reverse_cpuid.h 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
  3. #define ARCH_X86_KVM_REVERSE_CPUID_H
  4. #include <uapi/asm/kvm.h>
  5. #include <asm/cpufeature.h>
  6. #include <asm/cpufeatures.h>
  7. /*
  8. * Hardware-defined CPUID leafs that are scattered in the kernel, but need to
  9. * be directly used by KVM. Note, these word values conflict with the kernel's
  10. * "bug" caps, but KVM doesn't use those.
  11. */
  12. enum kvm_only_cpuid_leafs {
  13. CPUID_12_EAX = NCAPINTS,
  14. NR_KVM_CPU_CAPS,
  15. NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
  16. };
  17. #define KVM_X86_FEATURE(w, f) ((w)*32 + (f))
  18. /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
  19. #define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0)
  20. #define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1)
  21. struct cpuid_reg {
  22. u32 function;
  23. u32 index;
  24. int reg;
  25. };
  26. static const struct cpuid_reg reverse_cpuid[] = {
  27. [CPUID_1_EDX] = { 1, 0, CPUID_EDX},
  28. [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
  29. [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
  30. [CPUID_1_ECX] = { 1, 0, CPUID_ECX},
  31. [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
  32. [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
  33. [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX},
  34. [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX},
  35. [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
  36. [CPUID_6_EAX] = { 6, 0, CPUID_EAX},
  37. [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
  38. [CPUID_7_ECX] = { 7, 0, CPUID_ECX},
  39. [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
  40. [CPUID_7_EDX] = { 7, 0, CPUID_EDX},
  41. [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX},
  42. [CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX},
  43. [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
  44. [CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
  45. };
  46. /*
  47. * Reverse CPUID and its derivatives can only be used for hardware-defined
  48. * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
  49. * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
  50. * is nonsensical as the bit number/mask is an arbitrary software-defined value
  51. * and can't be used by KVM to query/control guest capabilities. And obviously
  52. * the leaf being queried must have an entry in the lookup table.
  53. */
  54. static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
  55. {
  56. BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
  57. BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
  58. BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
  59. BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
  60. BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
  61. BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
  62. }
  63. /*
  64. * Translate feature bits that are scattered in the kernel's cpufeatures word
  65. * into KVM feature words that align with hardware's definitions.
  66. */
  67. static __always_inline u32 __feature_translate(int x86_feature)
  68. {
  69. if (x86_feature == X86_FEATURE_SGX1)
  70. return KVM_X86_FEATURE_SGX1;
  71. else if (x86_feature == X86_FEATURE_SGX2)
  72. return KVM_X86_FEATURE_SGX2;
  73. return x86_feature;
  74. }
  75. static __always_inline u32 __feature_leaf(int x86_feature)
  76. {
  77. return __feature_translate(x86_feature) / 32;
  78. }
  79. /*
  80. * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain
  81. * the hardware defined bit number (stored in bits 4:0) and a software defined
  82. * "word" (stored in bits 31:5). The word is used to index into arrays of
  83. * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
  84. */
  85. static __always_inline u32 __feature_bit(int x86_feature)
  86. {
  87. x86_feature = __feature_translate(x86_feature);
  88. reverse_cpuid_check(x86_feature / 32);
  89. return 1 << (x86_feature & 31);
  90. }
  91. #define feature_bit(name) __feature_bit(X86_FEATURE_##name)
  92. static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
  93. {
  94. unsigned int x86_leaf = __feature_leaf(x86_feature);
  95. reverse_cpuid_check(x86_leaf);
  96. return reverse_cpuid[x86_leaf];
  97. }
  98. static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
  99. u32 reg)
  100. {
  101. switch (reg) {
  102. case CPUID_EAX:
  103. return &entry->eax;
  104. case CPUID_EBX:
  105. return &entry->ebx;
  106. case CPUID_ECX:
  107. return &entry->ecx;
  108. case CPUID_EDX:
  109. return &entry->edx;
  110. default:
  111. BUILD_BUG();
  112. return NULL;
  113. }
  114. }
  115. static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
  116. unsigned int x86_feature)
  117. {
  118. const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
  119. return __cpuid_entry_get_reg(entry, cpuid.reg);
  120. }
  121. static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
  122. unsigned int x86_feature)
  123. {
  124. u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
  125. return *reg & __feature_bit(x86_feature);
  126. }
  127. static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
  128. unsigned int x86_feature)
  129. {
  130. return cpuid_entry_get(entry, x86_feature);
  131. }
  132. static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
  133. unsigned int x86_feature)
  134. {
  135. u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
  136. *reg &= ~__feature_bit(x86_feature);
  137. }
  138. static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
  139. unsigned int x86_feature)
  140. {
  141. u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
  142. *reg |= __feature_bit(x86_feature);
  143. }
  144. static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
  145. unsigned int x86_feature,
  146. bool set)
  147. {
  148. u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
  149. /*
  150. * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
  151. * compiler into using CMOV instead of Jcc when possible.
  152. */
  153. if (set)
  154. *reg |= __feature_bit(x86_feature);
  155. else
  156. *reg &= ~__feature_bit(x86_feature);
  157. }
  158. #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */