1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Kernel-based Virtual Machine driver for Linux
- *
- * This module enables machines with Intel VT-x extensions to run virtual
- * machines without emulation or binary translation.
- *
- * MMU support
- *
- * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2010 Red Hat, Inc. and/or its affiliates.
- *
- * Authors:
- * Yaniv Kamay <[email protected]>
- * Avi Kivity <[email protected]>
- */
- #include "irq.h"
- #include "ioapic.h"
- #include "mmu.h"
- #include "mmu_internal.h"
- #include "tdp_mmu.h"
- #include "x86.h"
- #include "kvm_cache_regs.h"
- #include "kvm_emulate.h"
- #include "cpuid.h"
- #include "spte.h"
- #include <linux/kvm_host.h>
- #include <linux/types.h>
- #include <linux/string.h>
- #include <linux/mm.h>
- #include <linux/highmem.h>
- #include <linux/moduleparam.h>
- #include <linux/export.h>
- #include <linux/swap.h>
- #include <linux/hugetlb.h>
- #include <linux/compiler.h>
- #include <linux/srcu.h>
- #include <linux/slab.h>
- #include <linux/sched/signal.h>
- #include <linux/uaccess.h>
- #include <linux/hash.h>
- #include <linux/kern_levels.h>
- #include <linux/kstrtox.h>
- #include <linux/kthread.h>
- #include <asm/page.h>
- #include <asm/memtype.h>
- #include <asm/cmpxchg.h>
- #include <asm/io.h>
- #include <asm/set_memory.h>
- #include <asm/vmx.h>
- #include <asm/kvm_page_track.h>
- #include "trace.h"
- extern bool itlb_multihit_kvm_mitigation;
- static bool nx_hugepage_mitigation_hard_disabled;
- int __read_mostly nx_huge_pages = -1;
- static uint __read_mostly nx_huge_pages_recovery_period_ms;
- #ifdef CONFIG_PREEMPT_RT
- /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
- static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
- #else
- static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
- #endif
- static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
- static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
- static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
- static const struct kernel_param_ops nx_huge_pages_ops = {
- .set = set_nx_huge_pages,
- .get = get_nx_huge_pages,
- };
- static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
- .set = set_nx_huge_pages_recovery_param,
- .get = param_get_uint,
- };
- module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
- __MODULE_PARM_TYPE(nx_huge_pages, "bool");
- module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
- &nx_huge_pages_recovery_ratio, 0644);
- __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
- module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
- &nx_huge_pages_recovery_period_ms, 0644);
- __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
- static bool __read_mostly force_flush_and_sync_on_reuse;
- module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
- /*
- * When setting this variable to true it enables Two-Dimensional-Paging
- * where the hardware walks 2 page tables:
- * 1. the guest-virtual to guest-physical
- * 2. while doing 1. it walks guest-physical to host-physical
- * If the hardware supports that we don't need to do shadow paging.
- */
- bool tdp_enabled = false;
- static int max_huge_page_level __read_mostly;
- static int tdp_root_level __read_mostly;
- static int max_tdp_level __read_mostly;
- #ifdef MMU_DEBUG
- bool dbg = 0;
- module_param(dbg, bool, 0644);
- #endif
- #define PTE_PREFETCH_NUM 8
- #include <trace/events/kvm.h>
- /* make pte_list_desc fit well in cache lines */
- #define PTE_LIST_EXT 14
- /*
- * Slight optimization of cacheline layout, by putting `more' and `spte_count'
- * at the start; then accessing it will only use one single cacheline for
- * either full (entries==PTE_LIST_EXT) case or entries<=6.
- */
- struct pte_list_desc {
- struct pte_list_desc *more;
- /*
- * Stores number of entries stored in the pte_list_desc. No need to be
- * u64 but just for easier alignment. When PTE_LIST_EXT, means full.
- */
- u64 spte_count;
- u64 *sptes[PTE_LIST_EXT];
- };
- struct kvm_shadow_walk_iterator {
- u64 addr;
- hpa_t shadow_addr;
- u64 *sptep;
- int level;
- unsigned index;
- };
- #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
- for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
- (_root), (_addr)); \
- shadow_walk_okay(&(_walker)); \
- shadow_walk_next(&(_walker)))
- #define for_each_shadow_entry(_vcpu, _addr, _walker) \
- for (shadow_walk_init(&(_walker), _vcpu, _addr); \
- shadow_walk_okay(&(_walker)); \
- shadow_walk_next(&(_walker)))
- #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
- for (shadow_walk_init(&(_walker), _vcpu, _addr); \
- shadow_walk_okay(&(_walker)) && \
- ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
- __shadow_walk_next(&(_walker), spte))
- static struct kmem_cache *pte_list_desc_cache;
- struct kmem_cache *mmu_page_header_cache;
- static struct percpu_counter kvm_total_used_mmu_pages;
- static void mmu_spte_set(u64 *sptep, u64 spte);
- struct kvm_mmu_role_regs {
- const unsigned long cr0;
- const unsigned long cr4;
- const u64 efer;
- };
- #define CREATE_TRACE_POINTS
- #include "mmutrace.h"
- /*
- * Yes, lot's of underscores. They're a hint that you probably shouldn't be
- * reading from the role_regs. Once the root_role is constructed, it becomes
- * the single source of truth for the MMU's state.
- */
- #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
- static inline bool __maybe_unused \
- ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \
- { \
- return !!(regs->reg & flag); \
- }
- BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
- BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
- BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
- BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
- BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
- BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
- BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
- BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
- BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
- BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
- /*
- * The MMU itself (with a valid role) is the single source of truth for the
- * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
- * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
- * and the vCPU may be incorrect/irrelevant.
- */
- #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
- static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
- { \
- return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
- }
- BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
- BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
- BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
- BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
- BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
- BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
- BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
- BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma);
- static inline bool is_cr0_pg(struct kvm_mmu *mmu)
- {
- return mmu->cpu_role.base.level > 0;
- }
- static inline bool is_cr4_pae(struct kvm_mmu *mmu)
- {
- return !mmu->cpu_role.base.has_4_byte_gpte;
- }
- static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
- {
- struct kvm_mmu_role_regs regs = {
- .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
- .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
- .efer = vcpu->arch.efer,
- };
- return regs;
- }
- static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
- {
- return kvm_read_cr3(vcpu);
- }
- static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
- struct kvm_mmu *mmu)
- {
- if (IS_ENABLED(CONFIG_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
- return kvm_read_cr3(vcpu);
- return mmu->get_guest_pgd(vcpu);
- }
- static inline bool kvm_available_flush_tlb_with_range(void)
- {
- return kvm_x86_ops.tlb_remote_flush_with_range;
- }
- static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
- struct kvm_tlb_range *range)
- {
- int ret = -ENOTSUPP;
- if (range && kvm_x86_ops.tlb_remote_flush_with_range)
- ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
- if (ret)
- kvm_flush_remote_tlbs(kvm);
- }
- void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
- u64 start_gfn, u64 pages)
- {
- struct kvm_tlb_range range;
- range.start_gfn = start_gfn;
- range.pages = pages;
- kvm_flush_remote_tlbs_with_range(kvm, &range);
- }
- static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
- unsigned int access)
- {
- u64 spte = make_mmio_spte(vcpu, gfn, access);
- trace_mark_mmio_spte(sptep, gfn, spte);
- mmu_spte_set(sptep, spte);
- }
- static gfn_t get_mmio_spte_gfn(u64 spte)
- {
- u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
- gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
- & shadow_nonpresent_or_rsvd_mask;
- return gpa >> PAGE_SHIFT;
- }
- static unsigned get_mmio_spte_access(u64 spte)
- {
- return spte & shadow_mmio_access_mask;
- }
- static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
- {
- u64 kvm_gen, spte_gen, gen;
- gen = kvm_vcpu_memslots(vcpu)->generation;
- if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
- return false;
- kvm_gen = gen & MMIO_SPTE_GEN_MASK;
- spte_gen = get_mmio_spte_generation(spte);
- trace_check_mmio_spte(spte, kvm_gen, spte_gen);
- return likely(kvm_gen == spte_gen);
- }
- static int is_cpuid_PSE36(void)
- {
- return 1;
- }
- #ifdef CONFIG_X86_64
- static void __set_spte(u64 *sptep, u64 spte)
- {
- WRITE_ONCE(*sptep, spte);
- }
- static void __update_clear_spte_fast(u64 *sptep, u64 spte)
- {
- WRITE_ONCE(*sptep, spte);
- }
- static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
- {
- return xchg(sptep, spte);
- }
- static u64 __get_spte_lockless(u64 *sptep)
- {
- return READ_ONCE(*sptep);
- }
- #else
- union split_spte {
- struct {
- u32 spte_low;
- u32 spte_high;
- };
- u64 spte;
- };
- static void count_spte_clear(u64 *sptep, u64 spte)
- {
- struct kvm_mmu_page *sp = sptep_to_sp(sptep);
- if (is_shadow_present_pte(spte))
- return;
- /* Ensure the spte is completely set before we increase the count */
- smp_wmb();
- sp->clear_spte_count++;
- }
- static void __set_spte(u64 *sptep, u64 spte)
- {
- union split_spte *ssptep, sspte;
- ssptep = (union split_spte *)sptep;
- sspte = (union split_spte)spte;
- ssptep->spte_high = sspte.spte_high;
- /*
- * If we map the spte from nonpresent to present, We should store
- * the high bits firstly, then set present bit, so cpu can not
- * fetch this spte while we are setting the spte.
