd_k;
- p4d_t *p4d, *p4d_k;
- pud_t *pud, *pud_k;
- pmd_t *pmd, *pmd_k;
- pgd += index;
- pgd_k = init_mm.pgd + index;
- if (!pgd_present(*pgd_k))
- return NULL;
- /*
- * set_pgd(pgd, *pgd_k); here would be useless on PAE
- * and redundant with the set_pmd() on non-PAE. As would
- * set_p4d/set_pud.
- */
- p4d = p4d_offset(pgd, address);
- p4d_k = p4d_offset(pgd_k, address);
- if (!p4d_present(*p4d_k))
- return NULL;
- pud = pud_offset(p4d, address);
- pud_k = pud_offset(p4d_k, address);
- if (!pud_present(*pud_k))
- return NULL;
- pmd = pmd_offset(pud, address);
- pmd_k = pmd_offset(pud_k, address);
- if (pmd_present(*pmd) != pmd_present(*pmd_k))
- set_pmd(pmd, *pmd_k);
- if (!pmd_present(*pmd_k))
- return NULL;
- else
- BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
- return pmd_k;
- }
- /*
- * Handle a fault on the vmalloc or module mapping area
- *
- * This is needed because there is a race condition between the time
- * when the vmalloc mapping code updates the PMD to the point in time
- * where it synchronizes this update with the other page-tables in the
- * system.
- *
- * In this race window another thread/CPU can map an area on the same
- * PMD, finds it already present and does not synchronize it with the
- * rest of the system yet. As a result v[mz]alloc might return areas
- * which are not mapped in every page-table in the system, causing an
- * unhandled page-fault when they are accessed.
- */
- static noinline int vmalloc_fault(unsigned long address)
- {
- unsigned long pgd_paddr;
- pmd_t *pmd_k;
- pte_t *pte_k;
- /* Make sure we are in vmalloc area: */
- if (!(address >= VMALLOC_START && address < VMALLOC_END))
- return -1;
- /*
- * Synchronize this task's top level page-table
- * with the 'reference' page table.
- *
- * Do _not_ use "current" here. We might be inside
- * an interrupt in the middle of a task switch..
- */
- pgd_paddr = read_cr3_pa();
- pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
- if (!pmd_k)
- return -1;
- if (pmd_large(*pmd_k))
- return 0;
- pte_k = pte_offset_kernel(pmd_k, address);
- if (!pte_present(*pte_k))
- return -1;
- return 0;
- }
- NOKPROBE_SYMBOL(vmalloc_fault);
- static void __arch_sync_kernel_mappings(unsigned long start, unsigned long end)
- {
- unsigned long addr;
- for (addr = start & PMD_MASK;
- addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
- addr += PMD_SIZE) {
- struct page *page;
- spin_lock(&pgd_lock);
- list_for_each_entry(page, &pgd_list, lru) {
- spinlock_t *pgt_lock;
- /* the pgt_lock only for Xen */
- pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
- spin_lock(pgt_lock);
- vmalloc_sync_one(page_address(page), addr);
- spin_unlock(pgt_lock);
- }
- spin_unlock(&pgd_lock);
- }
- }
- void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
- {
- __arch_sync_kernel_mappings(start, end);
- #ifdef CONFIG_KMSAN
- /*
- * KMSAN maintains two additional metadata page mappings for the
- * [VMALLOC_START, VMALLOC_END) range. These mappings start at
- * KMSAN_VMALLOC_SHADOW_START and KMSAN_VMALLOC_ORIGIN_START and
- * have to be synced together with the vmalloc memory mapping.
- */
- if (start >= VMALLOC_START && end < VMALLOC_END) {
- __arch_sync_kernel_mappings(
- start - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START,
- end - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START);
- __arch_sync_kernel_mappings(
- start - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START,
- end - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START);
- }
- #endif
- }
- static bool low_pfn(unsigned long pfn)
- {
- return pfn < max_low_pfn;
- }
- static void dump_pagetable(unsigned long address)
- {
- pgd_t *base = __va(read_cr3_pa());
- pgd_t *pgd = &base[pgd_index(address)];
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- #ifdef CONFIG_X86_PAE
- pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
- if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
- goto out;
- #define pr_pde pr_cont
- #else
- #define pr_pde pr_info
- #endif
- p4d = p4d_offset(pgd, address);
- pud = pud_offset(p4d, address);
- pmd = pmd_offset(pud, address);
- pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
- #undef pr_pde
- /*
- * We must not directly access the pte in the highpte
- * case if the page table is located in highmem.
