sev.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Kernel-based Virtual Machine driver for Linux
  4. *
  5. * AMD SVM-SEV support
  6. *
  7. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  8. */
  9. #include <linux/kvm_types.h>
  10. #include <linux/kvm_host.h>
  11. #include <linux/kernel.h>
  12. #include <linux/highmem.h>
  13. #include <linux/psp-sev.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/swap.h>
  16. #include <linux/misc_cgroup.h>
  17. #include <linux/processor.h>
  18. #include <linux/trace_events.h>
  19. #include <asm/pkru.h>
  20. #include <asm/trapnr.h>
  21. #include <asm/fpu/xcr.h>
  22. #include "mmu.h"
  23. #include "x86.h"
  24. #include "svm.h"
  25. #include "svm_ops.h"
  26. #include "cpuid.h"
  27. #include "trace.h"
  28. #ifndef CONFIG_KVM_AMD_SEV
  29. /*
  30. * When this config is not defined, SEV feature is not supported and APIs in
  31. * this file are not used but this file still gets compiled into the KVM AMD
  32. * module.
  33. *
  34. * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
  35. * misc_res_type {} defined in linux/misc_cgroup.h.
  36. *
  37. * Below macros allow compilation to succeed.
  38. */
  39. #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
  40. #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
  41. #endif
  42. #ifdef CONFIG_KVM_AMD_SEV
  43. /* enable/disable SEV support */
  44. static bool sev_enabled = true;
  45. module_param_named(sev, sev_enabled, bool, 0444);
  46. /* enable/disable SEV-ES support */
  47. static bool sev_es_enabled = true;
  48. module_param_named(sev_es, sev_es_enabled, bool, 0444);
  49. #else
  50. #define sev_enabled false
  51. #define sev_es_enabled false
  52. #endif /* CONFIG_KVM_AMD_SEV */
  53. static u8 sev_enc_bit;
  54. static DECLARE_RWSEM(sev_deactivate_lock);
  55. static DEFINE_MUTEX(sev_bitmap_lock);
  56. unsigned int max_sev_asid;
  57. static unsigned int min_sev_asid;
  58. static unsigned long sev_me_mask;
  59. static unsigned int nr_asids;
  60. static unsigned long *sev_asid_bitmap;
  61. static unsigned long *sev_reclaim_asid_bitmap;
  62. struct enc_region {
  63. struct list_head list;
  64. unsigned long npages;
  65. struct page **pages;
  66. unsigned long uaddr;
  67. unsigned long size;
  68. };
  69. /* Called with the sev_bitmap_lock held, or on shutdown */
  70. static int sev_flush_asids(int min_asid, int max_asid)
  71. {
  72. int ret, asid, error = 0;
  73. /* Check if there are any ASIDs to reclaim before performing a flush */
  74. asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
  75. if (asid > max_asid)
  76. return -EBUSY;
  77. /*
  78. * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
  79. * so it must be guarded.
  80. */
  81. down_write(&sev_deactivate_lock);
  82. wbinvd_on_all_cpus();
  83. ret = sev_guest_df_flush(&error);
  84. up_write(&sev_deactivate_lock);
  85. if (ret)
  86. pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
  87. return ret;
  88. }
  89. static inline bool is_mirroring_enc_context(struct kvm *kvm)
  90. {
  91. return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
  92. }
  93. /* Must be called with the sev_bitmap_lock held */
  94. static bool __sev_recycle_asids(int min_asid, int max_asid)
  95. {
  96. if (sev_flush_asids(min_asid, max_asid))
  97. return false;
  98. /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
  99. bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
  100. nr_asids);
  101. bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
  102. return true;
  103. }
  104. static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
  105. {
  106. enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
  107. return misc_cg_try_charge(type, sev->misc_cg, 1);
  108. }
  109. static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
  110. {
  111. enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
  112. misc_cg_uncharge(type, sev->misc_cg, 1);
  113. }
  114. static int sev_asid_new(struct kvm_sev_info *sev)
  115. {
  116. int asid, min_asid, max_asid, ret;
  117. bool retry = true;
  118. WARN_ON(sev->misc_cg);
  119. sev->misc_cg = get_current_misc_cg();
  120. ret = sev_misc_cg_try_charge(sev);
  121. if (ret) {
  122. put_misc_cg(sev->misc_cg);
  123. sev->misc_cg = NULL;
  124. return ret;
  125. }
  126. mutex_lock(&sev_bitmap_lock);
  127. /*
  128. * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
  129. * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
  130. */
  131. min_asid = sev->es_active ? 1 : min_sev_asid;
  132. max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
  133. again:
  134. asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
  135. if (asid > max_asid) {
  136. if (retry && __sev_recycle_asids(min_asid, max_asid)) {
  137. retry = false;
  138. goto again;
  139. }
  140. mutex_unlock(&sev_bitmap_lock);
  141. ret = -EBUSY;
  142. goto e_uncharge;
  143. }
  144. __set_bit(asid, sev_asid_bitmap);
  145. mutex_unlock(&sev_bitmap_lock);
  146. return asid;
  147. e_uncharge:
  148. sev_misc_cg_uncharge(sev);
  149. put_misc_cg(sev->misc_cg);
  150. sev->misc_cg = NULL;
  151. return ret;
  152. }
  153. static int sev_get_asid(struct kvm *kvm)
  154. {
  155. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  156. return sev->asid;
  157. }
  158. static void sev_asid_free(struct kvm_sev_info *sev)
  159. {
  160. struct svm_cpu_data *sd;
  161. int cpu;
  162. mutex_lock(&sev_bitmap_lock);
  163. __set_bit(sev->asid, sev_reclaim_asid_bitmap);
  164. for_each_possible_cpu(cpu) {
  165. sd = per_cpu_ptr(&svm_data, cpu);
  166. sd->sev_vmcbs[sev->asid] = NULL;
  167. }
  168. mutex_unlock(&sev_bitmap_lock);
  169. sev_misc_cg_uncharge(sev);
  170. put_misc_cg(sev->misc_cg);
  171. sev->misc_cg = NULL;
  172. }
  173. static void sev_decommission(unsigned int handle)
  174. {
  175. struct sev_data_decommission decommission;
  176. if (!handle)
  177. return;
  178. decommission.handle = handle;
  179. sev_guest_decommission(&decommission, NULL);
  180. }
  181. static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
  182. {
  183. struct sev_data_deactivate deactivate;
  184. if (!handle)
  185. return;
  186. deactivate.handle = handle;
  187. /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
  188. down_read(&sev_deactivate_lock);
  189. sev_guest_deactivate(&deactivate, NULL);
  190. up_read(&sev_deactivate_lock);
  191. sev_decommission(handle);
  192. }
  193. static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
  194. {
  195. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  196. int asid, ret;
  197. if (kvm->created_vcpus)
  198. return -EINVAL;
  199. ret = -EBUSY;
  200. if (unlikely(sev->active))
  201. return ret;
  202. sev->active = true;
  203. sev->es_active = argp->id == KVM_SEV_ES_INIT;
  204. asid = sev_asid_new(sev);
  205. if (asid < 0)
  206. goto e_no_asid;
  207. sev->asid = asid;
  208. ret = sev_platform_init(&argp->error);
  209. if (ret)
  210. goto e_free;
  211. INIT_LIST_HEAD(&sev->regions_list);
  212. INIT_LIST_HEAD(&sev->mirror_vms);
  213. kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
  214. return 0;
  215. e_free:
  216. sev_asid_free(sev);
  217. sev->asid = 0;
  218. e_no_asid:
  219. sev->es_active = false;
  220. sev->active = false;
  221. return ret;
  222. }
  223. static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
  224. {
  225. struct sev_data_activate activate;
  226. int asid = sev_get_asid(kvm);
  227. int ret;
  228. /* activate ASID on the given handle */
  229. activate.handle = handle;
  230. activate.asid = asid;
  231. ret = sev_guest_activate(&activate, error);
  232. return ret;
  233. }
  234. static int __sev_issue_cmd(int fd, int id, void *data, int *error)
  235. {
  236. struct fd f;
  237. int ret;
  238. f = fdget(fd);
  239. if (!f.file)
  240. return -EBADF;
  241. ret = sev_issue_cmd_external_user(f.file, id, data, error);
  242. fdput(f);
  243. return ret;
  244. }
  245. static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
  246. {
  247. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  248. return __sev_issue_cmd(sev->fd, id, data, error);
  249. }
  250. static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
  251. {
  252. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  253. struct sev_data_launch_start start;
  254. struct kvm_sev_launch_start params;
  255. void *dh_blob, *session_blob;
  256. int *error = &argp->error;
  257. int ret;
  258. if (!sev_guest(kvm))
  259. return -ENOTTY;
  260. if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
  261. return -EFAULT;
  262. memset(&start, 0, sizeof(start));
  263. dh_blob = NULL;
  264. if (params.dh_uaddr) {
  265. dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
  266. if (IS_ERR(dh_blob))
  267. return PTR_ERR(dh_blob);
  268. start.dh_cert_address = __sme_set(__pa(dh_blob));
  269. start.dh_cert_len = params.dh_len;
  270. }
  271. session_blob = NULL;
  272. if (params.session_uaddr) {
  273. session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
  274. if (IS_ERR(session_blob)) {
  275. ret = PTR_ERR(session_blob);
  276. goto e_free_dh;
  277. }
  278. start.session_address = __sme_set(__pa(session_blob));
  279. start.session_len = params.session_len;
  280. }
  281. start.handle = params.handle;
  282. start.policy = params.policy;
  283. /* create memory encryption context */
  284. ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
  285. if (ret)
  286. goto e_free_session;
  287. /* Bind ASID to this guest */
  288. ret = sev_bind_asid(kvm, start.handle, error);
  289. if (ret) {
  290. sev_decommission(start.handle);
  291. goto e_free_session;
  292. }
  293. /* return handle to userspace */
  294. params.handle = start.handle;
  295. if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
  296. sev_unbind_asid(kvm, start.handle);
  297. ret = -EFAULT;
  298. goto e_free_session;
  299. }
  300. sev->handle = start.handle;
  301. sev->fd = argp->sev_fd;
  302. e_free_session:
  303. kfree(session_blob);
  304. e_free_dh:
  305. kfree(dh_blob);
  306. return ret;
  307. }
  308. static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
  309. unsigned long ulen, unsigned long *n,
  310. int write)
  311. {
  312. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  313. unsigned long npages, size;
  314. int npinned;
  315. unsigned long locked, lock_limit;
  316. struct page **pages;
  317. unsigned long first, last;
  318. int ret;
  319. lockdep_assert_held(&kvm->lock);
  320. if (ulen == 0 || uaddr + ulen < uaddr)
  321. return ERR_PTR(-EINVAL);
  322. /* Calculate number of pages. */
  323. first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
  324. last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
  325. npages = (last - first + 1);
  326. locked = sev->pages_locked + npages;
  327. lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
  328. if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
  329. pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
  330. return ERR_PTR(-ENOMEM);
  331. }
  332. if (WARN_ON_ONCE(npages > INT_MAX))
  333. return ERR_PTR(-EINVAL);
  334. /* Avoid using vmalloc for smaller buffers. */
  335. size = npages * sizeof(struct page *);
  336. if (size > PAGE_SIZE)
  337. pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
  338. else
  339. pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
  340. if (!pages)
  341. return ERR_PTR(-ENOMEM);
  342. /* Pin the user virtual address. */
  343. npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
  344. if (npinned != npages) {
  345. pr_err("SEV: Failure locking %lu pages.\n", npages);
  346. ret = -ENOMEM;
  347. goto err;
  348. }
  349. *n = npages;
  350. sev->pages_locked = locked;
  351. return pages;
  352. err:
  353. if (npinned > 0)
  354. unpin_user_pages(pages, npinned);
  355. kvfree(pages);
  356. return ERR_PTR(ret);
  357. }
  358. static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
  359. unsigned long npages)
  360. {
  361. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  362. unpin_user_pages(pages, npages);
  363. kvfree(pages);
  364. sev->pages_locked -= npages;
  365. }
  366. static void sev_clflush_pages(struct page *pages[], unsigned long npages)
  367. {
  368. uint8_t *page_virtual;
  369. unsigned long i;
  370. if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
  371. pages == NULL)
  372. return;
  373. for (i = 0; i < npages; i++) {
  374. page_virtual = kmap_atomic(pages[i]);
  375. clflush_cache_range(page_virtual, PAGE_SIZE);
  376. kunmap_atomic(page_virtual);
  377. cond_resched();
  378. }
  379. }
  380. static unsigned long get_num_contig_pages(unsigned long idx,
  381. struct page **inpages, unsigned long npages)
  382. {
  383. unsigned long paddr, next_paddr;
  384. unsigned long i = idx + 1, pages = 1;
  385. /* find the number of contiguous pages starting from idx */
  386. paddr = __sme_page_pa(inpages[idx]);
  387. while (i < npages) {
  388. next_paddr = __sme_page_pa(inpages[i++]);
  389. if ((paddr + PAGE_SIZE) == next_paddr) {
  390. pages++;
  391. paddr = next_paddr;
  392. continue;
  393. }
  394. break;
  395. }
  396. return pages;
  397. }
  398. static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
  399. {
  400. unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
  401. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  402. struct kvm_sev_launch_update_data params;
  403. struct sev_data_launch_update_data data;
  404. struct page **inpages;
  405. int ret;
  406. if (!sev_guest(kvm))
  407. return -ENOTTY;
  408. if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
  409. return -EFAULT;
  410. vaddr = params.uaddr;
  411. size = params.len;
  412. vaddr_end = vaddr + size;
  413. /* Lock the user memory. */
  414. inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
  415. if (IS_ERR(inpages))
  416. return PTR_ERR(inpages);
  417. /*
  418. * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
  419. * place; the cache may contain the data that was written unencrypted.