- */
- smp_wmb();
- WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
- }
- static void __update_clear_spte_fast(u64 *sptep, u64 spte)
- {
- union split_spte *ssptep, sspte;
- ssptep = (union split_spte *)sptep;
- sspte = (union split_spte)spte;
- WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
- /*
- * If we map the spte from present to nonpresent, we should clear
- * present bit firstly to avoid vcpu fetch the old high bits.
- */
- smp_wmb();
- ssptep->spte_high = sspte.spte_high;
- count_spte_clear(sptep, spte);
- }
- static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
- {
- union split_spte *ssptep, sspte, orig;
- ssptep = (union split_spte *)sptep;
- sspte = (union split_spte)spte;
- /* xchg acts as a barrier before the setting of the high bits */
- orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
- orig.spte_high = ssptep->spte_high;
- ssptep->spte_high = sspte.spte_high;
- count_spte_clear(sptep, spte);
- return orig.spte;
- }
- /*
- * The idea using the light way get the spte on x86_32 guest is from
- * gup_get_pte (mm/gup.c).
- *
- * An spte tlb flush may be pending, because kvm_set_pte_rmap
- * coalesces them and we are running out of the MMU lock. Therefore
- * we need to protect against in-progress updates of the spte.
- *
- * Reading the spte while an update is in progress may get the old value
- * for the high part of the spte. The race is fine for a present->non-present
- * change (because the high part of the spte is ignored for non-present spte),
- * but for a present->present change we must reread the spte.
- *
- * All such changes are done in two steps (present->non-present and
- * non-present->present), hence it is enough to count the number of
- * present->non-present updates: if it changed while reading the spte,
- * we might have hit the race. This is done using clear_spte_count.
- */
- static u64 __get_spte_lockless(u64 *sptep)
- {
- struct kvm_mmu_page *sp = sptep_to_sp(sptep);
- union split_spte spte, *orig = (union split_spte *)sptep;
- int count;
- retry:
- count = sp->clear_spte_count;
- smp_rmb();
- spte.spte_low = orig->spte_low;
- smp_rmb();
- spte.spte_high = orig->spte_high;
- smp_rmb();
- if (unlikely(spte.spte_low != orig->spte_low ||
- count != sp->clear_spte_count))
- goto retry;
- return spte.spte;
- }
- #endif
- /* Rules for using mmu_spte_set:
- * Set the sptep from nonpresent to present.
- * Note: the sptep being assigned *must* be either not present
- * or in a state where the hardware will not attempt to update
- * the spte.
- */
- static void mmu_spte_set(u64 *sptep, u64 new_spte)
- {
- WARN_ON(is_shadow_present_pte(*sptep));
- __set_spte(sptep, new_spte);
- }
- /*
- * Update the SPTE (excluding the PFN), but do not track changes in its
- * accessed/dirty status.
- */
- static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
- {
- u64 old_spte = *sptep;
- WARN_ON(!is_shadow_present_pte(new_spte));
- check_spte_writable_invariants(new_spte);
- if (!is_shadow_present_pte(old_spte)) {
- mmu_spte_set(sptep, new_spte);
- return old_spte;
- }
- if (!spte_has_volatile_bits(old_spte))
- __update_clear_spte_fast(sptep, new_spte);
- else
- old_spte = __update_clear_spte_slow(sptep, new_spte);
- WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
- return old_spte;
- }
- /* Rules for using mmu_spte_update:
- * Update the state bits, it means the mapped pfn is not changed.
- *
- * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
- * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
- * spte, even though the writable spte might be cached on a CPU's TLB.
- *
- * Returns true if the TLB needs to be flushed
- */
- static bool mmu_spte_update(u64 *sptep, u64 new_spte)
- {
- bool flush = false;
- u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
- if (!is_shadow_present_pte(old_spte))
- return false;
- /*
- * For the spte updated out of mmu-lock is safe, since
- * we always atomically update it, see the comments in
- * spte_has_volatile_bits().
- */
- if (is_mmu_writable_spte(old_spte) &&
- !is_writable_pte(new_spte))
- flush = true;
- /*
- * Flush TLB when accessed/dirty states are changed in the page tables,
- * to guarantee consistency between TLB and page tables.
- */
- if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
- flush = true;
- kvm_set_pfn_accessed(spte_to_pfn(old_spte));
- }
- if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
- flush = true;
- kvm_set_pfn_dirty(spte_to_pfn(old_spte));
- }
- return flush;
- }
- /*
- * Rules for using mmu_spte_clear_track_bits:
- * It sets the sptep from present to nonpresent, and track the
- * state bits, it is used to clear the last level sptep.
- * Returns the old PTE.
- */
- static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
- {
- kvm_pfn_t pfn;
- u64 old_spte = *sptep;
- int level = sptep_to_sp(sptep)->role.level;
- struct page *page;
- if (!is_shadow_present_pte(old_spte) ||
- !spte_has_volatile_bits(old_spte))
- __update_clear_spte_fast(sptep, 0ull);
- else
- old_spte = __update_clear_spte_slow(sptep, 0ull);
- if (!is_shadow_present_pte(old_spte))
- return old_spte;
- kvm_update_page_stats(kvm, level, -1);
- pfn = spte_to_pfn(old_spte);
- /*
- * KVM doesn't hold a reference to any pages mapped into the guest, and
- * instead uses the mmu_notifier to ensure that KVM unmaps any pages
- * before they are reclaimed. Sanity check that, if the pfn is backed
- * by a refcounted page, the refcount is elevated.
- */
- page = kvm_pfn_to_refcounted_page(pfn);
- WARN_ON(page && !page_count(page));
- if (is_accessed_spte(old_spte))
- kvm_set_pfn_accessed(pfn);
- if (is_dirty_spte(old_spte))
- kvm_set_pfn_dirty(pfn);
- return old_spte;
- }
- /*
- * Rules for using mmu_spte_clear_no_track:
- * Directly clear spte without caring the state bits of sptep,
- * it is used to set the upper level spte.
- */
- static void mmu_spte_clear_no_track(u64 *sptep)
- {
- __update_clear_spte_fast(sptep, 0ull);
- }
- static u64 mmu_spte_get_lockless(u64 *sptep)
- {
- return __get_spte_lockless(sptep);
- }
- /* Returns the Accessed status of the PTE and resets it at the same time. */
- static bool mmu_spte_age(u64 *sptep)
- {
- u64 spte = mmu_spte_get_lockless(sptep);
- if (!is_accessed_spte(spte))
- return false;
- if (spte_ad_enabled(spte)) {
- clear_bit((ffs(shadow_accessed_mask) - 1),
- (unsigned long *)sptep);
- } else {
- /*
- * Capture the dirty status of the page, so that it doesn't get
- * lost when the SPTE is marked for access tracking.
- */
- if (is_writable_pte(spte))
- kvm_set_pfn_dirty(spte_to_pfn(spte));
- spte = mark_spte_for_access_track(spte);
- mmu_spte_update_no_track(sptep, spte);
- }
- return true;
- }
- static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
- {
- if (is_tdp_mmu(vcpu->arch.mmu)) {
- kvm_tdp_mmu_walk_lockless_begin();
- } else {
- /*
- * Prevent page table teardown by making any free-er wait during
- * kvm_flush_remote_tlbs() IPI to all active vcpus.
- */
- local_irq_disable();
- /*
- * Make sure a following spte read is not reordered ahead of the write
- * to vcpu->mode.
- */
- smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
- }
- }
- static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
- {
- if (is_tdp_mmu(vcpu->arch.mmu)) {
- kvm_tdp_mmu_walk_lockless_end();
- } else {
- /*
- * Make sure the write to vcpu->mode is not reordered in front of
- * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
- * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
- */
- smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
- local_irq_enable();
- }
- }
- static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
- {
- int r;
- /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
- r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
- 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
- if (r)
- return r;
- r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
- PT64_ROOT_MAX_LEVEL);
- if (r)
- return r;
- if (maybe_indirect) {
- r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
- PT64_ROOT_MAX_LEVEL);
- if (r)
- return r;
- }
- return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
- PT64_ROOT_MAX_LEVEL);
- }
- static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
- {
- kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
- kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
- kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
- kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
- }
- static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
- {
- kmem_cache_free(pte_list_desc_cache, pte_list_desc);
- }
- static bool sp_has_gptes(struct kvm_mmu_page *sp);
- static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
- {
- if (sp->role.passthrough)
- return sp->gfn;
- if (!sp->role.direct)
- return sp->shadowed_translation[index] >> PAGE_SHIFT;
- return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
- }
- /*
- * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
- * that the SPTE itself may have a more constrained access permissions that
- * what the guest enforces. For example, a guest may create an executable
- * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
- */
- static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
- {
- if (sp_has_gptes(sp))
- return sp->shadowed_translation[index] & ACC_ALL;
- /*
- * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
- * KVM is not shadowing any guest page tables, so the "guest access
- * permissions" are just ACC_ALL.
- *
- * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
- * is shadowing a guest huge page with small pages, the guest access
- * permissions being shadowed are the access permissions of the huge
- * page.
- *
- * In both cases, sp->role.access contains the correct access bits.
- */
- return sp->role.access;
- }
- static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
- gfn_t gfn, unsigned int access)
- {
- if (sp_has_gptes(sp)) {
- sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
- return;
- }
- WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
- "access mismatch under %s page %llx (expected %u, got %u)\n",
- sp->role.passthrough ? "passthrough" : "direct",
- sp->gfn, kvm_mmu_page_get_access(sp, index), access);
- WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
- "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
- sp->role.passthrough ? "passthrough" : "direct",
- sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
- }
- static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
- unsigned int access)
- {
- gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
- kvm_mmu_page_set_translation(sp, index, gfn, access);
- }
- /*
- * Return the pointer to the large page information for a given gfn,
- * handling slots that are not large page aligned.
- */
- static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
- const struct kvm_memory_slot *slot, int level)
- {
- unsigned long idx;
- idx = gfn_to_index(gfn, slot->base_gfn, level);
- return &slot->arch.lpage_info[level - 2][idx];
- }
- static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
- gfn_t gfn, int count)
- {
- struct kvm_lpage_info *linfo;
- int i;
- for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
- linfo = lpage_info_slot(gfn, slot, i);
- linfo->disallow_lpage += count;
- WARN_ON(linfo->disallow_lpage < 0);
- }
- }
- void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
- {
- update_gfn_disallow_lpage_count(slot, gfn, 1);
- }
- void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
- {
- update_gfn_disallow_lpage_count(slot, gfn, -1);
- }
- static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
- {
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
- gfn_t gfn;
- kvm->arch.indirect_shadow_pages++;
- gfn = sp->gfn;
- slots = kvm_memslots_for_spte_role(kvm, sp->role);
- slot = __gfn_to_memslot(slots, gfn);
- /* the non-leaf shadow pages are keeping readonly. */
- if (sp->role.level > PG_LEVEL_4K)
- return kvm_slot_page_track_add_page(kvm, slot, gfn,
- KVM_PAGE_TRACK_WRITE);
- kvm_mmu_gfn_disallow_lpage(slot, gfn);
- if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
- kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
- }
- void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
- {
- if (sp->lpage_disallowed)
- return;
- ++kvm->stat.nx_lpage_splits;
- list_add_tail(&sp->lpage_disallowed_link,
- &kvm->arch.lpage_disallowed_mmu_pages);
- sp->lpage_disallowed = true;
- }
- static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
- {
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
- gfn_t gfn;
- kvm->arch.indirect_shadow_pages--;
- gfn = sp->gfn;
- slots = kvm_memslots_for_spte_role(kvm, sp->role);
- slot = __gfn_to_memslot(slots, gfn);
- if (sp->role.level > PG_LEVEL_4K)
- return kvm_slot_page_track_remove_page(kvm, slot, gfn,
- KVM_PAGE_TRACK_WRITE);
- kvm_mmu_gfn_allow_lpage(slot, gfn);
- }
- void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
- {
- --kvm->stat.nx_lpage_splits;
- sp->lpage_disallowed = false;
- list_del(&sp->lpage_disallowed_link);
- }
- static struct kvm_memory_slot *
- gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
- bool no_dirty_log)
- {
- struct kvm_memory_slot *slot;
- slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
- if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
- return NULL;
- if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
- return NULL;
- return slot;
- }
- /*
- * About rmap_head encoding:
- *
- * If the bit zero of rmap_head->val is clear, then it points to the only spte
- * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
- * pte_list_desc containing more mappings.
- */
- /*
- * Returns the number of pointers in the rmap chain, not counting the new one.
- */
- static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
- struct kvm_rmap_head *rmap_head)
- {
- struct pte_list_desc *desc;
- int count = 0;
- if (!rmap_head->val) {
- rmap_printk("%p %llx 0->1\n", spte, *spte);
- rmap_head->val = (unsigned long)spte;
- } else if (!(rmap_head->val & 1)) {
- rmap_printk("%p %llx 1->many\n", spte, *spte);
- desc = kvm_mmu_memory_cache_alloc(cache);
- desc->sptes[0] = (u64 *)rmap_head->val;
- desc->sptes[1] = spte;
- desc->spte_count = 2;
- rmap_head->val = (unsigned long)desc | 1;
- ++count;
- } else {
- rmap_printk("%p %llx many->many\n", spte, *spte);
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- while (desc->spte_count == PTE_LIST_EXT) {
- count += PTE_LIST_EXT;
- if (!desc->more) {
- desc->more = kvm_mmu_memory_cache_alloc(cache);
- desc = desc->more;
- desc->spte_count = 0;
- break;
- }
- desc = desc->more;
- }
- count += desc->spte_count;
- desc->sptes[desc->spte_count++] = spte;
- }
- return count;
- }
- static void
- pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
- struct pte_list_desc *desc, int i,
- struct pte_list_desc *prev_desc)
- {
- int j = desc->spte_count - 1;
- desc->sptes[i] = desc->sptes[j];
- desc->sptes[j] = NULL;
- desc->spte_count--;
- if (desc->spte_count)
- return;
- if (!prev_desc && !desc->more)
- rmap_head->val = 0;
- else
- if (prev_desc)
- prev_desc->more = desc->more;
- else
- rmap_head->val = (unsigned long)desc->more | 1;
- mmu_free_pte_list_desc(desc);
- }
- static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
- {
- struct pte_list_desc *desc;
- struct pte_list_desc *prev_desc;
- int i;
- if (!rmap_head->val) {
- pr_err("%s: %p 0->BUG\n", __func__, spte);
- BUG();
- } else if (!(rmap_head->val & 1)) {
- rmap_printk("%p 1->0\n", spte);
- if ((u64 *)rmap_head->val != spte) {
- pr_err("%s: %p 1->BUG\n", __func__, spte);
- BUG();
- }
- rmap_head->val = 0;
- } else {
- rmap_printk("%p many->many\n", spte);
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- prev_desc = NULL;
- while (desc) {
- for (i = 0; i < desc->spte_count; ++i) {
- if (desc->sptes[i] == spte) {
- pte_list_desc_remove_entry(rmap_head,
- desc, i, prev_desc);
- return;
- }
- }
- prev_desc = desc;
- desc = desc->more;
- }
- pr_err("%s: %p many->many\n", __func__, spte);
- BUG();
- }
- }
- static void kvm_zap_one_rmap_spte(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head, u64 *sptep)
- {
- mmu_spte_clear_track_bits(kvm, sptep);
- pte_list_remove(sptep, rmap_head);
- }
- /* Return true if at least one SPTE was zapped, false otherwise */
- static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head)
- {
- struct pte_list_desc *desc, *next;
- int i;
- if (!rmap_head->val)
- return false;
- if (!(rmap_head->val & 1)) {
- mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
- goto out;
- }
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- for (; desc; desc = next) {
- for (i = 0; i < desc->spte_count; i++)
- mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
- next = desc->more;
- mmu_free_pte_list_desc(desc);
- }
- out:
- /* rmap_head is meaningless now, remember to reset it */
- rmap_head->val = 0;
- return true;
- }
- unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
- {
- struct pte_list_desc *desc;
- unsigned int count = 0;
- if (!rmap_head->val)
- return 0;
- else if (!(rmap_head->val & 1))
- return 1;
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- while (desc) {
- count += desc->spte_count;
- desc = desc->more;
- }
- return count;
- }
- static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
- const struct kvm_memory_slot *slot)
- {
- unsigned long idx;
- idx = gfn_to_index(gfn, slot->base_gfn, level);
- return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
- }
- static bool rmap_can_add(struct kvm_vcpu *vcpu)
- {
- struct kvm_mmu_memory_cache *mc;
- mc = &vcpu->arch.mmu_pte_list_desc_cache;
- return kvm_mmu_memory_cache_nr_free_objects(mc);
- }
- static void rmap_remove(struct kvm *kvm, u64 *spte)
- {
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
- struct kvm_mmu_page *sp;
- gfn_t gfn;
- struct kvm_rmap_head *rmap_head;
- sp = sptep_to_sp(spte);
- gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
- /*
- * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
- * so we have to determine which memslots to use based on context
- * information in sp->role.
- */
- slots = kvm_memslots_for_spte_role(kvm, sp->role);
- slot = __gfn_to_memslot(slots, gfn);
- rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
- pte_list_remove(spte, rmap_head);
- }
- /*
- * Used by the following functions to iterate through the sptes linked by a
- * rmap. All fields are private and not assumed to be used outside.
- */
- struct rmap_iterator {
- /* private fields */
- struct pte_list_desc *desc; /* holds the sptep if not NULL */
- int pos; /* index of the sptep */
- };
- /*
- * Iteration must be started by this function. This should also be used after
- * removing/dropping sptes from the rmap link because in such cases the
- * information in the iterator may not be valid.
- *
- * Returns sptep if found, NULL otherwise.
- */
- static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
- struct rmap_iterator *iter)
- {
- u64 *sptep;
- if (!rmap_head->val)
- return NULL;
- if (!(rmap_head->val & 1)) {
- iter->desc = NULL;
- sptep = (u64 *)rmap_head->val;
- goto out;
- }
- iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- iter->pos = 0;
- sptep = iter->desc->sptes[iter->pos];
- out:
- BUG_ON(!is_shadow_present_pte(*sptep));
- return sptep;
- }
- /*
- * Must be used with a valid iterator: e.g. after rmap_get_first().
- *
- * Returns sptep if found, NULL otherwise.
- */
- static u64 *rmap_get_next(struct rmap_iterator *iter)
- {
- u64 *sptep;
- if (iter->desc) {
- if (iter->pos < PTE_LIST_EXT - 1) {
- ++iter->pos;
- sptep = iter->desc->sptes[iter->pos];
- if (sptep)
- goto out;
- }
- iter->desc = iter->desc->more;
- if (iter->desc) {
- iter->pos = 0;
- /* desc->sptes[0] cannot be NULL */
- sptep = iter->desc->sptes[iter->pos];
- goto out;
- }
- }
- return NULL;
- out:
- BUG_ON(!is_shadow_present_pte(*sptep));
- return sptep;
- }
- #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
- for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
- _spte_; _spte_ = rmap_get_next(_iter_))
- static void drop_spte(struct kvm *kvm, u64 *sptep)
- {
- u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
- if (is_shadow_present_pte(old_spte))
- rmap_remove(kvm, sptep);
- }
- static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
- {
- struct kvm_mmu_page *sp;
- sp = sptep_to_sp(sptep);
- WARN_ON(sp->role.level == PG_LEVEL_4K);
- drop_spte(kvm, sptep);
- if (flush)
- kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
- KVM_PAGES_PER_HPAGE(sp->role.level));
- }
- /*
- * Write-protect on the specified @sptep, @pt_protect indicates whether
- * spte write-protection is caused by protecting shadow page table.
- *
- * Note: write protection is difference between dirty logging and spte
- * protection:
- * - for dirty logging, the spte can be set to writable at anytime if
- * its dirty bitmap is properly set.
- * - for spte protection, the spte can be writable only after unsync-ing
- * shadow page.
- *
- * Return true if tlb need be flushed.
- */
- static bool spte_write_protect(u64 *sptep, bool pt_protect)
- {
- u64 spte = *sptep;
- if (!is_writable_pte(spte) &&
- !(pt_protect && is_mmu_writable_spte(spte)))
- return false;
- rmap_printk("spte %p %llx\n", sptep, *sptep);
- if (pt_protect)
- spte &= ~shadow_mmu_writable_mask;
- spte = spte & ~PT_WRITABLE_MASK;
- return mmu_spte_update(sptep, spte);
- }
- static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
- bool pt_protect)
- {
- u64 *sptep;
- struct rmap_iterator iter;
- bool flush = false;
- for_each_rmap_spte(rmap_head, &iter, sptep)
- flush |= spte_write_protect(sptep, pt_protect);
- return flush;
- }
- static bool spte_clear_dirty(u64 *sptep)
- {
- u64 spte = *sptep;
- rmap_printk("spte %p %llx\n", sptep, *sptep);
- MMU_WARN_ON(!spte_ad_enabled(spte));
- spte &= ~shadow_dirty_mask;
- return mmu_spte_update(sptep, spte);
- }
- static bool spte_wrprot_for_clear_dirty(u64 *sptep)
- {
- bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
- (unsigned long *)sptep);
- if (was_writable && !spte_ad_enabled(*sptep))
- kvm_set_pfn_dirty(spte_to_pfn(*sptep));
- return was_writable;
- }
- /*
- * Gets the GFN ready for another round of dirty logging by clearing the
- * - D bit on ad-enabled SPTEs, and
- * - W bit on ad-disabled SPTEs.
- * Returns true iff any D or W bits were cleared.
- */
- static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
- {
- u64 *sptep;
- struct rmap_iterator iter;
- bool flush = false;
- for_each_rmap_spte(rmap_head, &iter, sptep)
- if (spte_ad_need_write_protect(*sptep))
- flush |= spte_wrprot_for_clear_dirty(sptep);
- else
- flush |= spte_clear_dirty(sptep);
- return flush;
- }
- /**
- * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
- * @kvm: kvm instance
- * @slot: slot to protect
- * @gfn_offset: start of the BITS_PER_LONG pages we care about
- * @mask: indicates which pages we should protect
- *
- * Used when we do not need to care about huge page mappings.
- */
- static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- gfn_t gfn_offset, unsigned long mask)
- {
- struct kvm_rmap_head *rmap_head;
- if (is_tdp_mmu_enabled(kvm))
- kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
- slot->base_gfn + gfn_offset, mask, true);
- if (!kvm_memslots_have_rmaps(kvm))
- return;
- while (mask) {
- rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
- PG_LEVEL_4K, slot);
- rmap_write_protect(rmap_head, false);
- /* clear the first set bit */
- mask &= mask - 1;
- }
- }
- /**
- * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
- * protect the page if the D-bit isn't supported.
- * @kvm: kvm instance
- * @slot: slot to clear D-bit
- * @gfn_offset: start of the BITS_PER_LONG pages we care about
- * @mask: indicates which pages we should clear D-bit
- *
- * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
- */
- static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- gfn_t gfn_offset, unsigned long mask)
- {
- struct kvm_rmap_head *rmap_head;
- if (is_tdp_mmu_enabled(kvm))
- kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
- slot->base_gfn + gfn_offset, mask, false);
- if (!kvm_memslots_have_rmaps(kvm))
- return;
- while (mask) {
- rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
- PG_LEVEL_4K, slot);
- __rmap_clear_dirty(kvm, rmap_head, slot);
- /* clear the first set bit */
- mask &= mask - 1;
- }
- }
- /**
- * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
- * PT level pages.
- *
- * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
- * enable dirty logging for them.
- *
- * We need to care about huge page mappings: e.g. during dirty logging we may
- * have such mappings.
- */
- void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- gfn_t gfn_offset, unsigned long mask)
- {
- /*
- * Huge pages are NOT write protected when we start dirty logging in
- * initially-all-set mode; must write protect them here so that they
- * are split to 4K on the first write.
- *
- * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
- * of memslot has no such restriction, so the range can cross two large
- * pages.
- */
- if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
- gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
- gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
- if (READ_ONCE(eager_page_split))
- kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
- kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
- /* Cross two large pages? */
- if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
- ALIGN(end << PAGE_SHIFT, PMD_SIZE))
- kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
- PG_LEVEL_2M);
- }
- /* Now handle 4K PTEs. */
- if (kvm_x86_ops.cpu_dirty_log_size)
- kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
- else
- kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
- }
- int kvm_cpu_dirty_log_size(void)
- {
- return kvm_x86_ops.cpu_dirty_log_size;
- }
- bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
- struct kvm_memory_slot *slot, u64 gfn,
- int min_level)
- {
- struct kvm_rmap_head *rmap_head;
- int i;
- bool write_protected = false;
- if (kvm_memslots_have_rmaps(kvm)) {
- for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
- rmap_head = gfn_to_rmap(gfn, i, slot);
- write_protected |= rmap_write_protect(rmap_head, true);
- }
- }
- if (is_tdp_mmu_enabled(kvm))
- write_protected |=
- kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
- return write_protected;
- }
- static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
- {
- struct kvm_memory_slot *slot;
- slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
- return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
- }
- static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
- {
- return kvm_zap_all_rmap_sptes(kvm, rmap_head);
- }
- static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- pte_t unused)
- {
- return __kvm_zap_rmap(kvm, rmap_head, slot);
- }
- static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- pte_t pte)
- {
- u64 *sptep;
- struct rmap_iterator iter;
- bool need_flush = false;
- u64 new_spte;
- kvm_pfn_t new_pfn;
- WARN_ON(pte_huge(pte));
- new_pfn = pte_pfn(pte);
- restart:
- for_each_rmap_spte(rmap_head, &iter, sptep) {
- rmap_printk("spte %p %llx gfn %llx (%d)\n",
- sptep, *sptep, gfn, level);
- need_flush = true;
- if (pte_write(pte)) {
- kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
- goto restart;
- } else {
- new_spte = kvm_mmu_changed_pte_notifier_make_spte(
- *sptep, new_pfn);
- mmu_spte_clear_track_bits(kvm, sptep);
- mmu_spte_set(sptep, new_spte);
- }
- }
- if (need_flush && kvm_available_flush_tlb_with_range()) {
- kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
- return false;
- }
- return need_flush;
- }
- struct slot_rmap_walk_iterator {
- /* input fields. */
- const struct kvm_memory_slot *slot;
- gfn_t start_gfn;
- gfn_t end_gfn;
- int start_level;
- int end_level;
- /* output fields. */
- gfn_t gfn;
- struct kvm_rmap_head *rmap;
- int level;
- /* private field. */
- struct kvm_rmap_head *end_rmap;
- };
- static void
- rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
- {
- iterator->level = level;
- iterator->gfn = iterator->start_gfn;
- iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
- iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
- }
- static void
- slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
- const struct kvm_memory_slot *slot, int start_level,
- int end_level, gfn_t start_gfn, gfn_t end_gfn)
- {
- iterator->slot = slot;
- iterator->start_level = start_level;
- iterator->end_level = end_level;
- iterator->start_gfn = start_gfn;
- iterator->end_gfn = end_gfn;
- rmap_walk_init_level(iterator, iterator->start_level);
- }
- static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
- {
- return !!iterator->rmap;
- }
- static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
- {
- while (++iterator->rmap <= iterator->end_rmap) {
- iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
- if (iterator->rmap->val)
- return;
- }
- if (++iterator->level > iterator->end_level) {
- iterator->rmap = NULL;
- return;
- }
- rmap_walk_init_level(iterator, iterator->level);
- }
- #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
- _start_gfn, _end_gfn, _iter_) \
- for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
- _end_level_, _start_gfn, _end_gfn); \
- slot_rmap_walk_okay(_iter_); \
- slot_rmap_walk_next(_iter_))
- typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn,
- int level, pte_t pte);
- static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
- struct kvm_gfn_range *range,
- rmap_handler_t handler)
- {
- struct slot_rmap_walk_iterator iterator;
- bool ret = false;
- for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
- range->start, range->end - 1, &iterator)
- ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
- iterator.level, range->pte);
- return ret;
- }
- bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
- {
- bool flush = false;
- if (kvm_memslots_have_rmaps(kvm))
- flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
- if (is_tdp_mmu_enabled(kvm))
- flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
- return flush;
- }
- bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
- {
- bool flush = false;
- if (kvm_memslots_have_rmaps(kvm))
- flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
- if (is_tdp_mmu_enabled(kvm))
- flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
- return flush;
- }
- static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- pte_t unused)
- {
- u64 *sptep;
- struct rmap_iterator iter;
- int young = 0;
- for_each_rmap_spte(rmap_head, &iter, sptep)
- young |= mmu_spte_age(sptep);
- return young;
- }
- static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn,
- int level, pte_t unused)
- {
- u64 *sptep;
- struct rmap_iterator iter;
- for_each_rmap_spte(rmap_head, &iter, sptep)
- if (is_accessed_spte(*sptep))
- return true;
- return false;
- }
- #define RMAP_RECYCLE_THRESHOLD 1000
- static void __rmap_add(struct kvm *kvm,
- struct kvm_mmu_memory_cache *cache,
- const struct kvm_memory_slot *slot,
- u64 *spte, gfn_t gfn, unsigned int access)
- {
- struct kvm_mmu_page *sp;
- struct kvm_rmap_head *rmap_head;
- int rmap_count;
- sp = sptep_to_sp(spte);
- kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
- kvm_update_page_stats(kvm, sp->role.level, 1);
- rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
- rmap_count = pte_list_add(cache, spte, rmap_head);
- if (rmap_count > kvm->stat.max_mmu_rmap_size)
- kvm->stat.max_mmu_rmap_size = rmap_count;
- if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
- kvm_zap_all_rmap_sptes(kvm, rmap_head);
- kvm_flush_remote_tlbs_with_address(
- kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
- }
- }
- static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
- u64 *spte, gfn_t gfn, unsigned int access)
- {
- struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
- __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
- }
- bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
- {
- bool young = false;
- if (kvm_memslots_have_rmaps(kvm))
- young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
- if (is_tdp_mmu_enabled(kvm))
- young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
- return young;
- }
- bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
- {
- bool young = false;
- if (kvm_memslots_have_rmaps(kvm))
- young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
- if (is_tdp_mmu_enabled(kvm))
- young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
- return young;
- }
- #ifdef MMU_DEBUG
- static int is_empty_shadow_page(u64 *spt)
- {
- u64 *pos;
- u64 *end;
- for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
- if (is_shadow_present_pte(*pos)) {
- printk(KERN_ERR "%s: %p %llx\n", __func__,
- pos, *pos);
- return 0;
- }
- return 1;
- }
- #endif
- /*
- * This value is the sum of all of the kvm instances's
- * kvm->arch.n_used_mmu_pages values. We need a global,
- * aggregate version in order to make the slab shrinker
- * faster
- */
- static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
- {
- kvm->arch.n_used_mmu_pages += nr;
- percpu_counter_add(&kvm_total_used_mmu_pages, nr);
- }
- static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
- {
- kvm_mod_used_mmu_pages(kvm, +1);
- kvm_account_pgtable_pages((void *)sp->spt, +1);
- }
- static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
- {
- kvm_mod_used_mmu_pages(kvm, -1);
- kvm_account_pgtable_pages((void *)sp->spt, -1);
- }
- static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
- {
- MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
- hlist_del(&sp->hash_link);
- list_del(&sp->link);
- free_page((unsigned long)sp->spt);
- if (!sp->role.direct)
- free_page((unsigned long)sp->shadowed_translation);
- kmem_cache_free(mmu_page_header_cache, sp);
- }
- static unsigned kvm_page_table_hashfn(gfn_t gfn)
- {
- return hash_64(gfn, KVM_MMU_HASH_SHIFT);
- }
- static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
- struct kvm_mmu_page *sp, u64 *parent_pte)
- {
- if (!parent_pte)
- return;
- pte_list_add(cache, parent_pte, &sp->parent_ptes);
- }
- static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
- u64 *parent_pte)
- {
- pte_list_remove(parent_pte, &sp->parent_ptes);
- }
- static void drop_parent_pte(struct kvm_mmu_page *sp,
- u64 *parent_pte)
- {
- mmu_page_remove_parent_pte(sp, parent_pte);
- mmu_spte_clear_no_track(parent_pte);
- }
- static void mark_unsync(u64 *spte);
- static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
- {
- u64 *sptep;
- struct rmap_iterator iter;
- for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
- mark_unsync(sptep);
- }
- }
- static void mark_unsync(u64 *spte)
- {
- struct kvm_mmu_page *sp;
- sp = sptep_to_sp(spte);
