poly_tan.c 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*---------------------------------------------------------------------------+
  3. | poly_tan.c |
  4. | |
  5. | Compute the tan of a FPU_REG, using a polynomial approximation. |
  6. | |
  7. | Copyright (C) 1992,1993,1994,1997,1999 |
  8. | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
  9. | Australia. E-mail [email protected] |
  10. | |
  11. | |
  12. +---------------------------------------------------------------------------*/
  13. #include "exception.h"
  14. #include "reg_constant.h"
  15. #include "fpu_emu.h"
  16. #include "fpu_system.h"
  17. #include "control_w.h"
  18. #include "poly.h"
  19. #define HiPOWERop 3 /* odd poly, positive terms */
  20. static const unsigned long long oddplterm[HiPOWERop] = {
  21. 0x0000000000000000LL,
  22. 0x0051a1cf08fca228LL,
  23. 0x0000000071284ff7LL
  24. };
  25. #define HiPOWERon 2 /* odd poly, negative terms */
  26. static const unsigned long long oddnegterm[HiPOWERon] = {
  27. 0x1291a9a184244e80LL,
  28. 0x0000583245819c21LL
  29. };
  30. #define HiPOWERep 2 /* even poly, positive terms */
  31. static const unsigned long long evenplterm[HiPOWERep] = {
  32. 0x0e848884b539e888LL,
  33. 0x00003c7f18b887daLL
  34. };
  35. #define HiPOWERen 2 /* even poly, negative terms */
  36. static const unsigned long long evennegterm[HiPOWERen] = {
  37. 0xf1f0200fd51569ccLL,
  38. 0x003afb46105c4432LL
  39. };
  40. static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
  41. /*--- poly_tan() ------------------------------------------------------------+
  42. | |
  43. +---------------------------------------------------------------------------*/
  44. void poly_tan(FPU_REG *st0_ptr)
  45. {
  46. long int exponent;
  47. int invert;
  48. Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
  49. argSignif, fix_up;
  50. unsigned long adj;
  51. exponent = exponent(st0_ptr);
  52. #ifdef PARANOID
  53. if (signnegative(st0_ptr)) { /* Can't hack a number < 0.0 */
  54. arith_invalid(0);
  55. return;
  56. } /* Need a positive number */
  57. #endif /* PARANOID */
  58. /* Split the problem into two domains, smaller and larger than pi/4 */
  59. if ((exponent == 0)
  60. || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
  61. /* The argument is greater than (approx) pi/4 */
  62. invert = 1;
  63. accum.lsw = 0;
  64. XSIG_LL(accum) = significand(st0_ptr);
  65. if (exponent == 0) {
  66. /* The argument is >= 1.0 */
  67. /* Put the binary point at the left. */
  68. XSIG_LL(accum) <<= 1;
  69. }
  70. /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
  71. XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
  72. /* This is a special case which arises due to rounding. */
  73. if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
  74. FPU_settag0(TAG_Valid);
  75. significand(st0_ptr) = 0x8a51e04daabda360LL;
  76. setexponent16(st0_ptr,
  77. (0x41 + EXTENDED_Ebias) | SIGN_Negative);
  78. return;
  79. }
  80. argSignif.lsw = accum.lsw;
  81. XSIG_LL(argSignif) = XSIG_LL(accum);
  82. exponent = -1 + norm_Xsig(&argSignif);
  83. } else {
  84. invert = 0;
  85. argSignif.lsw = 0;
  86. XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
  87. if (exponent < -1) {
  88. /* shift the argument right by the required places */
  89. if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
  90. 0x80000000U)
  91. XSIG_LL(accum)++; /* round up */
  92. }
  93. }
  94. XSIG_LL(argSq) = XSIG_LL(accum);
  95. argSq.lsw = accum.lsw;
  96. mul_Xsig_Xsig(&argSq, &argSq);
  97. XSIG_LL(argSqSq) = XSIG_LL(argSq);
  98. argSqSq.lsw = argSq.lsw;