- * And let's rather not kmap-atomic the pte, just in case
- * it's allocated already:
- */
- if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
- goto out;
- pte = pte_offset_kernel(pmd, address);
- pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
- out:
- pr_cont("\n");
- }
- #else /* CONFIG_X86_64: */
- #ifdef CONFIG_CPU_SUP_AMD
- static const char errata93_warning[] =
- KERN_ERR
- "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
- "******* Working around it, but it may cause SEGVs or burn power.\n"
- "******* Please consider a BIOS update.\n"
- "******* Disabling USB legacy in the BIOS may also help.\n";
- #endif
- static int bad_address(void *p)
- {
- unsigned long dummy;
- return get_kernel_nofault(dummy, (unsigned long *)p);
- }
- static void dump_pagetable(unsigned long address)
- {
- pgd_t *base = __va(read_cr3_pa());
- pgd_t *pgd = base + pgd_index(address);
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- if (bad_address(pgd))
- goto bad;
- pr_info("PGD %lx ", pgd_val(*pgd));
- if (!pgd_present(*pgd))
- goto out;
- p4d = p4d_offset(pgd, address);
- if (bad_address(p4d))
- goto bad;
- pr_cont("P4D %lx ", p4d_val(*p4d));
- if (!p4d_present(*p4d) || p4d_large(*p4d))
- goto out;
- pud = pud_offset(p4d, address);
- if (bad_address(pud))
- goto bad;
- pr_cont("PUD %lx ", pud_val(*pud));
- if (!pud_present(*pud) || pud_large(*pud))
- goto out;
- pmd = pmd_offset(pud, address);
- if (bad_address(pmd))
- goto bad;
- pr_cont("PMD %lx ", pmd_val(*pmd));
- if (!pmd_present(*pmd) || pmd_large(*pmd))
- goto out;
- pte = pte_offset_kernel(pmd, address);
- if (bad_address(pte))
- goto bad;
- pr_cont("PTE %lx", pte_val(*pte));
- out:
- pr_cont("\n");
- return;
- bad:
- pr_info("BAD\n");
- }
- #endif /* CONFIG_X86_64 */
- /*
- * Workaround for K8 erratum #93 & buggy BIOS.
- *
- * BIOS SMM functions are required to use a specific workaround
- * to avoid corruption of the 64bit RIP register on C stepping K8.
- *
- * A lot of BIOS that didn't get tested properly miss this.
- *
- * The OS sees this as a page fault with the upper 32bits of RIP cleared.
- * Try to work around it here.
- *
- * Note we only handle faults in kernel here.
- * Does nothing on 32-bit.
- */
- static int is_errata93(struct pt_regs *regs, unsigned long address)
- {
- #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
- if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
- || boot_cpu_data.x86 != 0xf)
- return 0;
- if (user_mode(regs))
- return 0;
- if (address != regs->ip)
- return 0;
- if ((address >> 32) != 0)
- return 0;
- address |= 0xffffffffUL << 32;
- if ((address >= (u64)_stext && address <= (u64)_etext) ||
- (address >= MODULES_VADDR && address <= MODULES_END)) {
- printk_once(errata93_warning);
- regs->ip = address;
- return 1;
- }
- #endif
- return 0;
- }
- /*
- * Work around K8 erratum #100 K8 in compat mode occasionally jumps
- * to illegal addresses >4GB.
- *
- * We catch this in the page fault handler because these addresses
- * are not reachable. Just detect this case and return. Any code
- * segment in LDT is compatibility mode.