- if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
- return;
- if (sp->unsync_children++)
- return;
- kvm_mmu_mark_parents_unsync(sp);
- }
- static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp)
- {
- return -1;
- }
- #define KVM_PAGE_ARRAY_NR 16
- struct kvm_mmu_pages {
- struct mmu_page_and_offset {
- struct kvm_mmu_page *sp;
- unsigned int idx;
- } page[KVM_PAGE_ARRAY_NR];
- unsigned int nr;
- };
- static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
- int idx)
- {
- int i;
- if (sp->unsync)
- for (i=0; i < pvec->nr; i++)
- if (pvec->page[i].sp == sp)
- return 0;
- pvec->page[pvec->nr].sp = sp;
- pvec->page[pvec->nr].idx = idx;
- pvec->nr++;
- return (pvec->nr == KVM_PAGE_ARRAY_NR);
- }
- static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
- {
- --sp->unsync_children;
- WARN_ON((int)sp->unsync_children < 0);
- __clear_bit(idx, sp->unsync_child_bitmap);
- }
- static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
- struct kvm_mmu_pages *pvec)
- {
- int i, ret, nr_unsync_leaf = 0;
- for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
- struct kvm_mmu_page *child;
- u64 ent = sp->spt[i];
- if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
- clear_unsync_child_bit(sp, i);
- continue;
- }
- child = to_shadow_page(ent & SPTE_BASE_ADDR_MASK);
- if (child->unsync_children) {
- if (mmu_pages_add(pvec, child, i))
- return -ENOSPC;
- ret = __mmu_unsync_walk(child, pvec);
- if (!ret) {
- clear_unsync_child_bit(sp, i);
- continue;
- } else if (ret > 0) {
- nr_unsync_leaf += ret;
- } else
- return ret;
- } else if (child->unsync) {
- nr_unsync_leaf++;
- if (mmu_pages_add(pvec, child, i))
- return -ENOSPC;
- } else
- clear_unsync_child_bit(sp, i);
- }
- return nr_unsync_leaf;
- }
- #define INVALID_INDEX (-1)
- static int mmu_unsync_walk(struct kvm_mmu_page *sp,
- struct kvm_mmu_pages *pvec)
- {
- pvec->nr = 0;
- if (!sp->unsync_children)
- return 0;
- mmu_pages_add(pvec, sp, INVALID_INDEX);
- return __mmu_unsync_walk(sp, pvec);
- }
- static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
- {
- WARN_ON(!sp->unsync);
- trace_kvm_mmu_sync_page(sp);
- sp->unsync = 0;
- --kvm->stat.mmu_unsync;
- }
- static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
- struct list_head *invalid_list);
- static void kvm_mmu_commit_zap_page(struct kvm *kvm,
- struct list_head *invalid_list);
- static bool sp_has_gptes(struct kvm_mmu_page *sp)
- {
- if (sp->role.direct)
- return false;
- if (sp->role.passthrough)
- return false;
- return true;
- }
- #define for_each_valid_sp(_kvm, _sp, _list) \
- hlist_for_each_entry(_sp, _list, hash_link) \
- if (is_obsolete_sp((_kvm), (_sp))) { \
- } else
- #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
- for_each_valid_sp(_kvm, _sp, \
- &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
- if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
- static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
- struct list_head *invalid_list)
- {
- int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
- if (ret < 0)
- kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
- return ret;
- }
- static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
- struct list_head *invalid_list,
- bool remote_flush)
- {
- if (!remote_flush && list_empty(invalid_list))
- return false;
- if (!list_empty(invalid_list))
- kvm_mmu_commit_zap_page(kvm, invalid_list);
- else
- kvm_flush_remote_tlbs(kvm);
- return true;
- }
- static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
- {
- if (sp->role.invalid)
- return true;
- /* TDP MMU pages due not use the MMU generation. */
- return !sp->tdp_mmu_page &&
- unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
- }
- struct mmu_page_path {
- struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
- unsigned int idx[PT64_ROOT_MAX_LEVEL];
- };
- #define for_each_sp(pvec, sp, parents, i) \
- for (i = mmu_pages_first(&pvec, &parents); \
- i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
- i = mmu_pages_next(&pvec, &parents, i))
- static int mmu_pages_next(struct kvm_mmu_pages *pvec,
- struct mmu_page_path *parents,
- int i)
- {
- int n;
- for (n = i+1; n < pvec->nr; n++) {
- struct kvm_mmu_page *sp = pvec->page[n].sp;
- unsigned idx = pvec->page[n].idx;
- int level = sp->role.level;
- parents->idx[level-1] = idx;
- if (level == PG_LEVEL_4K)
- break;
- parents->parent[level-2] = sp;
- }
- return n;
- }
- static int mmu_pages_first(struct kvm_mmu_pages *pvec,
- struct mmu_page_path *parents)
- {
- struct kvm_mmu_page *sp;
- int level;
- if (pvec->nr == 0)
- return 0;
- WARN_ON(pvec->page[0].idx != INVALID_INDEX);
- sp = pvec->page[0].sp;
- level = sp->role.level;
- WARN_ON(level == PG_LEVEL_4K);
- parents->parent[level-2] = sp;
- /* Also set up a sentinel. Further entries in pvec are all
- * children of sp, so this element is never overwritten.
- */
- parents->parent[level-1] = NULL;
- return mmu_pages_next(pvec, parents, 0);
- }
- static void mmu_pages_clear_parents(struct mmu_page_path *parents)
- {
- struct kvm_mmu_page *sp;
- unsigned int level = 0;
- do {
- unsigned int idx = parents->idx[level];
- sp = parents->parent[level];
- if (!sp)
- return;
- WARN_ON(idx == INVALID_INDEX);
- clear_unsync_child_bit(sp, idx);
- level++;
- } while (!sp->unsync_children);
- }
- static int mmu_sync_children(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *parent, bool can_yield)
- {
- int i;
- struct kvm_mmu_page *sp;
- struct mmu_page_path parents;
- struct kvm_mmu_pages pages;
- LIST_HEAD(invalid_list);
- bool flush = false;
- while (mmu_unsync_walk(parent, &pages)) {
- bool protected = false;
- for_each_sp(pages, sp, parents, i)
- protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
- if (protected) {
- kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
- flush = false;
- }
- for_each_sp(pages, sp, parents, i) {
- kvm_unlink_unsync_page(vcpu->kvm, sp);
- flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
- mmu_pages_clear_parents(&parents);
- }
- if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
- kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
- if (!can_yield) {
- kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
- return -EINTR;
- }
- cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
- flush = false;
- }
- }
- kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
- return 0;
- }
- static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
- {
- atomic_set(&sp->write_flooding_count, 0);
- }
- static void clear_sp_write_flooding_count(u64 *spte)
- {
- __clear_sp_write_flooding_count(sptep_to_sp(spte));
- }
- /*
- * The vCPU is required when finding indirect shadow pages; the shadow
- * page may already exist and syncing it needs the vCPU pointer in
- * order to read guest page tables. Direct shadow pages are never
- * unsync, thus @vcpu can be NULL if @role.direct is true.
- */
- static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
- struct kvm_vcpu *vcpu,
- gfn_t gfn,
- struct hlist_head *sp_list,
- union kvm_mmu_page_role role)
- {
- struct kvm_mmu_page *sp;
- int ret;
- int collisions = 0;
- LIST_HEAD(invalid_list);
- for_each_valid_sp(kvm, sp, sp_list) {
- if (sp->gfn != gfn) {
- collisions++;
- continue;
- }
- if (sp->role.word != role.word) {
- /*
- * If the guest is creating an upper-level page, zap
- * unsync pages for the same gfn. While it's possible
- * the guest is using recursive page tables, in all
- * likelihood the guest has stopped using the unsync
- * page and is installing a completely unrelated page.
- * Unsync pages must not be left as is, because the new
- * upper-level page will be write-protected.
- */
- if (role.level > PG_LEVEL_4K && sp->unsync)
- kvm_mmu_prepare_zap_page(kvm, sp,
- &invalid_list);
- continue;
- }
- /* unsync and write-flooding only apply to indirect SPs. */
- if (sp->role.direct)
- goto out;
- if (sp->unsync) {
- if (KVM_BUG_ON(!vcpu, kvm))
- break;
- /*
- * The page is good, but is stale. kvm_sync_page does
- * get the latest guest state, but (unlike mmu_unsync_children)
- * it doesn't write-protect the page or mark it synchronized!
- * This way the validity of the mapping is ensured, but the
- * overhead of write protection is not incurred until the
- * guest invalidates the TLB mapping. This allows multiple
- * SPs for a single gfn to be unsync.
- *
- * If the sync fails, the page is zapped. If so, break
- * in order to rebuild it.
- */
- ret = kvm_sync_page(vcpu, sp, &invalid_list);
- if (ret < 0)
- break;
- WARN_ON(!list_empty(&invalid_list));
- if (ret > 0)
- kvm_flush_remote_tlbs(kvm);
- }
- __clear_sp_write_flooding_count(sp);
- goto out;
- }
- sp = NULL;
- ++kvm->stat.mmu_cache_miss;
- out:
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- if (collisions > kvm->stat.max_mmu_page_hash_collisions)
- kvm->stat.max_mmu_page_hash_collisions = collisions;
- return sp;
- }
- /* Caches used when allocating a new shadow page. */
- struct shadow_page_caches {
- struct kvm_mmu_memory_cache *page_header_cache;
- struct kvm_mmu_memory_cache *shadow_page_cache;
- struct kvm_mmu_memory_cache *shadowed_info_cache;
- };
- static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
- struct shadow_page_caches *caches,
- gfn_t gfn,
- struct hlist_head *sp_list,
- union kvm_mmu_page_role role)
- {
- struct kvm_mmu_page *sp;
- sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
- sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
- if (!role.direct)
- sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
- set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
- /*
- * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
- * depends on valid pages being added to the head of the list. See
- * comments in kvm_zap_obsolete_pages().