  99. mul_Xsig_Xsig(&argSqSq, &argSqSq);
  100. /* Compute the negative terms for the numerator polynomial */
  101. accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
  102. polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
  103. HiPOWERon - 1);
  104. mul_Xsig_Xsig(&accumulatoro, &argSq);
  105. negate_Xsig(&accumulatoro);
  106. /* Add the positive terms */
  107. polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
  108. HiPOWERop - 1);
  109. /* Compute the positive terms for the denominator polynomial */
  110. accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
  111. polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
  112. HiPOWERep - 1);
  113. mul_Xsig_Xsig(&accumulatore, &argSq);
  114. negate_Xsig(&accumulatore);
  115. /* Add the negative terms */
  116. polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
  117. HiPOWERen - 1);
  118. /* Multiply by arg^2 */
  119. mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
  120. mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
  121. /* de-normalize and divide by 2 */
  122. shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
  123. negate_Xsig(&accumulatore); /* This does 1 - accumulator */
  124. /* Now find the ratio. */
  125. if (accumulatore.msw == 0) {
  126. /* accumulatoro must contain 1.0 here, (actually, 0) but it
  127. really doesn't matter what value we use because it will
  128. have negligible effect in later calculations
  129. */
  130. XSIG_LL(accum) = 0x8000000000000000LL;
  131. accum.lsw = 0;
  132. } else {
  133. div_Xsig(&accumulatoro, &accumulatore, &accum);
  134. }
  135. /* Multiply by 1/3 * arg^3 */
  136. mul64_Xsig(&accum, &XSIG_LL(argSignif));
  137. mul64_Xsig(&accum, &XSIG_LL(argSignif));
  138. mul64_Xsig(&accum, &XSIG_LL(argSignif));
  139. mul64_Xsig(&accum, &twothirds);
  140. shr_Xsig(&accum, -2 * (exponent + 1));
  141. /* tan(arg) = arg + accum */
  142. add_two_Xsig(&accum, &argSignif, &exponent);
  143. if (invert) {
  144. /* We now have the value of tan(pi_2 - arg) where pi_2 is an
  145. approximation for pi/2
  146. */
  147. /* The next step is to fix the answer to compensate for the
  148. error due to the approximation used for pi/2
  149. */
  150. /* This is (approx) delta, the error in our approx for pi/2
  151. (see above). It has an exponent of -65
  152. */
  153. XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
  154. fix_up.lsw = 0;
  155. if (exponent == 0)
  156. adj = 0xffffffff; /* We want approx 1.0 here, but
  157. this is close enough. */
  158. else if (exponent > -30) {
  159. adj = accum.msw >> -(exponent + 1); /* tan */
  160. adj = mul_32_32(adj, adj); /* tan^2 */
  161. } else
  162. adj = 0;
  163. adj = mul_32_32(0x898cc517, adj); /* delta * tan^2 */
  164. fix_up.msw += adj;
  165. if (!(fix_up.msw & 0x80000000)) { /* did fix_up overflow ? */
  166. /* Yes, we need to add an msb */
  167. shr_Xsig(&fix_up, 1);
  168. fix_up.msw |= 0x80000000;
  169. shr_Xsig(&fix_up, 64 + exponent);
  170. } else
  171. shr_Xsig(&fix_up, 65 + exponent);
  172. add_two_Xsig(&accum, &fix_up, &exponent);
  173. /* accum now contains tan(pi/2 - arg).
  174. Use tan(arg) = 1.0 / tan(pi/2 - arg)
  175. */
  176. accumulatoro.lsw = accumulatoro.midw = 0;
  177. accumulatoro.msw = 0x80000000;
  178. div_Xsig(&accumulatoro, &accum, &accum);
  179. exponent = -exponent - 1;
  180. }
  181. /* Transfer the result */
  182. round_Xsig(&accum);
  183. FPU_settag0(TAG_Valid);
  184. significand(st0_ptr) = XSIG_LL(accum);
  185. setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */
  186. }