- */
- static int is_errata100(struct pt_regs *regs, unsigned long address)
- {
- #ifdef CONFIG_X86_64
- if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
- return 1;
- #endif
- return 0;
- }
- /* Pentium F0 0F C7 C8 bug workaround: */
- static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
- {
- #ifdef CONFIG_X86_F00F_BUG
- if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
- idt_is_f00f_address(address)) {
- handle_invalid_op(regs);
- return 1;
- }
- #endif
- return 0;
- }
- static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
- {
- u32 offset = (index >> 3) * sizeof(struct desc_struct);
- unsigned long addr;
- struct ldttss_desc desc;
- if (index == 0) {
- pr_alert("%s: NULL\n", name);
- return;
- }
- if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
- pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
- return;
- }
- if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
- sizeof(struct ldttss_desc))) {
- pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
- name, index);
- return;
- }
- addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
- #ifdef CONFIG_X86_64
- addr |= ((u64)desc.base3 << 32);
- #endif
- pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
- name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
- }
- static void
- show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
- {
- if (!oops_may_print())
- return;
- if (error_code & X86_PF_INSTR) {
- unsigned int level;
- pgd_t *pgd;
- pte_t *pte;
- pgd = __va(read_cr3_pa());
- pgd += pgd_index(address);
- pte = lookup_address_in_pgd(pgd, address, &level);
- if (pte && pte_present(*pte) && !pte_exec(*pte))
- pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
- from_kuid(&init_user_ns, current_uid()));
- if (pte && pte_present(*pte) && pte_exec(*pte) &&
- (pgd_flags(*pgd) & _PAGE_USER) &&
- (__read_cr4() & X86_CR4_SMEP))
- pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
- from_kuid(&init_user_ns, current_uid()));
- }
- if (address < PAGE_SIZE && !user_mode(regs))
- pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
- (void *)address);
- else
- pr_alert("BUG: unable to handle page fault for address: %px\n",
- (void *)address);
- pr_alert("#PF: %s %s in %s mode\n",
- (error_code & X86_PF_USER) ? "user" : "supervisor",
- (error_code & X86_PF_INSTR) ? "instruction fetch" :
- (error_code & X86_PF_WRITE) ? "write access" :
- "read access",
- user_mode(regs) ? "user" : "kernel");
- pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
- !(error_code & X86_PF_PROT) ? "not-present page" :
- (error_code & X86_PF_RSVD) ? "reserved bit violation" :
- (error_code & X86_PF_PK) ? "protection keys violation" :
- "permissions violation");
- if (!(error_code & X86_PF_USER) && user_mode(regs)) {
- struct desc_ptr idt, gdt;
- u16 ldtr, tr;
- /*
- * This can happen for quite a few reasons. The more obvious
- * ones are faults accessing the GDT, or LDT. Perhaps
- * surprisingly, if the CPU tries to deliver a benign or
- * contributory exception from user code and gets a page fault
- * during delivery, the page fault can be delivered as though
- * it originated directly from user code. This could happen
- * due to wrong permissions on the IDT, GDT, LDT, TSS, or
- * kernel or IST stack.
- */
- store_idt(&idt);
- /* Usable even on Xen PV -- it's just slow. */
- native_store_gdt(&gdt);
- pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
- idt.address, idt.size, gdt.address, gdt.size);
- store_ldt(ldtr);
- show_ldttss(&gdt, "LDTR", ldtr);
- store_tr(tr);
- show_ldttss(&gdt, "TR", tr);
- }
- dump_pagetable(address);
- }
- static noinline void
- pgtable_bad(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
- {
- struct task_struct *tsk;
- unsigned long flags;
- int sig;
- flags = oops_begin();
- tsk = current;
- sig = SIGKILL;
- printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
- tsk->comm, address);
- dump_pagetable(address);
- if (__die("Bad pagetable", regs, error_code))
- sig = 0;
- oops_end(flags, regs, sig);
- }
- static void sanitize_error_code(unsigned long address,
- unsigned long *error_code)
- {
- /*
- * To avoid leaking information about the kernel page
- * table layout, pretend that user-mode accesses to
- * kernel addresses are always protection faults.
- *
- * NB: This means that failed vsyscalls with vsyscall=none
- * will have the PROT bit. This doesn't leak any
- * information and does not appear to cause any problems.
- */
- if (address >= TASK_SIZE_MAX)
- *error_code |= X86_PF_PROT;
- }
- static void set_signal_archinfo(unsigned long address,
- unsigned long error_code)
- {
- struct task_struct *tsk = current;
- tsk->thread.trap_nr = X86_TRAP_PF;
- tsk->thread.error_code = error_code | X86_PF_USER;
- tsk->thread.cr2 = address;
- }
- static noinline void
- page_fault_oops(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
- {
- #ifdef CONFIG_VMAP_STACK
- struct stack_info info;
- #endif
- unsigned long flags;
- int sig;
- if (user_mode(regs)) {
- /*
- * Implicit kernel access from user mode? Skip the stack
- * overflow and EFI special cases.
- */
- goto oops;
- }
- #ifdef CONFIG_VMAP_STACK
- /*
- * Stack overflow? During boot, we can fault near the initial
- * stack in the direct map, but that's not an overflow -- check
- * that we're in vmalloc space to avoid this.
- */
- if (is_vmalloc_addr((void *)address) &&
- get_stack_guard_info((void *)address, &info)) {
- /*
- * We're likely to be running with very little stack space
- * left. It's plausible that we'd hit this condition but
- * double-fault even before we get this far, in which case
- * we're fine: the double-fault handler will deal with it.
- *
- * We don't want to make it all the way into the oops code
- * and then double-fault, though, because we're likely to
- * break the console driver and lose most of the stack dump.
- */
- call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
- handle_stack_overflow,
- ASM_CALL_ARG3,
- , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
- unreachable();
- }
- #endif
- /*
- * Buggy firmware could access regions which might page fault. If
- * this happens, EFI has a special OOPS path that will try to
- * avoid hanging the system.