  420. */
  421. sev_clflush_pages(inpages, npages);
  422. data.reserved = 0;
  423. data.handle = sev->handle;
  424. for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
  425. int offset, len;
  426. /*
  427. * If the user buffer is not page-aligned, calculate the offset
  428. * within the page.
  429. */
  430. offset = vaddr & (PAGE_SIZE - 1);
  431. /* Calculate the number of pages that can be encrypted in one go. */
  432. pages = get_num_contig_pages(i, inpages, npages);
  433. len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
  434. data.len = len;
  435. data.address = __sme_page_pa(inpages[i]) + offset;
  436. ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
  437. if (ret)
  438. goto e_unpin;
  439. size -= len;
  440. next_vaddr = vaddr + len;
  441. }
  442. e_unpin:
  443. /* content of memory is updated, mark pages dirty */
  444. for (i = 0; i < npages; i++) {
  445. set_page_dirty_lock(inpages[i]);
  446. mark_page_accessed(inpages[i]);
  447. }
  448. /* unlock the user pages */
  449. sev_unpin_memory(kvm, inpages, npages);
  450. return ret;
  451. }
  452. static int sev_es_sync_vmsa(struct vcpu_svm *svm)
  453. {
  454. struct sev_es_save_area *save = svm->sev_es.vmsa;
  455. /* Check some debug related fields before encrypting the VMSA */
  456. if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
  457. return -EINVAL;
  458. /*
  459. * SEV-ES will use a VMSA that is pointed to by the VMCB, not
  460. * the traditional VMSA that is part of the VMCB. Copy the
  461. * traditional VMSA as it has been built so far (in prep
  462. * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
  463. */
  464. memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
  465. /* Sync registgers */
  466. save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
  467. save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
  468. save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  469. save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
  470. save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
  471. save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
  472. save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
  473. save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
  474. #ifdef CONFIG_X86_64
  475. save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
  476. save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
  477. save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
  478. save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
  479. save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
  480. save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
  481. save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
  482. save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
  483. #endif
  484. save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
  485. /* Sync some non-GPR registers before encrypting */
  486. save->xcr0 = svm->vcpu.arch.xcr0;
  487. save->pkru = svm->vcpu.arch.pkru;
  488. save->xss = svm->vcpu.arch.ia32_xss;
  489. save->dr6 = svm->vcpu.arch.dr6;
  490. pr_debug("Virtual Machine Save Area (VMSA):\n");
  491. print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
  492. return 0;
  493. }
  494. static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
  495. int *error)
  496. {
  497. struct sev_data_launch_update_vmsa vmsa;
  498. struct vcpu_svm *svm = to_svm(vcpu);
  499. int ret;
  500. /* Perform some pre-encryption checks against the VMSA */
  501. ret = sev_es_sync_vmsa(svm);
  502. if (ret)
  503. return ret;
  504. /*
  505. * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
  506. * the VMSA memory content (i.e it will write the same memory region
  507. * with the guest's key), so invalidate it first.
  508. */
  509. clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
  510. vmsa.reserved = 0;
  511. vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
  512. vmsa.address = __sme_pa(svm->sev_es.vmsa);
  513. vmsa.len = PAGE_SIZE;
  514. ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
  515. if (ret)
  516. return ret;
  517. vcpu->arch.guest_state_protected = true;
  518. return 0;
  519. }
  520. static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
  521. {
  522. struct kvm_vcpu *vcpu;
  523. unsigned long i;
  524. int ret;
  525. if (!sev_es_guest(kvm))
  526. return -ENOTTY;
  527. kvm_for_each_vcpu(i, vcpu, kvm) {
  528. ret = mutex_lock_killable(&vcpu->mutex);
  529. if (ret)
  530. return ret;
  531. ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
  532. mutex_unlock(&vcpu->mutex);
  533. if (ret)
  534. return ret;
  535. }
  536. return 0;
  537. }
  538. static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
  539. {
  540. void __user *measure = (void __user *)(uintptr_t)argp->data;
  541. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  542. struct sev_data_launch_measure data;
  543. struct kvm_sev_launch_measure params;
  544. void __user *p = NULL;
  545. void *blob = NULL;
  546. int ret;
  547. if (!sev_guest(kvm))
  548. return -ENOTTY;
  549. if (copy_from_user(&params, measure, sizeof(params)))
  550. return -EFAULT;
  551. memset(&data, 0, sizeof(data));
  552. /* User wants to query the blob length */
  553. if (!params.len)
  554. goto cmd;
  555. p = (void __user *)(uintptr_t)params.uaddr;
  556. if (p) {
  557. if (params.len > SEV_FW_BLOB_MAX_SIZE)
  558. return -EINVAL;
  559. blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
  560. if (!blob)
  561. return -ENOMEM;
  562. data.address = __psp_pa(blob);
  563. data.len = params.len;
  564. }
  565. cmd:
  566. data.handle = sev->handle;
  567. ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
  568. /*
  569. * If we query the session length, FW responded with expected data.
  570. */
  571. if (!params.len)
  572. goto done;
  573. if (ret)
  574. goto e_free_blob;
  575. if (blob) {
  576. if (copy_to_user(p, blob, params.len))
  577. ret = -EFAULT;
  578. }
  579. done:
  580. params.len = data.len;
  581. if (copy_to_user(measure, &params, sizeof(params)))
  582. ret = -EFAULT;
  583. e_free_blob:
  584. kfree(blob);
  585. return ret;
  586. }
  587. static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
  588. {
  589. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  590. struct sev_data_launch_finish data;
  591. if (!sev_guest(kvm))
  592. return -ENOTTY;
  593. data.handle = sev->handle;
  594. return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
  595. }
  596. static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
  597. {
  598. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  599. struct kvm_sev_guest_status params;
  600. struct sev_data_guest_status data;
  601. int ret;
  602. if (!sev_guest(kvm))
  603. return -ENOTTY;
  604. memset(&data, 0, sizeof(data));
  605. data.handle = sev->handle;
  606. ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
  607. if (ret)
  608. return ret;
  609. params.policy = data.policy;
  610. params.state = data.state;
  611. params.handle = data.handle;
  612. if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
  613. ret = -EFAULT;
  614. return ret;
  615. }
  616. static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
  617. unsigned long dst, int size,
  618. int *error, bool enc)
  619. {
  620. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  621. struct sev_data_dbg data;
  622. data.reserved = 0;
  623. data.handle = sev->handle;
  624. data.dst_addr = dst;
  625. data.src_addr = src;
  626. data.len = size;
  627. return sev_issue_cmd(kvm,
  628. enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
  629. &data, error);
  630. }
  631. static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
  632. unsigned long dst_paddr, int sz, int *err)
  633. {
  634. int offset;
  635. /*
  636. * Its safe to read more than we are asked, caller should ensure that
  637. * destination has enough space.
  638. */
  639. offset = src_paddr & 15;
  640. src_paddr = round_down(src_paddr, 16);
  641. sz = round_up(sz + offset, 16);
  642. return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
  643. }
  644. static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
  645. void __user *dst_uaddr,
  646. unsigned long dst_paddr,
  647. int size, int *err)
  648. {
  649. struct page *tpage = NULL;
  650. int ret, offset;
  651. /* if inputs are not 16-byte then use intermediate buffer */
  652. if (!IS_ALIGNED(dst_paddr, 16) ||
  653. !IS_ALIGNED(paddr, 16) ||
  654. !IS_ALIGNED(size, 16)) {
  655. tpage = (void *)alloc_page(GFP_KERNEL | __GFP_ZERO);
  656. if (!tpage)
  657. return -ENOMEM;
  658. dst_paddr = __sme_page_pa(tpage);
  659. }
  660. ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
  661. if (ret)
  662. goto e_free;
  663. if (tpage) {
  664. offset = paddr & 15;
  665. if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
  666. ret = -EFAULT;
  667. }
  668. e_free:
  669. if (tpage)
  670. __free_page(tpage);
  671. return ret;
  672. }
  673. static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
  674. void __user *vaddr,
  675. unsigned long dst_paddr,
  676. void __user *dst_vaddr,
  677. int size, int *error)
  678. {
  679. struct page *src_tpage = NULL;
  680. struct page *dst_tpage = NULL;
  681. int ret, len = size;
  682. /* If source buffer is not aligned then use an intermediate buffer */
  683. if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
  684. src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
  685. if (!src_tpage)
  686. return -ENOMEM;
  687. if (copy_from_user(page_address(src_tpage), vaddr, size)) {
  688. __free_page(src_tpage);
  689. return -EFAULT;
  690. }
  691. paddr = __sme_page_pa(src_tpage);
  692. }
  693. /*
  694. * If destination buffer or length is not aligned then do read-modify-write:
  695. * - decrypt destination in an intermediate buffer
  696. * - copy the source buffer in an intermediate buffer
  697. * - use the intermediate buffer as source buffer
  698. */
  699. if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
  700. int dst_offset;
  701. dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
  702. if (!dst_tpage) {
  703. ret = -ENOMEM;
  704. goto e_free;
  705. }
  706. ret = __sev_dbg_decrypt(kvm, dst_paddr,
  707. __sme_page_pa(dst_tpage), size, error);
  708. if (ret)
  709. goto e_free;
  710. /*
  711. * If source is kernel buffer then use memcpy() otherwise
  712. * copy_from_user().
  713. */
  714. dst_offset = dst_paddr & 15;
  715. if (src_tpage)
  716. memcpy(page_address(dst_tpage) + dst_offset,
  717. page_address(src_tpage), size);
  718. else {
  719. if (copy_from_user(page_address(dst_tpage) + dst_offset,
  720. vaddr, size)) {
  721. ret = -EFAULT;
  722. goto e_free;
  723. }
  724. }
  725. paddr = __sme_page_pa(dst_tpage);
  726. dst_paddr = round_down(dst_paddr, 16);
  727. len = round_up(size, 16);
  728. }
  729. ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
  730. e_free:
  731. if (src_tpage)
  732. __free_page(src_tpage);
  733. if (dst_tpage)
  734. __free_page(dst_tpage);
  735. return ret;
  736. }
  737. static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
  738. {
  739. unsigned long vaddr, vaddr_end, next_vaddr;
  740. unsigned long dst_vaddr;
  741. struct page **src_p, **dst_p;
  742. struct kvm_sev_dbg debug;
  743. unsigned long n;
  744. unsigned int size;
  745. int ret;
  746. if (!sev_guest(kvm))
  747. return -ENOTTY;
  748. if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
  749. return -EFAULT;
  750. if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
  751. return -EINVAL;
  752. if (!debug.dst_uaddr)
  753. return -EINVAL;
  754. vaddr = debug.src_uaddr;
  755. size = debug.len;
  756. vaddr_end = vaddr + size;
  757. dst_vaddr = debug.dst_uaddr;
  758. for (; vaddr < vaddr_end; vaddr = next_vaddr) {
  759. int len, s_off, d_off;
  760. /* lock userspace source and destination page */
  761. src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
  762. if (IS_ERR(src_p))
  763. return PTR_ERR(src_p);
  764. dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
  765. if (IS_ERR(dst_p)) {
  766. sev_unpin_memory(kvm, src_p, n);
  767. return PTR_ERR(dst_p);
  768. }
  769. /*
  770. * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
  771. * the pages; flush the destination too so that future accesses do not
  772. * see stale data.
  773. */
  774. sev_clflush_pages(src_p, 1);
  775. sev_clflush_pages(dst_p, 1);
  776. /*
  777. * Since user buffer may not be page aligned, calculate the
  778. * offset within the page.
  779. */
  780. s_off = vaddr & ~PAGE_MASK;
  781. d_off = dst_vaddr & ~PAGE_MASK;
  782. len = min_t(size_t, (PAGE_SIZE - s_off), size);
  783. if (dec)
  784. ret = __sev_dbg_decrypt_user(kvm,
  785. __sme_page_pa(src_p[0]) + s_off,
  786. (void __user *)dst_vaddr,
  787. __sme_page_pa(dst_p[0]) + d_off,
  788. len, &argp->error);
  789. else
  790. ret = __sev_dbg_encrypt_user(kvm,
  791. __sme_page_pa(src_p[0]) + s_off,
  792. (void __user *)vaddr,
  793. __sme_page_pa(dst_p[0]) + d_off,
  794. (void __user *)dst_vaddr,
  795. len, &argp->error);
  796. sev_unpin_memory(kvm, src_p, n);
  797. sev_unpin_memory(kvm, dst_p, n);
  798. if (ret)
  799. goto err;
  800. next_vaddr = vaddr + len;
  801. dst_vaddr = dst_vaddr + len;
  802. size -= len;
  803. }
  804. err:
  805. return ret;
  806. }
  807. static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
  808. {
  809. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  810. struct sev_data_launch_secret data;
  811. struct kvm_sev_launch_secret params;
  812. struct page **pages;
  813. void *blob, *hdr;
  814. unsigned long n, i;
  815. int ret, offset;
  816. if (!sev_guest(kvm))
  817. return -ENOTTY;
  818. if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
  819. return -EFAULT;
  820. pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
  821. if (IS_ERR(pages))
  822. return PTR_ERR(pages);
  823. /*
  824. * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
  825. * place; the cache may contain the data that was written unencrypted.
  826. */
  827. sev_clflush_pages(pages, n);
  828. /*
  829. * The secret must be copied into contiguous memory region, lets verify
  830. * that userspace memory pages are contiguous before we issue command.
  831. */
  832. if (get_num_contig_pages(0, pages, n) != n) {
  833. ret = -EINVAL;
  834. goto e_unpin_memory;
  835. }
  836. memset(&data, 0, sizeof(data));
  837. offset = params.guest_uaddr & (PAGE_SIZE - 1);
  838. data.guest_address = __sme_page_pa(pages[0]) + offset;
  839. data.guest_len = params.guest_len;
  840. blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
  841. if (IS_ERR(blob)) {
  842. ret = PTR_ERR(blob);
  843. goto e_unpin_memory;
  844. }
  845. data.trans_address = __psp_pa(blob);
  846. data.trans_len = params.trans_len;
  847. hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
  848. if (IS_ERR(hdr)) {
  849. ret = PTR_ERR(hdr);
  850. goto e_free_blob;
  851. }
  852. data.hdr_address = __psp_pa(hdr);
  853. data.hdr_len = params.hdr_len;
  854. data.handle = sev->handle;
  855. ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
  856. kfree(hdr);
  857. e_free_blob:
  858. kfree(blob);
  859. e_unpin_memory:
  860. /* content of memory is updated, mark pages dirty */
  861. for (i = 0; i < n; i++) {
  862. set_page_dirty_lock(pages[i]);
  863. mark_page_accessed(pages[i]);
  864. }
  865. sev_unpin_memory(kvm, pages, n);
  866. return ret;
  867. }
  868. static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
  869. {
  870. void __user *report = (void __user *)(uintptr_t)argp->data;
  871. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  872. struct sev_data_attestation_report data;
  873. struct kvm_sev_attestation_report params;
  874. void __user *p;
  875. void *blob = NULL;
  876. int ret;
  877. if (!sev_guest(kvm))
  878. return -ENOTTY;
  879. if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
  880. return -EFAULT;
  881. memset(&data, 0, sizeof(data));
  882. /* User wants to query the blob length */
  883. if (!params.len)
  884. goto cmd;
  885. p = (void __user *)(uintptr_t)params.uaddr;
  886. if (p) {
  887. if (params.len > SEV_FW_BLOB_MAX_SIZE)
  888. return -EINVAL;
  889. blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
  890. if (!blob)
  891. return -ENOMEM;
  892. data.address = __psp_pa(blob);
  893. data.len = params.len;
  894. memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
  895. }
  896. cmd:
  897. data.handle = sev->handle;
  898. ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
  899. /*
  900. * If we query the session length, FW responded with expected data.
  901. */
  902. if (!params.len)
  903. goto done;
  904. if (ret)
  905. goto e_free_blob;
  906. if (blob) {
  907. if (copy_to_user(p, blob, params.len))
  908. ret = -EFAULT;
  909. }
  910. done:
  911. params.len = data.len;
  912. if (copy_to_user(report, &params, sizeof(params)))
  913. ret = -EFAULT;
  914. e_free_blob:
  915. kfree(blob);
  916. return ret;
  917. }
  918. /* Userspace wants to query session length. */
  919. static int
  920. __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
  921. struct kvm_sev_send_start *params)
  922. {
  923. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  924. struct sev_data_send_start data;
  925. int ret;
  926. memset(&data, 0, sizeof(data));
  927. data.handle = sev->handle;
  928. ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
  929. params->session_len = data.session_len;
  930. if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
  931. sizeof(struct kvm_sev_send_start)))
  932. ret = -EFAULT;
  933. return ret;
  934. }
  935. static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
  936. {
  937. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  938. struct sev_data_send_start data;
  939. struct kvm_sev_send_start params;
  940. void *amd_certs, *session_data;
  941. void *pdh_cert, *plat_certs;
  942. int ret;
  943. if (!sev_guest(kvm))
  944. return -ENOTTY;
  945. if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
  946. sizeof(struct kvm_sev_send_start)))
  947. return -EFAULT;
  948. /* if session_len is zero, userspace wants to query the session length */
  949. if (!params.session_len)
  950. return __sev_send_start_query_session_length(kvm, argp,
  951. &params);
  952. /* some sanity checks */
  953. if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
  954. !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
  955. return -EINVAL;
  956. /* allocate the memory to hold the session data blob */
  957. session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
  958. if (!session_data)
  959. return -ENOMEM;
  960. /* copy the certificate blobs from userspace */
  961. pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
  962. params.pdh_cert_len);
  963. if (IS_ERR(pdh_cert)) {
  964. ret = PTR_ERR(pdh_cert);
  965. goto e_free_session;
  966. }
  967. plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
  968. params.plat_certs_len);
  969. if (IS_ERR(plat_certs)) {
  970. ret = PTR_ERR(plat_certs);
  971. goto e_free_pdh;
  972. }
  973. amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
  974. params.amd_certs_len);
  975. if (IS_ERR(amd_certs)) {
  976. ret = PTR_ERR(amd_certs);
  977. goto e_free_plat_cert;
  978. }
  979. /* populate the FW SEND_START field with system physical address */
  980. memset(&data, 0, sizeof(data));
  981. data.pdh_cert_address = __psp_pa(pdh_cert);
  982. data.pdh_cert_len = params.pdh_cert_len;
  983. data.plat_certs_address = __psp_pa(plat_certs);
  984. data.plat_certs_len = params.plat_certs_len;
  985. data.amd_certs_address = __psp_pa(amd_certs);
  986. data.amd_certs_len = params.amd_certs_len;
  987. data.session_address = __psp_pa(session_data);
  988. data.session_len = params.session_len;
  989. data.handle = sev->handle;
  990. ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
  991. if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
  992. session_data, params.session_len)) {
  993. ret = -EFAULT;
  994. goto e_free_amd_cert;
  995. }
  996. params.policy = data.policy;
  997. params.session_len = data.session_len;
  998. if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
  999. sizeof(struct kvm_sev_send_start)))
  1000. ret = -EFAULT;
  1001. e_free_amd_cert:
  1002. kfree(amd_certs);
  1003. e_free_plat_cert:
  1004. kfree(plat_certs);
  1005. e_free_pdh:
  1006. kfree(pdh_cert);
  1007. e_free_session:
  1008. kfree(session_data);
  1009. return ret;
  1010. }
  1011. /* Userspace wants to query either header or trans length. */
  1012. static int
  1013. __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
  1014. struct kvm_sev_send_update_data *params)
  1015. {
  1016. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  1017. struct sev_data_send_update_data data;
  1018. int ret;
  1019. memset(&data, 0, sizeof(data));
  1020. data.handle = sev->handle;
  1021. ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
  1022. params->hdr_len = data.hdr_len;
  1023. params->trans_len = data.trans_len;
  1024. if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
  1025. sizeof(struct kvm_sev_send_update_data)))
  1026. ret = -EFAULT;
  1027. return ret;
  1028. }
  1029. static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
  1030. {
  1031. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  1032. struct sev_data_send_update_data data;
  1033. struct kvm_sev_send_update_data params;
  1034. void *hdr, *trans_data;
  1035. struct page **guest_page;
  1036. unsigned long n;
  1037. int ret, offset;
  1038. if (!sev_guest(kvm))
  1039. return -ENOTTY;
  1040. if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
  1041. sizeof(struct kvm_sev_send_update_data)))
  1042. return -EFAULT;
  1043. /* userspace wants to query either header or trans length */
  1044. if (!params.trans_len || !params.hdr_len)
  1045. return __sev_send_update_data_query_lengths(kvm, argp, &params);
  1046. if (!params.trans_uaddr || !params.guest_uaddr ||
  1047. !params.guest_len || !params.hdr_uaddr)
  1048. return -EINVAL;
  1049. /* Check if we are crossing the page boundary */
  1050. offset = params.guest_uaddr & (PAGE_SIZE - 1);
  1051. if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
  1052. return -EINVAL;
  1053. /* Pin guest memory */
  1054. guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
  1055. PAGE_SIZE, &n, 0);
  1056. if (IS_ERR(guest_page))
  1057. return PTR_ERR(guest_page);
  1058. /* allocate memory for header and transport buffer */
  1059. ret = -ENOMEM;
  1060. hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
  1061. if (!hdr)
  1062. goto e_unpin;
  1063. trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
  1064. if (!trans_data)
  1065. goto e_free_hdr;
  1066. memset(&data, 0, sizeof(data));
  1067. data.hdr_address = __psp_pa(hdr);
  1068. data.hdr_len = params.hdr_len;
  1069. data.trans_address = __psp_pa(trans_data);
  1070. data.trans_len = params.trans_len;
  1071. /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
  1072. data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
  1073. data.guest_address |= sev_me_mask;
  1074. data.guest_len = params.guest_len;
  1075. data.handle = sev->handle;
  1076. ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
  1077. if (ret)
  1078. goto e_free_trans_data;
  1079. /* copy transport buffer to user space */
  1080. if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
  1081. trans_data, params.trans_len)) {
  1082. ret = -EFAULT;
  1083. goto e_free_trans_data;
  1084. }
  1085. /* Copy packet header to userspace. */
  1086. if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
  1087. params.hdr_len))
  1088. ret = -EFAULT;
  1089. e_free_trans_data:
  1090. kfree(trans_data);
  1091. e_free_hdr:
  1092. kfree(hdr);
  1093. e_unpin:
  1094. sev_unpin_memory(kvm, guest_page, n);
  1095. return ret;
  1096. }
  1097. static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
  1098. {
  1099. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  1100. struct sev_data_send_finish data;
  1101. if (!sev_guest(kvm))
  1102. return -ENOTTY;
  1103. data.handle = sev->handle;
  1104. return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
  1105. }
  1106. static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
  1107. {
  1108. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  1109. struct sev_data_send_cancel data;
  1110. if (!sev_guest(kvm))
  1111. return -ENOTTY;
  1112. data.handle = sev->handle;
  1113. return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
  1114. }
  1115. static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
  1116. {
  1117. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  1118. struct sev_data_receive_start start;
  1119. struct kvm_sev_receive_start params;
  1120. int *error = &argp->error;
  1121. void *session_data;
  1122. void *pdh_data;
  1123. int ret;
  1124. if (!sev_guest(kvm))
  1125. return -ENOTTY;
  1126. /* Get parameter from the userspace */
  1127. if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
  1128. sizeof(struct kvm_sev_receive_start)))
  1129. return -EFAULT;
  1130. /* some sanity checks */
  1131. if (!params.pdh_uaddr || !params.pdh_len ||
  1132. !params.session_uaddr || !params.session_len)
  1133. return -EINVAL;
  1134. pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
  1135. if (IS_ERR(pdh_data))
  1136. return PTR_ERR(pdh_data);
  1137. session_data = psp_copy_user_blob(params.session_uaddr,
  1138. params.session_len);
  1139. if (IS_ERR(session_data)) {
  1140. ret = PTR_ERR(session_data);
  1141. goto e_free_pdh;
  1142. }
  1143. memset(&start, 0, sizeof(start));
  1144. start.handle = params.handle;
  1145. start.policy = params.policy;
  1146. start.pdh_cert_address = __psp_pa(pdh_data);
  1147. start.pdh_cert_len = params.pdh_len;
  1148. start.session_address = __psp_pa(session_data);
  1149. start.session_len = params.session_len;
  1150. /* create memory encryption context */
  1151. ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
  1152. error);
  1153. if (ret)
  1154. goto e_free_session;
  1155. /* Bind ASID to this guest */
  1156. ret = sev_bind_asid(kvm, start.handle, error);
  1157. if (ret) {
  1158. sev_decommission(start.handle);
  1159. goto e_free_session;
  1160. }
  1161. params.handle = start.handle;
  1162. if (copy_to_user((void __user *)(uintptr_t)argp->data,
  1163. &params, sizeof(struct kvm_sev_receive_start))) {
  1164. ret = -EFAULT;
  1165. sev_unbind_asid(kvm, start.handle);
  1166. goto e_free_session;
  1167. }
  1168. sev->handle = start.handle;
  1169. sev->fd = argp->sev_fd;
  1170. e_free_session:
  1171. kfree(session_data);
  1172. e_free_pdh:
  1173. kfree(pdh_data);
  1174. return ret;
  1175. }
  1176. static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
  1177. {
  1178. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  1179. struct kvm_sev_receive_update_data params;
  1180. struct sev_data_receive_update_data data;
  1181. void *hdr = NULL, *trans = NULL;
  1182. struct page **guest_page;
  1183. unsigned long n;
  1184. int ret, offset;
  1185. if (!sev_guest(kvm))
  1186. return -EINVAL;
  1187. if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
  1188. sizeof(struct kvm_sev_receive_update_data)))
  1189. return -EFAULT;
  1190. if (!params.hdr_uaddr || !params.hdr_len ||
  1191. !params.guest_uaddr || !params.guest_len ||
  1192. !params.trans_uaddr || !params.trans_len)
  1193. return -EINVAL;
  1194. /* Check if we are crossing the page boundary */
  1195. offset = params.guest_uaddr & (PAGE_SIZE - 1);
  1196. if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
  1197. return -EINVAL;
  1198. hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
  1199. if (IS_ERR(hdr))
  1200. return PTR_ERR(hdr);
  1201. trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
  1202. if (IS_ERR(trans)) {
  1203. ret = PTR_ERR(trans);
  1204. goto e_free_hdr;
  1205. }
  1206. memset(&data, 0, sizeof(data));
  1207. data.hdr_address = __psp_pa(hdr);
  1208. data.hdr_len = params.hdr_len;
  1209. data.trans_address = __psp_pa(trans);
  1210. data.trans_len = params.trans_len;
  1211. /* Pin guest memory */
  1212. guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
  1213. PAGE_SIZE, &n, 1);
  1214. if (IS_ERR(guest_page)) {
  1215. ret = PTR_ERR(guest_page);
  1216. goto e_free_trans;
  1217. }
  1218. /*
  1219. * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
  1220. * encrypts the written data with the guest's key, and the cache may
  1221. * contain dirty, unencrypted data.
  1222. */
  1223. sev_clflush_pages(guest_page, n);
  1224. /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
  1225. data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
  1226. data.guest_address |= sev_me_mask;
  1227. data.guest_len = params.guest_len;
  1228. data.handle = sev->handle;
  1229. ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
  1230. &argp->error);
  1231. sev_unpin_memory(kvm, guest_page, n);
  1232. e_free_trans:
  1233. kfree(trans);
  1234. e_free_hdr:
  1235. kfree(hdr);
  1236. return ret;
  1237. }
  1238. static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
  1239. {
  1240. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  1241. struct sev_data_receive_finish data;
  1242. if (!sev_guest(kvm))
  1243. return -ENOTTY;
  1244. data.handle = sev->handle;
  1245. return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
  1246. }
  1247. static bool is_cmd_allowed_from_mirror(u32 cmd_id)
  1248. {
  1249. /*
  1250. * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
  1251. * active mirror VMs. Also allow the debugging and status commands.
  1252. */
  1253. if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
  1254. cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
  1255. cmd_id == KVM_SEV_DBG_ENCRYPT)
  1256. return true;
  1257. return false;
  1258. }
  1259. static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
  1260. {
  1261. struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
  1262. struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
  1263. int r = -EBUSY;
  1264. if (dst_kvm == src_kvm)
  1265. return -EINVAL;
  1266. /*
  1267. * Bail if these VMs are already involved in a migration to avoid
  1268. * deadlock between two VMs trying to migrate to/from each other.
  1269. */
  1270. if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
  1271. return -EBUSY;
  1272. if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
  1273. goto release_dst;
  1274. r = -EINTR;
  1275. if (mutex_lock_killable(&dst_kvm->lock))
  1276. goto release_src;
  1277. if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
  1278. goto unlock_dst;
  1279. return 0;
  1280. unlock_dst:
  1281. mutex_unlock(&dst_kvm->lock);
  1282. release_src:
  1283. atomic_set_release(&src_sev->migration_in_progress, 0);
  1284. release_dst:
  1285. atomic_set_release(&dst_sev->migration_in_progress, 0);
  1286. return r;
  1287. }
  1288. static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
  1289. {
  1290. struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
  1291. struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
  1292. mutex_unlock(&dst_kvm->lock);
  1293. mutex_unlock(&src_kvm->lock);
  1294. atomic_set_release(&dst_sev->migration_in_progress, 0);
  1295. atomic_set_release(&src_sev->migration_in_progress, 0);
  1296. }
  1297. /* vCPU mutex subclasses. */
  1298. enum sev_migration_role {
  1299. SEV_MIGRATION_SOURCE = 0,
  1300. SEV_MIGRATION_TARGET,
  1301. SEV_NR_MIGRATION_ROLES,
  1302. };
  1303. static int sev_lock_vcpus_for_migration(struct kvm *kvm,
  1304. enum sev_migration_role role)
  1305. {
  1306. struct kvm_vcpu *vcpu;
  1307. unsigned long i, j;
  1308. kvm_for_each_vcpu(i, vcpu, kvm) {
  1309. if (mutex_lock_killable_nested(&vcpu->mutex, role))
  1310. goto out_unlock;
  1311. #ifdef CONFIG_PROVE_LOCKING
  1312. if (!i)
  1313. /*
  1314. * Reset the role to one that avoids colliding with
  1315. * the role used for the first vcpu mutex.
  1316. */
  1317. role = SEV_NR_MIGRATION_ROLES;
  1318. else
  1319. mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
  1320. #endif
  1321. }
  1322. return 0;
  1323. out_unlock:
  1324. kvm_for_each_vcpu(j, vcpu, kvm) {
  1325. if (i == j)
  1326. break;
  1327. #ifdef CONFIG_PROVE_LOCKING
  1328. if (j)
  1329. mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
  1330. #endif
  1331. mutex_unlock(&vcpu->mutex);
  1332. }
  1333. return -EINTR;
  1334. }
  1335. static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
  1336. {
  1337. struct kvm_vcpu *vcpu;
  1338. unsigned long i;
  1339. bool first = true;
  1340. kvm_for_each_vcpu(i, vcpu, kvm) {
  1341. if (first)
  1342. first = false;
  1343. else
  1344. mutex_acquire(&vcpu->mutex.dep_map,
  1345. SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
  1346. mutex_unlock(&vcpu->mutex);
  1347. }
  1348. }
  1349. static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
  1350. {
  1351. struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
  1352. struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
  1353. struct kvm_vcpu *dst_vcpu, *src_vcpu;
  1354. struct vcpu_svm *dst_svm, *src_svm;
  1355. struct kvm_sev_info *mirror;
  1356. unsigned long i;
  1357. dst->active = true;
  1358. dst->asid = src->asid;
  1359. dst->handle = src->handle;
  1360. dst->pages_locked = src->pages_locked;
  1361. dst->enc_context_owner = src->enc_context_owner;
  1362. dst->es_active = src->es_active;
  1363. src->asid = 0;
  1364. src->active = false;
  1365. src->handle = 0;
  1366. src->pages_locked = 0;
  1367. src->enc_context_owner = NULL;
  1368. src->es_active = false;
  1369. list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
  1370. /*
  1371. * If this VM has mirrors, "transfer" each mirror's refcount of the
  1372. * source to the destination (this KVM). The caller holds a reference
  1373. * to the source, so there's no danger of use-after-free.