- */
- sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
- list_add(&sp->link, &kvm->arch.active_mmu_pages);
- kvm_account_mmu_page(kvm, sp);
- sp->gfn = gfn;
- sp->role = role;
- hlist_add_head(&sp->hash_link, sp_list);
- if (sp_has_gptes(sp))
- account_shadowed(kvm, sp);
- return sp;
- }
- /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
- static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
- struct kvm_vcpu *vcpu,
- struct shadow_page_caches *caches,
- gfn_t gfn,
- union kvm_mmu_page_role role)
- {
- struct hlist_head *sp_list;
- struct kvm_mmu_page *sp;
- bool created = false;
- sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
- sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
- if (!sp) {
- created = true;
- sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
- }
- trace_kvm_mmu_get_page(sp, created);
- return sp;
- }
- static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
- gfn_t gfn,
- union kvm_mmu_page_role role)
- {
- struct shadow_page_caches caches = {
- .page_header_cache = &vcpu->arch.mmu_page_header_cache,
- .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
- .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
- };
- return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
- }
- static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
- unsigned int access)
- {
- struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
- union kvm_mmu_page_role role;
- role = parent_sp->role;
- role.level--;
- role.access = access;
- role.direct = direct;
- role.passthrough = 0;
- /*
- * If the guest has 4-byte PTEs then that means it's using 32-bit,
- * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
- * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
- * shadow each guest page table with multiple shadow page tables, which
- * requires extra bookkeeping in the role.
- *
- * Specifically, to shadow the guest's page directory (which covers a
- * 4GiB address space), KVM uses 4 PAE page directories, each mapping
- * 1GiB of the address space. @role.quadrant encodes which quarter of
- * the address space each maps.
- *
- * To shadow the guest's page tables (which each map a 4MiB region), KVM
- * uses 2 PAE page tables, each mapping a 2MiB region. For these,
- * @role.quadrant encodes which half of the region they map.
- *
- * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
- * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow
- * PDPTEs; those 4 PAE page directories are pre-allocated and their
- * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes
- * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume
- * bit 21 in the PTE (the child here), KVM propagates that bit to the
- * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE
- * covers bit 21 (see above), thus the quadrant is calculated from the
- * _least_ significant bit of the PDE index.
- */
- if (role.has_4_byte_gpte) {
- WARN_ON_ONCE(role.level != PG_LEVEL_4K);
- role.quadrant = spte_index(sptep) & 1;
- }
- return role;
- }
- static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
- u64 *sptep, gfn_t gfn,
- bool direct, unsigned int access)
- {
- union kvm_mmu_page_role role;
- if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
- return ERR_PTR(-EEXIST);
- role = kvm_mmu_child_role(sptep, direct, access);
- return kvm_mmu_get_shadow_page(vcpu, gfn, role);
- }
- static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
- struct kvm_vcpu *vcpu, hpa_t root,
- u64 addr)
- {
- iterator->addr = addr;
- iterator->shadow_addr = root;
- iterator->level = vcpu->arch.mmu->root_role.level;
- if (iterator->level >= PT64_ROOT_4LEVEL &&
- vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
- !vcpu->arch.mmu->root_role.direct)
- iterator->level = PT32E_ROOT_LEVEL;
- if (iterator->level == PT32E_ROOT_LEVEL) {
- /*
- * prev_root is currently only used for 64-bit hosts. So only
- * the active root_hpa is valid here.
- */
- BUG_ON(root != vcpu->arch.mmu->root.hpa);
- iterator->shadow_addr
- = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
- iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
- --iterator->level;
- if (!iterator->shadow_addr)
- iterator->level = 0;
- }
- }
- static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
- struct kvm_vcpu *vcpu, u64 addr)
- {
- shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
- addr);
- }
- static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
- {
- if (iterator->level < PG_LEVEL_4K)
- return false;
- iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
- iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
- return true;
- }
- static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
- u64 spte)
- {
- if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
- iterator->level = 0;
- return;
- }
- iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
- --iterator->level;
- }
- static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
- {
- __shadow_walk_next(iterator, *iterator->sptep);
- }
- static void __link_shadow_page(struct kvm *kvm,
- struct kvm_mmu_memory_cache *cache, u64 *sptep,
- struct kvm_mmu_page *sp, bool flush)
- {
- u64 spte;
- BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
- /*
- * If an SPTE is present already, it must be a leaf and therefore
- * a large one. Drop it, and flush the TLB if needed, before
- * installing sp.
- */
- if (is_shadow_present_pte(*sptep))
- drop_large_spte(kvm, sptep, flush);
- spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
- mmu_spte_set(sptep, spte);
- mmu_page_add_parent_pte(cache, sp, sptep);
- if (sp->unsync_children || sp->unsync)
- mark_unsync(sptep);
- }
- static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
- struct kvm_mmu_page *sp)
- {
- __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
- }
- static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
- unsigned direct_access)
- {
- if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
- struct kvm_mmu_page *child;
- /*
- * For the direct sp, if the guest pte's dirty bit
- * changed form clean to dirty, it will corrupt the
- * sp's access: allow writable in the read-only sp,
- * so we should update the spte at this point to get
- * a new sp with the correct access.
- */
- child = to_shadow_page(*sptep & SPTE_BASE_ADDR_MASK);
- if (child->role.access == direct_access)
- return;
- drop_parent_pte(child, sptep);
- kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
- }
- }
- /* Returns the number of zapped non-leaf child shadow pages. */
- static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
- u64 *spte, struct list_head *invalid_list)
- {
- u64 pte;
- struct kvm_mmu_page *child;
- pte = *spte;
- if (is_shadow_present_pte(pte)) {
- if (is_last_spte(pte, sp->role.level)) {
- drop_spte(kvm, spte);
- } else {
- child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK);
- drop_parent_pte(child, spte);
- /*
- * Recursively zap nested TDP SPs, parentless SPs are
- * unlikely to be used again in the near future. This
- * avoids retaining a large number of stale nested SPs.
- */
- if (tdp_enabled && invalid_list &&
- child->role.guest_mode && !child->parent_ptes.val)
- return kvm_mmu_prepare_zap_page(kvm, child,
- invalid_list);
- }
- } else if (is_mmio_spte(pte)) {
- mmu_spte_clear_no_track(spte);
- }
- return 0;
- }
- static int kvm_mmu_page_unlink_children(struct kvm *kvm,
- struct kvm_mmu_page *sp,
- struct list_head *invalid_list)
- {
- int zapped = 0;
- unsigned i;
- for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
- zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
- return zapped;
- }
- static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
- {
- u64 *sptep;
- struct rmap_iterator iter;
- while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
- drop_parent_pte(sp, sptep);
- }
- static int mmu_zap_unsync_children(struct kvm *kvm,
- struct kvm_mmu_page *parent,
- struct list_head *invalid_list)
- {
- int i, zapped = 0;
- struct mmu_page_path parents;
- struct kvm_mmu_pages pages;
- if (parent->role.level == PG_LEVEL_4K)
- return 0;
- while (mmu_unsync_walk(parent, &pages)) {
- struct kvm_mmu_page *sp;
- for_each_sp(pages, sp, parents, i) {
- kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
- mmu_pages_clear_parents(&parents);
- zapped++;
- }
- }
- return zapped;
- }
- static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
- struct kvm_mmu_page *sp,
- struct list_head *invalid_list,
- int *nr_zapped)
- {
- bool list_unstable, zapped_root = false;
- lockdep_assert_held_write(&kvm->mmu_lock);
- trace_kvm_mmu_prepare_zap_page(sp);
- ++kvm->stat.mmu_shadow_zapped;
- *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
- *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
- kvm_mmu_unlink_parents(sp);
- /* Zapping children means active_mmu_pages has become unstable. */
- list_unstable = *nr_zapped;
- if (!sp->role.invalid && sp_has_gptes(sp))
- unaccount_shadowed(kvm, sp);
- if (sp->unsync)
- kvm_unlink_unsync_page(kvm, sp);
- if (!sp->root_count) {
- /* Count self */
- (*nr_zapped)++;
- /*
- * Already invalid pages (previously active roots) are not on
- * the active page list. See list_del() in the "else" case of
- * !sp->root_count.