- */
- if (IS_ENABLED(CONFIG_EFI))
- efi_crash_gracefully_on_page_fault(address);
- /* Only not-present faults should be handled by KFENCE. */
- if (!(error_code & X86_PF_PROT) &&
- kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
- return;
- oops:
- /*
- * Oops. The kernel tried to access some bad page. We'll have to
- * terminate things with extreme prejudice:
- */
- flags = oops_begin();
- show_fault_oops(regs, error_code, address);
- if (task_stack_end_corrupted(current))
- printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
- sig = SIGKILL;
- if (__die("Oops", regs, error_code))
- sig = 0;
- /* Executive summary in case the body of the oops scrolled away */
- printk(KERN_DEFAULT "CR2: %016lx\n", address);
- oops_end(flags, regs, sig);
- }
- static noinline void
- kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, int signal, int si_code,
- u32 pkey)
- {
- WARN_ON_ONCE(user_mode(regs));
- /* Are we prepared to handle this kernel fault? */
- if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
- /*
- * Any interrupt that takes a fault gets the fixup. This makes
- * the below recursive fault logic only apply to a faults from
- * task context.
- */
- if (in_interrupt())
- return;
- /*
- * Per the above we're !in_interrupt(), aka. task context.
- *
- * In this case we need to make sure we're not recursively
- * faulting through the emulate_vsyscall() logic.
- */
- if (current->thread.sig_on_uaccess_err && signal) {
- sanitize_error_code(address, &error_code);
- set_signal_archinfo(address, error_code);
- if (si_code == SEGV_PKUERR) {
- force_sig_pkuerr((void __user *)address, pkey);
- } else {
- /* XXX: hwpoison faults will set the wrong code. */
- force_sig_fault(signal, si_code, (void __user *)address);
- }
- }
- /*
- * Barring that, we can do the fixup and be happy.
- */
- return;
- }
- /*
- * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
- * instruction.
- */
- if (is_prefetch(regs, error_code, address))
- return;
- page_fault_oops(regs, error_code, address);
- }
- /*
- * Print out info about fatal segfaults, if the show_unhandled_signals
- * sysctl is set:
- */
- static inline void
- show_signal_msg(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, struct task_struct *tsk)
- {
- const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
- /* This is a racy snapshot, but it's better than nothing. */
- int cpu = raw_smp_processor_id();
- if (!unhandled_signal(tsk, SIGSEGV))
- return;
- if (!printk_ratelimit())
- return;
- printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
- loglvl, tsk->comm, task_pid_nr(tsk), address,
- (void *)regs->ip, (void *)regs->sp, error_code);
- print_vma_addr(KERN_CONT " in ", regs->ip);
- /*
- * Dump the likely CPU where the fatal segfault happened.
- * This can help identify faulty hardware.
- */
- printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
- topology_core_id(cpu), topology_physical_package_id(cpu));
- printk(KERN_CONT "\n");
- show_opcodes(regs, loglvl);
- }
- /*
- * The (legacy) vsyscall page is the long page in the kernel portion
- * of the address space that has user-accessible permissions.
- */
- static bool is_vsyscall_vaddr(unsigned long vaddr)
- {
- return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
- }
- static void
- __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, u32 pkey, int si_code)
- {
- struct task_struct *tsk = current;
- if (!user_mode(regs)) {
- kernelmode_fixup_or_oops(regs, error_code, address,
- SIGSEGV, si_code, pkey);
- return;
- }
- if (!(error_code & X86_PF_USER)) {
- /* Implicit user access to kernel memory -- just oops */
- page_fault_oops(regs, error_code, address);
- return;
- }
- /*
- * User mode accesses just cause a SIGSEGV.
- * It's possible to have interrupts off here:
- */
- local_irq_enable();
- /*
- * Valid to do another page fault here because this one came
- * from user space:
- */
- if (is_prefetch(regs, error_code, address))
- return;
- if (is_errata100(regs, address))
- return;
- sanitize_error_code(address, &error_code);
- if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
- return;
- if (likely(show_unhandled_signals))
- show_signal_msg(regs, error_code, address, tsk);
- set_signal_archinfo(address, error_code);
- if (si_code == SEGV_PKUERR)
- force_sig_pkuerr((void __user *)address, pkey);
- else
- force_sig_fault(SIGSEGV, si_code, (void __user *)address);
- local_irq_disable();
- }
- static noinline void
- bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
- {
- __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
- }
- static void
- __bad_area(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, u32 pkey, int si_code)
- {
- struct mm_struct *mm = current->mm;
- /*
- * Something tried to access memory that isn't in our memory map..
- * Fix it, but check if it's kernel or user first..