  1374. */
  1375. list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
  1376. list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
  1377. kvm_get_kvm(dst_kvm);
  1378. kvm_put_kvm(src_kvm);
  1379. mirror->enc_context_owner = dst_kvm;
  1380. }
  1381. /*
  1382. * If this VM is a mirror, remove the old mirror from the owners list
  1383. * and add the new mirror to the list.
  1384. */
  1385. if (is_mirroring_enc_context(dst_kvm)) {
  1386. struct kvm_sev_info *owner_sev_info =
  1387. &to_kvm_svm(dst->enc_context_owner)->sev_info;
  1388. list_del(&src->mirror_entry);
  1389. list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
  1390. }
  1391. kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
  1392. dst_svm = to_svm(dst_vcpu);
  1393. sev_init_vmcb(dst_svm);
  1394. if (!dst->es_active)
  1395. continue;
  1396. /*
  1397. * Note, the source is not required to have the same number of
  1398. * vCPUs as the destination when migrating a vanilla SEV VM.
  1399. */
  1400. src_vcpu = kvm_get_vcpu(src_kvm, i);
  1401. src_svm = to_svm(src_vcpu);
  1402. /*
  1403. * Transfer VMSA and GHCB state to the destination. Nullify and
  1404. * clear source fields as appropriate, the state now belongs to
  1405. * the destination.
  1406. */
  1407. memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
  1408. dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
  1409. dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
  1410. dst_vcpu->arch.guest_state_protected = true;
  1411. memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
  1412. src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
  1413. src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
  1414. src_vcpu->arch.guest_state_protected = false;
  1415. }
  1416. }
  1417. static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
  1418. {
  1419. struct kvm_vcpu *src_vcpu;
  1420. unsigned long i;
  1421. if (!sev_es_guest(src))
  1422. return 0;
  1423. if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
  1424. return -EINVAL;
  1425. kvm_for_each_vcpu(i, src_vcpu, src) {
  1426. if (!src_vcpu->arch.guest_state_protected)
  1427. return -EINVAL;
  1428. }
  1429. return 0;
  1430. }
  1431. int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
  1432. {
  1433. struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
  1434. struct kvm_sev_info *src_sev, *cg_cleanup_sev;
  1435. struct file *source_kvm_file;
  1436. struct kvm *source_kvm;
  1437. bool charged = false;
  1438. int ret;
  1439. source_kvm_file = fget(source_fd);
  1440. if (!file_is_kvm(source_kvm_file)) {
  1441. ret = -EBADF;
  1442. goto out_fput;
  1443. }
  1444. source_kvm = source_kvm_file->private_data;
  1445. ret = sev_lock_two_vms(kvm, source_kvm);
  1446. if (ret)
  1447. goto out_fput;
  1448. if (sev_guest(kvm) || !sev_guest(source_kvm)) {
  1449. ret = -EINVAL;
  1450. goto out_unlock;
  1451. }
  1452. src_sev = &to_kvm_svm(source_kvm)->sev_info;
  1453. dst_sev->misc_cg = get_current_misc_cg();
  1454. cg_cleanup_sev = dst_sev;
  1455. if (dst_sev->misc_cg != src_sev->misc_cg) {
  1456. ret = sev_misc_cg_try_charge(dst_sev);
  1457. if (ret)
  1458. goto out_dst_cgroup;
  1459. charged = true;
  1460. }
  1461. ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
  1462. if (ret)
  1463. goto out_dst_cgroup;
  1464. ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
  1465. if (ret)
  1466. goto out_dst_vcpu;
  1467. ret = sev_check_source_vcpus(kvm, source_kvm);
  1468. if (ret)
  1469. goto out_source_vcpu;
  1470. sev_migrate_from(kvm, source_kvm);
  1471. kvm_vm_dead(source_kvm);
  1472. cg_cleanup_sev = src_sev;
  1473. ret = 0;
  1474. out_source_vcpu:
  1475. sev_unlock_vcpus_for_migration(source_kvm);
  1476. out_dst_vcpu:
  1477. sev_unlock_vcpus_for_migration(kvm);
  1478. out_dst_cgroup:
  1479. /* Operates on the source on success, on the destination on failure. */
  1480. if (charged)
  1481. sev_misc_cg_uncharge(cg_cleanup_sev);
  1482. put_misc_cg(cg_cleanup_sev->misc_cg);
  1483. cg_cleanup_sev->misc_cg = NULL;
  1484. out_unlock:
  1485. sev_unlock_two_vms(kvm, source_kvm);
  1486. out_fput:
  1487. if (source_kvm_file)
  1488. fput(source_kvm_file);
  1489. return ret;
  1490. }
  1491. int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
  1492. {
  1493. struct kvm_sev_cmd sev_cmd;
  1494. int r;
  1495. if (!sev_enabled)
  1496. return -ENOTTY;
  1497. if (!argp)
  1498. return 0;
  1499. if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
  1500. return -EFAULT;
  1501. mutex_lock(&kvm->lock);
  1502. /* Only the enc_context_owner handles some memory enc operations. */
  1503. if (is_mirroring_enc_context(kvm) &&
  1504. !is_cmd_allowed_from_mirror(sev_cmd.id)) {
  1505. r = -EINVAL;
  1506. goto out;
  1507. }
  1508. switch (sev_cmd.id) {
  1509. case KVM_SEV_ES_INIT:
  1510. if (!sev_es_enabled) {
  1511. r = -ENOTTY;
  1512. goto out;
  1513. }
  1514. fallthrough;
  1515. case KVM_SEV_INIT:
  1516. r = sev_guest_init(kvm, &sev_cmd);
  1517. break;
  1518. case KVM_SEV_LAUNCH_START:
  1519. r = sev_launch_start(kvm, &sev_cmd);
  1520. break;
  1521. case KVM_SEV_LAUNCH_UPDATE_DATA:
  1522. r = sev_launch_update_data(kvm, &sev_cmd);
  1523. break;
  1524. case KVM_SEV_LAUNCH_UPDATE_VMSA:
  1525. r = sev_launch_update_vmsa(kvm, &sev_cmd);
  1526. break;
  1527. case KVM_SEV_LAUNCH_MEASURE:
  1528. r = sev_launch_measure(kvm, &sev_cmd);
  1529. break;
  1530. case KVM_SEV_LAUNCH_FINISH:
  1531. r = sev_launch_finish(kvm, &sev_cmd);
  1532. break;
  1533. case KVM_SEV_GUEST_STATUS:
  1534. r = sev_guest_status(kvm, &sev_cmd);
  1535. break;
  1536. case KVM_SEV_DBG_DECRYPT:
  1537. r = sev_dbg_crypt(kvm, &sev_cmd, true);
  1538. break;
  1539. case KVM_SEV_DBG_ENCRYPT:
  1540. r = sev_dbg_crypt(kvm, &sev_cmd, false);
  1541. break;
  1542. case KVM_SEV_LAUNCH_SECRET:
  1543. r = sev_launch_secret(kvm, &sev_cmd);
  1544. break;
  1545. case KVM_SEV_GET_ATTESTATION_REPORT:
  1546. r = sev_get_attestation_report(kvm, &sev_cmd);
  1547. break;
  1548. case KVM_SEV_SEND_START:
  1549. r = sev_send_start(kvm, &sev_cmd);
  1550. break;
  1551. case KVM_SEV_SEND_UPDATE_DATA:
  1552. r = sev_send_update_data(kvm, &sev_cmd);
  1553. break;
  1554. case KVM_SEV_SEND_FINISH:
  1555. r = sev_send_finish(kvm, &sev_cmd);
  1556. break;
  1557. case KVM_SEV_SEND_CANCEL:
  1558. r = sev_send_cancel(kvm, &sev_cmd);
  1559. break;
  1560. case KVM_SEV_RECEIVE_START:
  1561. r = sev_receive_start(kvm, &sev_cmd);
  1562. break;
  1563. case KVM_SEV_RECEIVE_UPDATE_DATA:
  1564. r = sev_receive_update_data(kvm, &sev_cmd);
  1565. break;
  1566. case KVM_SEV_RECEIVE_FINISH:
  1567. r = sev_receive_finish(kvm, &sev_cmd);
  1568. break;
  1569. default:
  1570. r = -EINVAL;
  1571. goto out;
  1572. }
  1573. if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
  1574. r = -EFAULT;
  1575. out:
  1576. mutex_unlock(&kvm->lock);
  1577. return r;
  1578. }
  1579. int sev_mem_enc_register_region(struct kvm *kvm,
  1580. struct kvm_enc_region *range)
  1581. {
  1582. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  1583. struct enc_region *region;
  1584. int ret = 0;
  1585. if (!sev_guest(kvm))
  1586. return -ENOTTY;
  1587. /* If kvm is mirroring encryption context it isn't responsible for it */
  1588. if (is_mirroring_enc_context(kvm))
  1589. return -EINVAL;
  1590. if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
  1591. return -EINVAL;
  1592. region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
  1593. if (!region)
  1594. return -ENOMEM;
  1595. mutex_lock(&kvm->lock);
  1596. region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
  1597. if (IS_ERR(region->pages)) {
  1598. ret = PTR_ERR(region->pages);
  1599. mutex_unlock(&kvm->lock);
  1600. goto e_free;
  1601. }
  1602. region->uaddr = range->addr;
  1603. region->size = range->size;
  1604. list_add_tail(&region->list, &sev->regions_list);
  1605. mutex_unlock(&kvm->lock);
  1606. /*
  1607. * The guest may change the memory encryption attribute from C=0 -> C=1
  1608. * or vice versa for this memory range. Lets make sure caches are
  1609. * flushed to ensure that guest data gets written into memory with
  1610. * correct C-bit.
  1611. */
  1612. sev_clflush_pages(region->pages, region->npages);
  1613. return ret;
  1614. e_free:
  1615. kfree(region);
  1616. return ret;
  1617. }
  1618. static struct enc_region *
  1619. find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
  1620. {
  1621. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  1622. struct list_head *head = &sev->regions_list;
  1623. struct enc_region *i;
  1624. list_for_each_entry(i, head, list) {
  1625. if (i->uaddr == range->addr &&
  1626. i->size == range->size)
  1627. return i;
  1628. }
  1629. return NULL;
  1630. }
  1631. static void __unregister_enc_region_locked(struct kvm *kvm,
  1632. struct enc_region *region)
  1633. {
  1634. sev_unpin_memory(kvm, region->pages, region->npages);
  1635. list_del(&region->list);
  1636. kfree(region);
  1637. }
  1638. int sev_mem_enc_unregister_region(struct kvm *kvm,
  1639. struct kvm_enc_region *range)
  1640. {
  1641. struct enc_region *region;
  1642. int ret;
  1643. /* If kvm is mirroring encryption context it isn't responsible for it */
  1644. if (is_mirroring_enc_context(kvm))
  1645. return -EINVAL;
  1646. mutex_lock(&kvm->lock);
  1647. if (!sev_guest(kvm)) {
  1648. ret = -ENOTTY;
  1649. goto failed;
  1650. }
  1651. region = find_enc_region(kvm, range);
  1652. if (!region) {
  1653. ret = -EINVAL;
  1654. goto failed;
  1655. }
  1656. /*
  1657. * Ensure that all guest tagged cache entries are flushed before
  1658. * releasing the pages back to the system for use. CLFLUSH will
  1659. * not do this, so issue a WBINVD.
  1660. */
  1661. wbinvd_on_all_cpus();
  1662. __unregister_enc_region_locked(kvm, region);
  1663. mutex_unlock(&kvm->lock);
  1664. return 0;
  1665. failed:
  1666. mutex_unlock(&kvm->lock);
  1667. return ret;
  1668. }
  1669. int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
  1670. {
  1671. struct file *source_kvm_file;
  1672. struct kvm *source_kvm;
  1673. struct kvm_sev_info *source_sev, *mirror_sev;
  1674. int ret;
  1675. source_kvm_file = fget(source_fd);
  1676. if (!file_is_kvm(source_kvm_file)) {
  1677. ret = -EBADF;
  1678. goto e_source_fput;
  1679. }
  1680. source_kvm = source_kvm_file->private_data;
  1681. ret = sev_lock_two_vms(kvm, source_kvm);
  1682. if (ret)
  1683. goto e_source_fput;
  1684. /*
  1685. * Mirrors of mirrors should work, but let's not get silly. Also
  1686. * disallow out-of-band SEV/SEV-ES init if the target is already an
  1687. * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
  1688. * created after SEV/SEV-ES initialization, e.g. to init intercepts.
  1689. */
  1690. if (sev_guest(kvm) || !sev_guest(source_kvm) ||
  1691. is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
  1692. ret = -EINVAL;
  1693. goto e_unlock;
  1694. }
  1695. /*
  1696. * The mirror kvm holds an enc_context_owner ref so its asid can't
  1697. * disappear until we're done with it
  1698. */
  1699. source_sev = &to_kvm_svm(source_kvm)->sev_info;
  1700. kvm_get_kvm(source_kvm);
  1701. mirror_sev = &to_kvm_svm(kvm)->sev_info;
  1702. list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
  1703. /* Set enc_context_owner and copy its encryption context over */
  1704. mirror_sev->enc_context_owner = source_kvm;
  1705. mirror_sev->active = true;
  1706. mirror_sev->asid = source_sev->asid;
  1707. mirror_sev->fd = source_sev->fd;
  1708. mirror_sev->es_active = source_sev->es_active;
  1709. mirror_sev->handle = source_sev->handle;
  1710. INIT_LIST_HEAD(&mirror_sev->regions_list);
  1711. INIT_LIST_HEAD(&mirror_sev->mirror_vms);
  1712. ret = 0;
  1713. /*
  1714. * Do not copy ap_jump_table. Since the mirror does not share the same
  1715. * KVM contexts as the original, and they may have different
  1716. * memory-views.
  1717. */
  1718. e_unlock:
  1719. sev_unlock_two_vms(kvm, source_kvm);
  1720. e_source_fput:
  1721. if (source_kvm_file)
  1722. fput(source_kvm_file);
  1723. return ret;
  1724. }
  1725. void sev_vm_destroy(struct kvm *kvm)
  1726. {
  1727. struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
  1728. struct list_head *head = &sev->regions_list;
  1729. struct list_head *pos, *q;
  1730. if (!sev_guest(kvm))
  1731. return;
  1732. WARN_ON(!list_empty(&sev->mirror_vms));
  1733. /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
  1734. if (is_mirroring_enc_context(kvm)) {
  1735. struct kvm *owner_kvm = sev->enc_context_owner;
  1736. mutex_lock(&owner_kvm->lock);
  1737. list_del(&sev->mirror_entry);
  1738. mutex_unlock(&owner_kvm->lock);
  1739. kvm_put_kvm(owner_kvm);
  1740. return;
  1741. }
  1742. /*
  1743. * Ensure that all guest tagged cache entries are flushed before
  1744. * releasing the pages back to the system for use. CLFLUSH will
  1745. * not do this, so issue a WBINVD.
  1746. */
  1747. wbinvd_on_all_cpus();
  1748. /*
  1749. * if userspace was terminated before unregistering the memory regions
  1750. * then lets unpin all the registered memory.
  1751. */
  1752. if (!list_empty(head)) {
  1753. list_for_each_safe(pos, q, head) {
  1754. __unregister_enc_region_locked(kvm,
  1755. list_entry(pos, struct enc_region, list));
  1756. cond_resched();
  1757. }
  1758. }
  1759. sev_unbind_asid(kvm, sev->handle);
  1760. sev_asid_free(sev);
  1761. }
  1762. void __init sev_set_cpu_caps(void)
  1763. {
  1764. if (!sev_enabled)
  1765. kvm_cpu_cap_clear(X86_FEATURE_SEV);
  1766. if (!sev_es_enabled)
  1767. kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
  1768. }
  1769. void __init sev_hardware_setup(void)
  1770. {
  1771. #ifdef CONFIG_KVM_AMD_SEV
  1772. unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
  1773. bool sev_es_supported = false;
  1774. bool sev_supported = false;
  1775. if (!sev_enabled || !npt_enabled)
  1776. goto out;
  1777. /*
  1778. * SEV must obviously be supported in hardware. Sanity check that the
  1779. * CPU supports decode assists, which is mandatory for SEV guests to
  1780. * support instruction emulation.
  1781. */
  1782. if (!boot_cpu_has(X86_FEATURE_SEV) ||
  1783. WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
  1784. goto out;
  1785. /* Retrieve SEV CPUID information */
  1786. cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
  1787. /* Set encryption bit location for SEV-ES guests */
  1788. sev_enc_bit = ebx & 0x3f;
  1789. /* Maximum number of encrypted guests supported simultaneously */
  1790. max_sev_asid = ecx;
  1791. if (!max_sev_asid)
  1792. goto out;
  1793. /* Minimum ASID value that should be used for SEV guest */
  1794. min_sev_asid = edx;
  1795. sev_me_mask = 1UL << (ebx & 0x3f);
  1796. /*
  1797. * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
  1798. * even though it's never used, so that the bitmap is indexed by the
  1799. * actual ASID.
  1800. */
  1801. nr_asids = max_sev_asid + 1;
  1802. sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
  1803. if (!sev_asid_bitmap)
  1804. goto out;
  1805. sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
  1806. if (!sev_reclaim_asid_bitmap) {
  1807. bitmap_free(sev_asid_bitmap);
  1808. sev_asid_bitmap = NULL;
  1809. goto out;
  1810. }
  1811. sev_asid_count = max_sev_asid - min_sev_asid + 1;
  1812. if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
  1813. goto out;
  1814. pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
  1815. sev_supported = true;
  1816. /* SEV-ES support requested? */
  1817. if (!sev_es_enabled)
  1818. goto out;
  1819. /*
  1820. * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
  1821. * instruction stream, i.e. can't emulate in response to a #NPF and
  1822. * instead relies on #NPF(RSVD) being reflected into the guest as #VC
  1823. * (the guest can then do a #VMGEXIT to request MMIO emulation).
  1824. */
  1825. if (!enable_mmio_caching)
  1826. goto out;
  1827. /* Does the CPU support SEV-ES? */
  1828. if (!boot_cpu_has(X86_FEATURE_SEV_ES))
  1829. goto out;
  1830. /* Has the system been allocated ASIDs for SEV-ES? */
  1831. if (min_sev_asid == 1)
  1832. goto out;
  1833. sev_es_asid_count = min_sev_asid - 1;
  1834. if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
  1835. goto out;
  1836. pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
  1837. sev_es_supported = true;
  1838. out:
  1839. sev_enabled = sev_supported;
  1840. sev_es_enabled = sev_es_supported;
  1841. #endif
  1842. }
  1843. void sev_hardware_unsetup(void)
  1844. {
  1845. if (!sev_enabled)
  1846. return;
  1847. /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
  1848. sev_flush_asids(1, max_sev_asid);
  1849. bitmap_free(sev_asid_bitmap);
  1850. bitmap_free(sev_reclaim_asid_bitmap);
  1851. misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
  1852. misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
  1853. }
  1854. int sev_cpu_init(struct svm_cpu_data *sd)
  1855. {
  1856. if (!sev_enabled)
  1857. return 0;
  1858. sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
  1859. if (!sd->sev_vmcbs)
  1860. return -ENOMEM;
  1861. return 0;
  1862. }
  1863. /*
  1864. * Pages used by hardware to hold guest encrypted state must be flushed before
  1865. * returning them to the system.
  1866. */
  1867. static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
  1868. {
  1869. int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
  1870. /*
  1871. * Note! The address must be a kernel address, as regular page walk
  1872. * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
  1873. * address is non-deterministic and unsafe. This function deliberately
  1874. * takes a pointer to deter passing in a user address.
  1875. */
  1876. unsigned long addr = (unsigned long)va;
  1877. /*
  1878. * If CPU enforced cache coherency for encrypted mappings of the
  1879. * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
  1880. * flush is still needed in order to work properly with DMA devices.
  1881. */
  1882. if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
  1883. clflush_cache_range(va, PAGE_SIZE);
  1884. return;
  1885. }
  1886. /*
  1887. * VM Page Flush takes a host virtual address and a guest ASID. Fall
  1888. * back to WBINVD if this faults so as not to make any problems worse
  1889. * by leaving stale encrypted data in the cache.
  1890. */
  1891. if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
  1892. goto do_wbinvd;
  1893. return;
  1894. do_wbinvd:
  1895. wbinvd_on_all_cpus();
  1896. }
  1897. void sev_guest_memory_reclaimed(struct kvm *kvm)
  1898. {
  1899. if (!sev_guest(kvm))
  1900. return;
  1901. wbinvd_on_all_cpus();
  1902. }
  1903. void sev_free_vcpu(struct kvm_vcpu *vcpu)
  1904. {
  1905. struct vcpu_svm *svm;
  1906. if (!sev_es_guest(vcpu->kvm))
  1907. return;
  1908. svm = to_svm(vcpu);
  1909. if (vcpu->arch.guest_state_protected)
  1910. sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
  1911. __free_page(virt_to_page(svm->sev_es.vmsa));
  1912. if (svm->sev_es.ghcb_sa_free)
  1913. kvfree(svm->sev_es.ghcb_sa);
  1914. }
  1915. static void dump_ghcb(struct vcpu_svm *svm)
  1916. {
  1917. struct ghcb *ghcb = svm->sev_es.ghcb;
  1918. unsigned int nbits;
  1919. /* Re-use the dump_invalid_vmcb module parameter */
  1920. if (!dump_invalid_vmcb) {
  1921. pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
  1922. return;
  1923. }
  1924. nbits = sizeof(ghcb->save.valid_bitmap) * 8;
  1925. pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
  1926. pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
  1927. ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
  1928. pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
  1929. ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
  1930. pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
  1931. ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
  1932. pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
  1933. ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
  1934. pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
  1935. }
  1936. static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
  1937. {
  1938. struct kvm_vcpu *vcpu = &svm->vcpu;
  1939. struct ghcb *ghcb = svm->sev_es.ghcb;
  1940. /*
  1941. * The GHCB protocol so far allows for the following data
  1942. * to be returned:
  1943. * GPRs RAX, RBX, RCX, RDX
  1944. *
  1945. * Copy their values, even if they may not have been written during the
  1946. * VM-Exit. It's the guest's responsibility to not consume random data.