- */
- mmap_read_unlock(mm);
- __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
- }
- static inline bool bad_area_access_from_pkeys(unsigned long error_code,
- struct vm_area_struct *vma)
- {
- /* This code is always called on the current mm */
- bool foreign = false;
- if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
- return false;
- if (error_code & X86_PF_PK)
- return true;
- /* this checks permission keys on the VMA: */
- if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
- (error_code & X86_PF_INSTR), foreign))
- return true;
- return false;
- }
- static noinline void
- bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
- unsigned long address, struct vm_area_struct *vma)
- {
- /*
- * This OSPKE check is not strictly necessary at runtime.
- * But, doing it this way allows compiler optimizations
- * if pkeys are compiled out.
- */
- if (bad_area_access_from_pkeys(error_code, vma)) {
- /*
- * A protection key fault means that the PKRU value did not allow
- * access to some PTE. Userspace can figure out what PKRU was
- * from the XSAVE state. This function captures the pkey from
- * the vma and passes it to userspace so userspace can discover
- * which protection key was set on the PTE.
- *
- * If we get here, we know that the hardware signaled a X86_PF_PK
- * fault and that there was a VMA once we got in the fault
- * handler. It does *not* guarantee that the VMA we find here
- * was the one that we faulted on.
- *
- * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
- * 2. T1 : set PKRU to deny access to pkey=4, touches page
- * 3. T1 : faults...
- * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
- * 5. T1 : enters fault handler, takes mmap_lock, etc...
- * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
- * faulted on a pte with its pkey=4.
- */
- u32 pkey = vma_pkey(vma);
- __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
- } else {
- __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
- }
- }
- static void
- do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
- vm_fault_t fault)
- {
- /* Kernel mode? Handle exceptions or die: */
- if (!user_mode(regs)) {
- kernelmode_fixup_or_oops(regs, error_code, address,
- SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
- return;
- }
- /* User-space => ok to do another page fault: */
- if (is_prefetch(regs, error_code, address))
- return;
- sanitize_error_code(address, &error_code);
- if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
- return;
- set_signal_archinfo(address, error_code);
- #ifdef CONFIG_MEMORY_FAILURE
- if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
- struct task_struct *tsk = current;
- unsigned lsb = 0;
- pr_err(
- "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
- tsk->comm, tsk->pid, address);
- if (fault & VM_FAULT_HWPOISON_LARGE)
- lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
- if (fault & VM_FAULT_HWPOISON)
- lsb = PAGE_SHIFT;
- force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
- return;
- }
- #endif
- force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
- }
- static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
- {
- if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
- return 0;
- if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
- return 0;
- return 1;
- }
- /*
- * Handle a spurious fault caused by a stale TLB entry.
- *
- * This allows us to lazily refresh the TLB when increasing the
- * permissions of a kernel page (RO -> RW or NX -> X). Doing it
- * eagerly is very expensive since that implies doing a full
- * cross-processor TLB flush, even if no stale TLB entries exist
- * on other processors.
- *
- * Spurious faults may only occur if the TLB contains an entry with
- * fewer permission than the page table entry. Non-present (P = 0)
- * and reserved bit (R = 1) faults are never spurious.
- *
- * There are no security implications to leaving a stale TLB when
- * increasing the permissions on a page.
- *
- * Returns non-zero if a spurious fault was handled, zero otherwise.
- *
- * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
- * (Optional Invalidation).
- */
- static noinline int
- spurious_kernel_fault(unsigned long error_code, unsigned long address)
- {
- pgd_t *pgd;
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- int ret;
- /*
- * Only writes to RO or instruction fetches from NX may cause
- * spurious faults.
- *
- * These could be from user or supervisor accesses but the TLB
- * is only lazily flushed after a kernel mapping protection
- * change, so user accesses are not expected to cause spurious
- * faults.
- */
- if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
- error_code != (X86_PF_INSTR | X86_PF_PROT))
- return 0;
- pgd = init_mm.pgd + pgd_index(address);
- if (!pgd_present(*pgd))
- return 0;
- p4d = p4d_offset(pgd, address);
- if (!p4d_present(*p4d))
- return 0;
- if (p4d_large(*p4d))
- return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
- pud = pud_offset(p4d, address);
- if (!pud_present(*pud))
- return 0;
- if (pud_large(*pud))
- return spurious_kernel_fault_check(error_code, (pte_t *) pud);
- pmd = pmd_offset(pud, address);
- if (!pmd_present(*pmd))
- return 0;
- if (pmd_large(*pmd))
- return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
- pte = pte_offset_kernel(pmd, address);
- if (!pte_present(*pte))
- return 0;
- ret = spurious_kernel_fault_check(error_code, pte);
- if (!ret)
- return 0;
- /*
- * Make sure we have permissions in PMD.