  1947. */
  1948. ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
  1949. ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
  1950. ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
  1951. ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
  1952. }
  1953. static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
  1954. {
  1955. struct vmcb_control_area *control = &svm->vmcb->control;
  1956. struct kvm_vcpu *vcpu = &svm->vcpu;
  1957. struct ghcb *ghcb = svm->sev_es.ghcb;
  1958. u64 exit_code;
  1959. /*
  1960. * The GHCB protocol so far allows for the following data
  1961. * to be supplied:
  1962. * GPRs RAX, RBX, RCX, RDX
  1963. * XCR0
  1964. * CPL
  1965. *
  1966. * VMMCALL allows the guest to provide extra registers. KVM also
  1967. * expects RSI for hypercalls, so include that, too.
  1968. *
  1969. * Copy their values to the appropriate location if supplied.
  1970. */
  1971. memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
  1972. BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
  1973. memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
  1974. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
  1975. vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
  1976. vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
  1977. vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
  1978. vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
  1979. svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
  1980. if (kvm_ghcb_xcr0_is_valid(svm)) {
  1981. vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
  1982. kvm_update_cpuid_runtime(vcpu);
  1983. }
  1984. /* Copy the GHCB exit information into the VMCB fields */
  1985. exit_code = ghcb_get_sw_exit_code(ghcb);
  1986. control->exit_code = lower_32_bits(exit_code);
  1987. control->exit_code_hi = upper_32_bits(exit_code);
  1988. control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
  1989. control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
  1990. svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
  1991. /* Clear the valid entries fields */
  1992. memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
  1993. }
  1994. static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
  1995. {
  1996. return (((u64)control->exit_code_hi) << 32) | control->exit_code;
  1997. }
  1998. static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
  1999. {
  2000. struct vmcb_control_area *control = &svm->vmcb->control;
  2001. struct kvm_vcpu *vcpu = &svm->vcpu;
  2002. struct ghcb *ghcb;
  2003. u64 exit_code;
  2004. u64 reason;
  2005. ghcb = svm->sev_es.ghcb;
  2006. /*
  2007. * Retrieve the exit code now even though it may not be marked valid
  2008. * as it could help with debugging.
  2009. */
  2010. exit_code = kvm_ghcb_get_sw_exit_code(control);
  2011. /* Only GHCB Usage code 0 is supported */
  2012. if (ghcb->ghcb_usage) {
  2013. reason = GHCB_ERR_INVALID_USAGE;
  2014. goto vmgexit_err;
  2015. }
  2016. reason = GHCB_ERR_MISSING_INPUT;
  2017. if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
  2018. !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
  2019. !kvm_ghcb_sw_exit_info_2_is_valid(svm))
  2020. goto vmgexit_err;
  2021. switch (exit_code) {
  2022. case SVM_EXIT_READ_DR7:
  2023. break;
  2024. case SVM_EXIT_WRITE_DR7:
  2025. if (!kvm_ghcb_rax_is_valid(svm))
  2026. goto vmgexit_err;
  2027. break;
  2028. case SVM_EXIT_RDTSC:
  2029. break;
  2030. case SVM_EXIT_RDPMC:
  2031. if (!kvm_ghcb_rcx_is_valid(svm))
  2032. goto vmgexit_err;
  2033. break;
  2034. case SVM_EXIT_CPUID:
  2035. if (!kvm_ghcb_rax_is_valid(svm) ||
  2036. !kvm_ghcb_rcx_is_valid(svm))
  2037. goto vmgexit_err;
  2038. if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
  2039. if (!kvm_ghcb_xcr0_is_valid(svm))
  2040. goto vmgexit_err;
  2041. break;
  2042. case SVM_EXIT_INVD:
  2043. break;
  2044. case SVM_EXIT_IOIO:
  2045. if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
  2046. if (!kvm_ghcb_sw_scratch_is_valid(svm))
  2047. goto vmgexit_err;
  2048. } else {
  2049. if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
  2050. if (!kvm_ghcb_rax_is_valid(svm))
  2051. goto vmgexit_err;
  2052. }
  2053. break;
  2054. case SVM_EXIT_MSR:
  2055. if (!kvm_ghcb_rcx_is_valid(svm))
  2056. goto vmgexit_err;
  2057. if (control->exit_info_1) {
  2058. if (!kvm_ghcb_rax_is_valid(svm) ||
  2059. !kvm_ghcb_rdx_is_valid(svm))
  2060. goto vmgexit_err;
  2061. }
  2062. break;
  2063. case SVM_EXIT_VMMCALL:
  2064. if (!kvm_ghcb_rax_is_valid(svm) ||
  2065. !kvm_ghcb_cpl_is_valid(svm))
  2066. goto vmgexit_err;
  2067. break;
  2068. case SVM_EXIT_RDTSCP:
  2069. break;
  2070. case SVM_EXIT_WBINVD:
  2071. break;
  2072. case SVM_EXIT_MONITOR:
  2073. if (!kvm_ghcb_rax_is_valid(svm) ||
  2074. !kvm_ghcb_rcx_is_valid(svm) ||
  2075. !kvm_ghcb_rdx_is_valid(svm))
  2076. goto vmgexit_err;
  2077. break;
  2078. case SVM_EXIT_MWAIT:
  2079. if (!kvm_ghcb_rax_is_valid(svm) ||
  2080. !kvm_ghcb_rcx_is_valid(svm))
  2081. goto vmgexit_err;
  2082. break;
  2083. case SVM_VMGEXIT_MMIO_READ:
  2084. case SVM_VMGEXIT_MMIO_WRITE:
  2085. if (!kvm_ghcb_sw_scratch_is_valid(svm))
  2086. goto vmgexit_err;
  2087. break;
  2088. case SVM_VMGEXIT_NMI_COMPLETE:
  2089. case SVM_VMGEXIT_AP_HLT_LOOP:
  2090. case SVM_VMGEXIT_AP_JUMP_TABLE:
  2091. case SVM_VMGEXIT_UNSUPPORTED_EVENT:
  2092. break;
  2093. default:
  2094. reason = GHCB_ERR_INVALID_EVENT;
  2095. goto vmgexit_err;
  2096. }
  2097. return 0;
  2098. vmgexit_err:
  2099. if (reason == GHCB_ERR_INVALID_USAGE) {
  2100. vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
  2101. ghcb->ghcb_usage);
  2102. } else if (reason == GHCB_ERR_INVALID_EVENT) {
  2103. vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
  2104. exit_code);
  2105. } else {
  2106. vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
  2107. exit_code);
  2108. dump_ghcb(svm);
  2109. }
  2110. ghcb_set_sw_exit_info_1(ghcb, 2);
  2111. ghcb_set_sw_exit_info_2(ghcb, reason);
  2112. /* Resume the guest to "return" the error code. */
  2113. return 1;
  2114. }
  2115. void sev_es_unmap_ghcb(struct vcpu_svm *svm)
  2116. {
  2117. if (!svm->sev_es.ghcb)
  2118. return;
  2119. if (svm->sev_es.ghcb_sa_free) {
  2120. /*
  2121. * The scratch area lives outside the GHCB, so there is a
  2122. * buffer that, depending on the operation performed, may
  2123. * need to be synced, then freed.
  2124. */
  2125. if (svm->sev_es.ghcb_sa_sync) {
  2126. kvm_write_guest(svm->vcpu.kvm,
  2127. svm->sev_es.sw_scratch,
  2128. svm->sev_es.ghcb_sa,
  2129. svm->sev_es.ghcb_sa_len);
  2130. svm->sev_es.ghcb_sa_sync = false;
  2131. }
  2132. kvfree(svm->sev_es.ghcb_sa);
  2133. svm->sev_es.ghcb_sa = NULL;
  2134. svm->sev_es.ghcb_sa_free = false;
  2135. }
  2136. trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
  2137. sev_es_sync_to_ghcb(svm);
  2138. kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
  2139. svm->sev_es.ghcb = NULL;
  2140. }
  2141. void pre_sev_run(struct vcpu_svm *svm, int cpu)
  2142. {
  2143. struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
  2144. int asid = sev_get_asid(svm->vcpu.kvm);
  2145. /* Assign the asid allocated with this SEV guest */
  2146. svm->asid = asid;
  2147. /*
  2148. * Flush guest TLB:
  2149. *
  2150. * 1) when different VMCB for the same ASID is to be run on the same host CPU.
  2151. * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
  2152. */
  2153. if (sd->sev_vmcbs[asid] == svm->vmcb &&
  2154. svm->vcpu.arch.last_vmentry_cpu == cpu)
  2155. return;
  2156. sd->sev_vmcbs[asid] = svm->vmcb;
  2157. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
  2158. vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
  2159. }
  2160. #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
  2161. static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
  2162. {
  2163. struct vmcb_control_area *control = &svm->vmcb->control;
  2164. struct ghcb *ghcb = svm->sev_es.ghcb;
  2165. u64 ghcb_scratch_beg, ghcb_scratch_end;
  2166. u64 scratch_gpa_beg, scratch_gpa_end;
  2167. void *scratch_va;
  2168. scratch_gpa_beg = svm->sev_es.sw_scratch;
  2169. if (!scratch_gpa_beg) {
  2170. pr_err("vmgexit: scratch gpa not provided\n");
  2171. goto e_scratch;
  2172. }
  2173. scratch_gpa_end = scratch_gpa_beg + len;
  2174. if (scratch_gpa_end < scratch_gpa_beg) {
  2175. pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
  2176. len, scratch_gpa_beg);
  2177. goto e_scratch;
  2178. }
  2179. if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
  2180. /* Scratch area begins within GHCB */
  2181. ghcb_scratch_beg = control->ghcb_gpa +
  2182. offsetof(struct ghcb, shared_buffer);
  2183. ghcb_scratch_end = control->ghcb_gpa +
  2184. offsetof(struct ghcb, reserved_1);
  2185. /*
  2186. * If the scratch area begins within the GHCB, it must be
  2187. * completely contained in the GHCB shared buffer area.
  2188. */
  2189. if (scratch_gpa_beg < ghcb_scratch_beg ||
  2190. scratch_gpa_end > ghcb_scratch_end) {
  2191. pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
  2192. scratch_gpa_beg, scratch_gpa_end);
  2193. goto e_scratch;
  2194. }
  2195. scratch_va = (void *)svm->sev_es.ghcb;
  2196. scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
  2197. } else {
  2198. /*
  2199. * The guest memory must be read into a kernel buffer, so
  2200. * limit the size
  2201. */
  2202. if (len > GHCB_SCRATCH_AREA_LIMIT) {
  2203. pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
  2204. len, GHCB_SCRATCH_AREA_LIMIT);
  2205. goto e_scratch;
  2206. }
  2207. scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
  2208. if (!scratch_va)
  2209. return -ENOMEM;
  2210. if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
  2211. /* Unable to copy scratch area from guest */
  2212. pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
  2213. kvfree(scratch_va);
  2214. return -EFAULT;
  2215. }
  2216. /*
  2217. * The scratch area is outside the GHCB. The operation will
  2218. * dictate whether the buffer needs to be synced before running
  2219. * the vCPU next time (i.e. a read was requested so the data
  2220. * must be written back to the guest memory).
  2221. */
  2222. svm->sev_es.ghcb_sa_sync = sync;
  2223. svm->sev_es.ghcb_sa_free = true;
  2224. }
  2225. svm->sev_es.ghcb_sa = scratch_va;
  2226. svm->sev_es.ghcb_sa_len = len;
  2227. return 0;
  2228. e_scratch:
  2229. ghcb_set_sw_exit_info_1(ghcb, 2);
  2230. ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
  2231. return 1;
  2232. }
  2233. static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
  2234. unsigned int pos)
  2235. {
  2236. svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
  2237. svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
  2238. }
  2239. static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
  2240. {
  2241. return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
  2242. }
  2243. static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
  2244. {
  2245. svm->vmcb->control.ghcb_gpa = value;
  2246. }
  2247. static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
  2248. {
  2249. struct vmcb_control_area *control = &svm->vmcb->control;
  2250. struct kvm_vcpu *vcpu = &svm->vcpu;
  2251. u64 ghcb_info;
  2252. int ret = 1;
  2253. ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
  2254. trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
  2255. control->ghcb_gpa);
  2256. switch (ghcb_info) {
  2257. case GHCB_MSR_SEV_INFO_REQ:
  2258. set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
  2259. GHCB_VERSION_MIN,
  2260. sev_enc_bit));
  2261. break;
  2262. case GHCB_MSR_CPUID_REQ: {
  2263. u64 cpuid_fn, cpuid_reg, cpuid_value;
  2264. cpuid_fn = get_ghcb_msr_bits(svm,
  2265. GHCB_MSR_CPUID_FUNC_MASK,
  2266. GHCB_MSR_CPUID_FUNC_POS);
  2267. /* Initialize the registers needed by the CPUID intercept */
  2268. vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
  2269. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2270. ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
  2271. if (!ret) {
  2272. /* Error, keep GHCB MSR value as-is */
  2273. break;
  2274. }
  2275. cpuid_reg = get_ghcb_msr_bits(svm,
  2276. GHCB_MSR_CPUID_REG_MASK,
  2277. GHCB_MSR_CPUID_REG_POS);
  2278. if (cpuid_reg == 0)
  2279. cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
  2280. else if (cpuid_reg == 1)
  2281. cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
  2282. else if (cpuid_reg == 2)
  2283. cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
  2284. else
  2285. cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
  2286. set_ghcb_msr_bits(svm, cpuid_value,
  2287. GHCB_MSR_CPUID_VALUE_MASK,
  2288. GHCB_MSR_CPUID_VALUE_POS);
  2289. set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
  2290. GHCB_MSR_INFO_MASK,
  2291. GHCB_MSR_INFO_POS);
  2292. break;
  2293. }
  2294. case GHCB_MSR_TERM_REQ: {
  2295. u64 reason_set, reason_code;
  2296. reason_set = get_ghcb_msr_bits(svm,
  2297. GHCB_MSR_TERM_REASON_SET_MASK,
  2298. GHCB_MSR_TERM_REASON_SET_POS);
  2299. reason_code = get_ghcb_msr_bits(svm,
  2300. GHCB_MSR_TERM_REASON_MASK,
  2301. GHCB_MSR_TERM_REASON_POS);
  2302. pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
  2303. reason_set, reason_code);
  2304. vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
  2305. vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
  2306. vcpu->run->system_event.ndata = 1;
  2307. vcpu->run->system_event.data[0] = control->ghcb_gpa;
  2308. return 0;
  2309. }
  2310. default:
  2311. /* Error, keep GHCB MSR value as-is */
  2312. break;
  2313. }
  2314. trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
  2315. control->ghcb_gpa, ret);
  2316. return ret;
  2317. }
  2318. int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
  2319. {
  2320. struct vcpu_svm *svm = to_svm(vcpu);
  2321. struct vmcb_control_area *control = &svm->vmcb->control;
  2322. u64 ghcb_gpa, exit_code;
  2323. struct ghcb *ghcb;
  2324. int ret;
  2325. /* Validate the GHCB */
  2326. ghcb_gpa = control->ghcb_gpa;
  2327. if (ghcb_gpa & GHCB_MSR_INFO_MASK)
  2328. return sev_handle_vmgexit_msr_protocol(svm);
  2329. if (!ghcb_gpa) {
  2330. vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
  2331. /* Without a GHCB, just return right back to the guest */
  2332. return 1;
  2333. }
  2334. if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
  2335. /* Unable to map GHCB from guest */
  2336. vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
  2337. ghcb_gpa);
  2338. /* Without a GHCB, just return right back to the guest */
  2339. return 1;
  2340. }
  2341. svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
  2342. ghcb = svm->sev_es.ghcb_map.hva;
  2343. trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
  2344. sev_es_sync_from_ghcb(svm);
  2345. ret = sev_es_validate_vmgexit(svm);
  2346. if (ret)
  2347. return ret;
  2348. ghcb_set_sw_exit_info_1(ghcb, 0);
  2349. ghcb_set_sw_exit_info_2(ghcb, 0);
  2350. exit_code = kvm_ghcb_get_sw_exit_code(control);
  2351. switch (exit_code) {
  2352. case SVM_VMGEXIT_MMIO_READ:
  2353. ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
  2354. if (ret)
  2355. break;
  2356. ret = kvm_sev_es_mmio_read(vcpu,
  2357. control->exit_info_1,
  2358. control->exit_info_2,
  2359. svm->sev_es.ghcb_sa);
  2360. break;
  2361. case SVM_VMGEXIT_MMIO_WRITE:
  2362. ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
  2363. if (ret)
  2364. break;
  2365. ret = kvm_sev_es_mmio_write(vcpu,
  2366. control->exit_info_1,
  2367. control->exit_info_2,
  2368. svm->sev_es.ghcb_sa);
  2369. break;
  2370. case SVM_VMGEXIT_NMI_COMPLETE:
  2371. ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
  2372. break;
  2373. case SVM_VMGEXIT_AP_HLT_LOOP:
  2374. ret = kvm_emulate_ap_reset_hold(vcpu);
  2375. break;
  2376. case SVM_VMGEXIT_AP_JUMP_TABLE: {
  2377. struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
  2378. switch (control->exit_info_1) {
  2379. case 0:
  2380. /* Set AP jump table address */
  2381. sev->ap_jump_table = control->exit_info_2;
  2382. break;
  2383. case 1:
  2384. /* Get AP jump table address */
  2385. ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
  2386. break;
  2387. default:
  2388. pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
  2389. control->exit_info_1);
  2390. ghcb_set_sw_exit_info_1(ghcb, 2);
  2391. ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
  2392. }
  2393. ret = 1;
  2394. break;
  2395. }
  2396. case SVM_VMGEXIT_UNSUPPORTED_EVENT:
  2397. vcpu_unimpl(vcpu,
  2398. "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
  2399. control->exit_info_1, control->exit_info_2);
  2400. ret = -EINVAL;
  2401. break;
  2402. default:
  2403. ret = svm_invoke_exit_handler(vcpu, exit_code);
  2404. }
  2405. return ret;
  2406. }
  2407. int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
  2408. {
  2409. int count;
  2410. int bytes;
  2411. int r;
  2412. if (svm->vmcb->control.exit_info_2 > INT_MAX)
  2413. return -EINVAL;
  2414. count = svm->vmcb->control.exit_info_2;
  2415. if (unlikely(check_mul_overflow(count, size, &bytes)))
  2416. return -EINVAL;
  2417. r = setup_vmgexit_scratch(svm, in, bytes);
  2418. if (r)
  2419. return r;
  2420. return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
  2421. count, in);
  2422. }
  2423. static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
  2424. {
  2425. struct kvm_vcpu *vcpu = &svm->vcpu;
  2426. if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
  2427. bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
  2428. guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
  2429. set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
  2430. }
  2431. }
  2432. void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
  2433. {
  2434. struct kvm_vcpu *vcpu = &svm->vcpu;
  2435. struct kvm_cpuid_entry2 *best;
  2436. /* For sev guests, the memory encryption bit is not reserved in CR3. */
  2437. best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
  2438. if (best)
  2439. vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
  2440. if (sev_es_guest(svm->vcpu.kvm))
  2441. sev_es_vcpu_after_set_cpuid(svm);
  2442. }
  2443. static void sev_es_init_vmcb(struct vcpu_svm *svm)
  2444. {
  2445. struct kvm_vcpu *vcpu = &svm->vcpu;
  2446. svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
  2447. svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
  2448. /*
  2449. * An SEV-ES guest requires a VMSA area that is a separate from the
  2450. * VMCB page. Do not include the encryption mask on the VMSA physical
  2451. * address since hardware will access it using the guest key. Note,
  2452. * the VMSA will be NULL if this vCPU is the destination for intrahost
  2453. * migration, and will be copied later.
  2454. */
  2455. if (svm->sev_es.vmsa)
  2456. svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
  2457. /* Can't intercept CR register access, HV can't modify CR registers */
  2458. svm_clr_intercept(svm, INTERCEPT_CR0_READ);
  2459. svm_clr_intercept(svm, INTERCEPT_CR4_READ);
  2460. svm_clr_intercept(svm, INTERCEPT_CR8_READ);
  2461. svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
  2462. svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
  2463. svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
  2464. svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
  2465. /* Track EFER/CR register changes */
  2466. svm_set_intercept(svm, TRAP_EFER_WRITE);
  2467. svm_set_intercept(svm, TRAP_CR0_WRITE);
  2468. svm_set_intercept(svm, TRAP_CR4_WRITE);
  2469. svm_set_intercept(svm, TRAP_CR8_WRITE);
  2470. /* No support for enable_vmware_backdoor */
  2471. clr_exception_intercept(svm, GP_VECTOR);
  2472. /* Can't intercept XSETBV, HV can't modify XCR0 directly */
  2473. svm_clr_intercept(svm, INTERCEPT_XSETBV);
  2474. /* Clear intercepts on selected MSRs */
  2475. set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
  2476. set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
  2477. set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  2478. set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  2479. set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  2480. set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  2481. }
  2482. void sev_init_vmcb(struct vcpu_svm *svm)
  2483. {
  2484. svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
  2485. clr_exception_intercept(svm, UD_VECTOR);
  2486. if (sev_es_guest(svm->vcpu.kvm))
  2487. sev_es_init_vmcb(svm);
  2488. }
  2489. void sev_es_vcpu_reset(struct vcpu_svm *svm)
  2490. {
  2491. /*
  2492. * Set the GHCB MSR value as per the GHCB specification when emulating
  2493. * vCPU RESET for an SEV-ES guest.
  2494. */
  2495. set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
  2496. GHCB_VERSION_MIN,
  2497. sev_enc_bit));
  2498. }
  2499. void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
  2500. {
  2501. /*
  2502. * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
  2503. * of which one step is to perform a VMLOAD. KVM performs the
  2504. * corresponding VMSAVE in svm_prepare_guest_switch for both
  2505. * traditional and SEV-ES guests.
  2506. */
  2507. /* XCR0 is restored on VMEXIT, save the current host value */
  2508. hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  2509. /* PKRU is restored on VMEXIT, save the current host value */
  2510. hostsa->pkru = read_pkru();
  2511. /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
  2512. hostsa->xss = host_xss;
  2513. }
  2514. void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
  2515. {
  2516. struct vcpu_svm *svm = to_svm(vcpu);
  2517. /* First SIPI: Use the values as initially set by the VMM */
  2518. if (!svm->sev_es.received_first_sipi) {
  2519. svm->sev_es.received_first_sipi = true;
  2520. return;
  2521. }
  2522. /*
  2523. * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
  2524. * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
  2525. * non-zero value.
  2526. */
  2527. if (!svm->sev_es.ghcb)
  2528. return;
  2529. ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
  2530. }