- * If not, then there's a bug in the page tables:
- */
- ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
- WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
- return ret;
- }
- NOKPROBE_SYMBOL(spurious_kernel_fault);
- int show_unhandled_signals = 1;
- static inline int
- access_error(unsigned long error_code, struct vm_area_struct *vma)
- {
- /* This is only called for the current mm, so: */
- bool foreign = false;
- /*
- * Read or write was blocked by protection keys. This is
- * always an unconditional error and can never result in
- * a follow-up action to resolve the fault, like a COW.
- */
- if (error_code & X86_PF_PK)
- return 1;
- /*
- * SGX hardware blocked the access. This usually happens
- * when the enclave memory contents have been destroyed, like
- * after a suspend/resume cycle. In any case, the kernel can't
- * fix the cause of the fault. Handle the fault as an access
- * error even in cases where no actual access violation
- * occurred. This allows userspace to rebuild the enclave in
- * response to the signal.
- */
- if (unlikely(error_code & X86_PF_SGX))
- return 1;
- /*
- * Make sure to check the VMA so that we do not perform
- * faults just to hit a X86_PF_PK as soon as we fill in a
- * page.
- */
- if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
- (error_code & X86_PF_INSTR), foreign))
- return 1;
- if (error_code & X86_PF_WRITE) {
- /* write, present and write, not present: */
- if (unlikely(!(vma->vm_flags & VM_WRITE)))
- return 1;
- return 0;
- }
- /* read, present: */
- if (unlikely(error_code & X86_PF_PROT))
- return 1;
- /* read, not present: */
- if (unlikely(!vma_is_accessible(vma)))
- return 1;
- return 0;
- }
- bool fault_in_kernel_space(unsigned long address)
- {
- /*
- * On 64-bit systems, the vsyscall page is at an address above
- * TASK_SIZE_MAX, but is not considered part of the kernel
- * address space.
- */
- if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
- return false;
- return address >= TASK_SIZE_MAX;
- }
- /*
- * Called for all faults where 'address' is part of the kernel address
- * space. Might get called for faults that originate from *code* that
- * ran in userspace or the kernel.
- */
- static void
- do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
- unsigned long address)
- {
- /*
- * Protection keys exceptions only happen on user pages. We
- * have no user pages in the kernel portion of the address
- * space, so do not expect them here.
- */
- WARN_ON_ONCE(hw_error_code & X86_PF_PK);
- #ifdef CONFIG_X86_32
- /*
- * We can fault-in kernel-space virtual memory on-demand. The
- * 'reference' page table is init_mm.pgd.
- *
- * NOTE! We MUST NOT take any locks for this case. We may
- * be in an interrupt or a critical region, and should
- * only copy the information from the master page table,
- * nothing more.
- *
- * Before doing this on-demand faulting, ensure that the
- * fault is not any of the following:
- * 1. A fault on a PTE with a reserved bit set.
- * 2. A fault caused by a user-mode access. (Do not demand-
- * fault kernel memory due to user-mode accesses).
- * 3. A fault caused by a page-level protection violation.
- * (A demand fault would be on a non-present page which
- * would have X86_PF_PROT==0).
- *
- * This is only needed to close a race condition on x86-32 in
- * the vmalloc mapping/unmapping code. See the comment above
- * vmalloc_fault() for details. On x86-64 the race does not
- * exist as the vmalloc mappings don't need to be synchronized
- * there.
- */
- if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
- if (vmalloc_fault(address) >= 0)
- return;
- }
- #endif
- if (is_f00f_bug(regs, hw_error_code, address))
- return;
- /* Was the fault spurious, caused by lazy TLB invalidation? */
- if (spurious_kernel_fault(hw_error_code, address))
- return;
- /* kprobes don't want to hook the spurious faults: */
- if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
- return;
- /*
- * Note, despite being a "bad area", there are quite a few
- * acceptable reasons to get here, such as erratum fixups
- * and handling kernel code that can fault, like get_user().
- *
- * Don't take the mm semaphore here. If we fixup a prefetch
- * fault we could otherwise deadlock:
- */
- bad_area_nosemaphore(regs, hw_error_code, address);
- }
- NOKPROBE_SYMBOL(do_kern_addr_fault);
- /*
- * Handle faults in the user portion of the address space. Nothing in here
- * should check X86_PF_USER without a specific justification: for almost
- * all purposes, we should treat a normal kernel access to user memory
- * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
- * The one exception is AC flag handling, which is, per the x86
- * architecture, special for WRUSS.
- */
- static inline
- void do_user_addr_fault(struct pt_regs *regs,
- unsigned long error_code,
- unsigned long address)
- {
- struct vm_area_struct *vma;
- struct task_struct *tsk;
- struct mm_struct *mm;
- vm_fault_t fault;
- unsigned int flags = FAULT_FLAG_DEFAULT;
- tsk = current;
- mm = tsk->mm;
- if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
- /*
- * Whoops, this is kernel mode code trying to execute from
- * user memory. Unless this is AMD erratum #93, which
- * corrupts RIP such that it looks like a user address,
- * this is unrecoverable. Don't even try to look up the
- * VMA or look for extable entries.
- */
- if (is_errata93(regs, address))
- return;
- page_fault_oops(regs, error_code, address);
- return;
- }
- /* kprobes don't want to hook the spurious faults: */
- if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
- return;
- /*
- * Reserved bits are never expected to be set on
- * entries in the user portion of the page tables.
- */
- if (unlikely(error_code & X86_PF_RSVD))
- pgtable_bad(regs, error_code, address);
- /*
- * If SMAP is on, check for invalid kernel (supervisor) access to user
- * pages in the user address space. The odd case here is WRUSS,
- * which, according to the preliminary documentation, does not respect
- * SMAP and will have the USER bit set so, in all cases, SMAP
- * enforcement appears to be consistent with the USER bit.
- */
- if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
- !(error_code & X86_PF_USER) &&
- !(regs->flags & X86_EFLAGS_AC))) {
- /*
- * No extable entry here. This was a kernel access to an
- * invalid pointer. get_kernel_nofault() will not get here.
- */
- page_fault_oops(regs, error_code, address);
- return;
- }
- /*
- * If we're in an interrupt, have no user context or are running
- * in a region with pagefaults disabled then we must not take the fault
- */
- if (unlikely(faulthandler_disabled() || !mm)) {
- bad_area_nosemaphore(regs, error_code, address);
- return;
- }
- /*
- * It's safe to allow irq's after cr2 has been saved and the
- * vmalloc fault has been handled.
- *
- * User-mode registers count as a user access even for any
- * potential system fault or CPU buglet:
- */
- if (user_mode(regs)) {
- local_irq_enable();
- flags |= FAULT_FLAG_USER;
- } else {
- if (regs->flags & X86_EFLAGS_IF)
- local_irq_enable();
- }
- perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
- if (error_code & X86_PF_WRITE)
- flags |= FAULT_FLAG_WRITE;
- if (error_code & X86_PF_INSTR)
- flags |= FAULT_FLAG_INSTRUCTION;
- #ifdef CONFIG_X86_64
- /*
- * Faults in the vsyscall page might need emulation. The
- * vsyscall page is at a high address (>PAGE_OFFSET), but is
- * considered to be part of the user address space.
- *
- * The vsyscall page does not have a "real" VMA, so do this
- * emulation before we go searching for VMAs.
- *
- * PKRU never rejects instruction fetches, so we don't need
- * to consider the PF_PK bit.
- */
- if (is_vsyscall_vaddr(address)) {
- if (emulate_vsyscall(error_code, regs, address))
- return;
- }
- #endif
- if (!(flags & FAULT_FLAG_USER))
- goto lock_mmap;
- vma = lock_vma_under_rcu(mm, address);
- if (!vma)
- goto lock_mmap;
- if (unlikely(access_error(error_code, vma))) {
- vma_end_read(vma);
- goto lock_mmap;
- }
- fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
- if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
- vma_end_read(vma);
- if (!(fault & VM_FAULT_RETRY)) {
- count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
- goto done;
- }
- count_vm_vma_lock_event(VMA_LOCK_RETRY);
- if (fault & VM_FAULT_MAJOR)
- flags |= FAULT_FLAG_TRIED;
- /* Quick path to respond to signals */
- if (fault_signal_pending(fault, regs)) {
- if (!user_mode(regs))
- kernelmode_fixup_or_oops(regs, error_code, address,
- SIGBUS, BUS_ADRERR,
- ARCH_DEFAULT_PKEY);
- return;
- }
- lock_mmap:
- retry:
- vma = lock_mm_and_find_vma(mm, address, regs);
- if (unlikely(!vma)) {
- bad_area_nosemaphore(regs, error_code, address);
- return;
- }
- /*
- * Ok, we have a good vm_area for this memory access, so
- * we can handle it..
- */
- if (unlikely(access_error(error_code, vma))) {
- bad_area_access_error(regs, error_code, address, vma);
- return;
- }
- /*
- * If for any reason at all we couldn't handle the fault,
- * make sure we exit gracefully rather than endlessly redo
- * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
- * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
- *
- * Note that handle_userfault() may also release and reacquire mmap_lock
- * (and not return with VM_FAULT_RETRY), when returning to userland to
- * repeat the page fault later with a VM_FAULT_NOPAGE retval
- * (potentially after handling any pending signal during the return to
- * userland). The return to userland is identified whenever
- * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
- */
- fault = handle_mm_fault(vma, address, flags, regs);
- if (fault_signal_pending(fault, regs)) {
- /*
- * Quick path to respond to signals. The core mm code
- * has unlocked the mm for us if we get here.
- */
- if (!user_mode(regs))
- kernelmode_fixup_or_oops(regs, error_code, address,
- SIGBUS, BUS_ADRERR,
- ARCH_DEFAULT_PKEY);
- return;
- }
- /* The fault is fully completed (including releasing mmap lock) */
- if (fault & VM_FAULT_COMPLETED)
- return;
- /*
- * If we need to retry the mmap_lock has already been released,
- * and if there is a fatal signal pending there is no guarantee
- * that we made any progress. Handle this case first.
- */
- if (unlikely(fault & VM_FAULT_RETRY)) {
- flags |= FAULT_FLAG_TRIED;
- goto retry;
- }
- mmap_read_unlock(mm);
- done:
- if (likely(!(fault & VM_FAULT_ERROR)))
- return;
- if (fatal_signal_pending(current) && !user_mode(regs)) {
- kernelmode_fixup_or_oops(regs, error_code, address,
- 0, 0, ARCH_DEFAULT_PKEY);
- return;
- }
- if (fault & VM_FAULT_OOM) {
- /* Kernel mode? Handle exceptions or die: */
- if (!user_mode(regs)) {
- kernelmode_fixup_or_oops(regs, error_code, address,
- SIGSEGV, SEGV_MAPERR,
- ARCH_DEFAULT_PKEY);
- return;
- }
- /*
- * We ran out of memory, call the OOM killer, and return the
- * userspace (which will retry the fault, or kill us if we got
- * oom-killed):
- */
- pagefault_out_of_memory();
- } else {
- if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
- VM_FAULT_HWPOISON_LARGE))
- do_sigbus(regs, error_code, address, fault);
- else if (fault & VM_FAULT_SIGSEGV)
- bad_area_nosemaphore(regs, error_code, address);
- else
- BUG();
- }
- }
- NOKPROBE_SYMBOL(do_user_addr_fault);
- static __always_inline void
- trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
- {
- if (!trace_pagefault_enabled())
- return;
- if (user_mode(regs))
- trace_page_fault_user(address, regs, error_code);
- else
- trace_page_fault_kernel(address, regs, error_code);
- }
- static __always_inline void
- handle_page_fault(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
- {
- trace_page_fault_entries(regs, error_code, address);
- if (unlikely(kmmio_fault(regs, address)))
- return;
- /* Was the fault on kernel-controlled part of the address space? */
- if (unlikely(fault_in_kernel_space(address))) {
- do_kern_addr_fault(regs, error_code, address);
- } else {
- do_user_addr_fault(regs, error_code, address);
- /*
- * User address page fault handling might have reenabled
- * interrupts. Fixing up all potential exit points of
- * do_user_addr_fault() and its leaf functions is just not
- * doable w/o creating an unholy mess or turning the code
- * upside down.
- */
- local_irq_disable();
- }
- }
- DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
- {
- unsigned long address = read_cr2();
- irqentry_state_t state;
- prefetchw(¤t->mm->mmap_lock);
- /*
- * KVM uses #PF vector to deliver 'page not present' events to guests
- * (asynchronous page fault mechanism). The event happens when a
- * userspace task is trying to access some valid (from guest's point of
- * view) memory which is not currently mapped by the host (e.g. the
- * memory is swapped out). Note, the corresponding "page ready" event
- * which is injected when the memory becomes available, is delivered via
- * an interrupt mechanism and not a #PF exception
- * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
- *
- * We are relying on the interrupted context being sane (valid RSP,
- * relevant locks not held, etc.), which is fine as long as the
- * interrupted context had IF=1. We are also relying on the KVM
- * async pf type field and CR2 being read consistently instead of
- * getting values from real and async page faults mixed up.
- *
- * Fingers crossed.
- *
- * The async #PF handling code takes care of idtentry handling
- * itself.
- */
- if (kvm_handle_async_pf(regs, (u32)address))
- return;
- /*
- * Entry handling for valid #PF from kernel mode is slightly
- * different: RCU is already watching and ct_irq_enter() must not
- * be invoked because a kernel fault on a user space address might
- * sleep.
- *
- * In case the fault hit a RCU idle region the conditional entry
- * code reenabled RCU to avoid subsequent wreckage which helps
- * debuggability.
- */
- state = irqentry_enter(regs);
- instrumentation_begin();
- handle_page_fault(regs, error_code, address);
- instrumentation_end();
- irqentry_exit(regs, state);
- }
|