- */
- if (sp->role.invalid)
- list_add(&sp->link, invalid_list);
- else
- list_move(&sp->link, invalid_list);
- kvm_unaccount_mmu_page(kvm, sp);
- } else {
- /*
- * Remove the active root from the active page list, the root
- * will be explicitly freed when the root_count hits zero.
- */
- list_del(&sp->link);
- /*
- * Obsolete pages cannot be used on any vCPUs, see the comment
- * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
- * treats invalid shadow pages as being obsolete.
- */
- zapped_root = !is_obsolete_sp(kvm, sp);
- }
- if (sp->lpage_disallowed)
- unaccount_huge_nx_page(kvm, sp);
- sp->role.invalid = 1;
- /*
- * Make the request to free obsolete roots after marking the root
- * invalid, otherwise other vCPUs may not see it as invalid.
- */
- if (zapped_root)
- kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
- return list_unstable;
- }
- static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
- struct list_head *invalid_list)
- {
- int nr_zapped;
- __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
- return nr_zapped;
- }
- static void kvm_mmu_commit_zap_page(struct kvm *kvm,
- struct list_head *invalid_list)
- {
- struct kvm_mmu_page *sp, *nsp;
- if (list_empty(invalid_list))
- return;
- /*
- * We need to make sure everyone sees our modifications to
- * the page tables and see changes to vcpu->mode here. The barrier
- * in the kvm_flush_remote_tlbs() achieves this. This pairs
- * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
- *
- * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
- * guest mode and/or lockless shadow page table walks.
- */
- kvm_flush_remote_tlbs(kvm);
- list_for_each_entry_safe(sp, nsp, invalid_list, link) {
- WARN_ON(!sp->role.invalid || sp->root_count);
- kvm_mmu_free_shadow_page(sp);
- }
- }
- static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
- unsigned long nr_to_zap)
- {
- unsigned long total_zapped = 0;
- struct kvm_mmu_page *sp, *tmp;
- LIST_HEAD(invalid_list);
- bool unstable;
- int nr_zapped;
- if (list_empty(&kvm->arch.active_mmu_pages))
- return 0;
- restart:
- list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
- /*
- * Don't zap active root pages, the page itself can't be freed
- * and zapping it will just force vCPUs to realloc and reload.
- */
- if (sp->root_count)
- continue;
- unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
- &nr_zapped);
- total_zapped += nr_zapped;
- if (total_zapped >= nr_to_zap)
- break;
- if (unstable)
- goto restart;
- }
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- kvm->stat.mmu_recycled += total_zapped;
- return total_zapped;
- }
- static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
- {
- if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
- return kvm->arch.n_max_mmu_pages -
- kvm->arch.n_used_mmu_pages;
- return 0;
- }
- static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
- {
- unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
- if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
- return 0;
- kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
- /*
- * Note, this check is intentionally soft, it only guarantees that one
- * page is available, while the caller may end up allocating as many as
- * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
- * exceeding the (arbitrary by default) limit will not harm the host,
- * being too aggressive may unnecessarily kill the guest, and getting an
- * exact count is far more trouble than it's worth, especially in the
- * page fault paths.
- */
- if (!kvm_mmu_available_pages(vcpu->kvm))
- return -ENOSPC;
- return 0;
- }
- /*
- * Changing the number of mmu pages allocated to the vm
- * Note: if goal_nr_mmu_pages is too small, you will get dead lock
- */
- void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
- {
- write_lock(&kvm->mmu_lock);
- if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
- kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
- goal_nr_mmu_pages);
- goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
- }
- kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
- write_unlock(&kvm->mmu_lock);
- }
- int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
- {
- struct kvm_mmu_page *sp;
- LIST_HEAD(invalid_list);
- int r;
- pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
- r = 0;
- write_lock(&kvm->mmu_lock);
- for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
- pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
- sp->role.word);
- r = 1;
- kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
- }
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- write_unlock(&kvm->mmu_lock);
- return r;
- }
- static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
- {
- gpa_t gpa;
- int r;
- if (vcpu->arch.mmu->root_role.direct)
- return 0;
- gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
- r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
- return r;
- }
- static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
- {
- trace_kvm_mmu_unsync_page(sp);
- ++kvm->stat.mmu_unsync;
- sp->unsync = 1;
- kvm_mmu_mark_parents_unsync(sp);
- }
- /*
- * Attempt to unsync any shadow pages that can be reached by the specified gfn,
- * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
- * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
- * be write-protected.
- */
- int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
- gfn_t gfn, bool can_unsync, bool prefetch)
- {
- struct kvm_mmu_page *sp;
- bool locked = false;
- /*
- * Force write-protection if the page is being tracked. Note, the page
- * track machinery is used to write-protect upper-level shadow pages,
- * i.e. this guards the role.level == 4K assertion below!
- */
- if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
- return -EPERM;
- /*
- * The page is not write-tracked, mark existing shadow pages unsync
- * unless KVM is synchronizing an unsync SP (can_unsync = false). In
- * that case, KVM must complete emulation of the guest TLB flush before
- * allowing shadow pages to become unsync (writable by the guest).
- */
- for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
- if (!can_unsync)
- return -EPERM;
- if (sp->unsync)
- continue;
- if (prefetch)
- return -EEXIST;
- /*
- * TDP MMU page faults require an additional spinlock as they
- * run with mmu_lock held for read, not write, and the unsync
- * logic is not thread safe. Take the spinklock regardless of
- * the MMU type to avoid extra conditionals/parameters, there's
- * no meaningful penalty if mmu_lock is held for write.
- */
- if (!locked) {
- locked = true;
- spin_lock(&kvm->arch.mmu_unsync_pages_lock);
- /*
- * Recheck after taking the spinlock, a different vCPU
- * may have since marked the page unsync. A false
- * positive on the unprotected check above is not
- * possible as clearing sp->unsync _must_ hold mmu_lock
- * for write, i.e. unsync cannot transition from 0->1
- * while this CPU holds mmu_lock for read (or write).
- */
- if (READ_ONCE(sp->unsync))
- continue;
- }
- WARN_ON(sp->role.level != PG_LEVEL_4K);
- kvm_unsync_page(kvm, sp);
- }
- if (locked)
- spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
- /*
- * We need to ensure that the marking of unsync pages is visible
- * before the SPTE is updated to allow writes because
- * kvm_mmu_sync_roots() checks the unsync flags without holding
- * the MMU lock and so can race with this. If the SPTE was updated
- * before the page had been marked as unsync-ed, something like the
- * following could happen:
- *
- * CPU 1 CPU 2
- * ---------------------------------------------------------------------
- * 1.2 Host updates SPTE
- * to be writable
- * 2.1 Guest writes a GPTE for GVA X.
- * (GPTE being in the guest page table shadowed
- * by the SP from CPU 1.)
- * This reads SPTE during the page table walk.
- * Since SPTE.W is read as 1, there is no
- * fault.
- *
- * 2.2 Guest issues TLB flush.
- * That causes a VM Exit.
- *
- * 2.3 Walking of unsync pages sees sp->unsync is
- * false and skips the page.
- *
- * 2.4 Guest accesses GVA X.
- * Since the mapping in the SP was not updated,
- * so the old mapping for GVA X incorrectly
- * gets used.
- * 1.1 Host marks SP
- * as unsync
- * (sp->unsync = true)
- *
- * The write barrier below ensures that 1.1 happens before 1.2 and thus
- * the situation in 2.4 does not arise. It pairs with the read barrier
- * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
- */
- smp_wmb();
- return 0;
- }
- static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
- u64 *sptep, unsigned int pte_access, gfn_t gfn,
- kvm_pfn_t pfn, struct kvm_page_fault *fault)
- {
- struct kvm_mmu_page *sp = sptep_to_sp(sptep);
- int level = sp->role.level;
- int was_rmapped = 0;
- int ret = RET_PF_FIXED;
- bool flush = false;
- bool wrprot;
- u64 spte;
- /* Prefetching always gets a writable pfn. */
- bool host_writable = !fault || fault->map_writable;
- bool prefetch = !fault || fault->prefetch;
- bool write_fault = fault && fault->write;
- pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
- *sptep, write_fault, gfn);
- if (unlikely(is_noslot_pfn(pfn))) {
- vcpu->stat.pf_mmio_spte_created++;
- mark_mmio_spte(vcpu, sptep, gfn, pte_access);
- return RET_PF_EMULATE;
- }
- if (is_shadow_present_pte(*sptep)) {
- /*
- * If we overwrite a PTE page pointer with a 2MB PMD, unlink
- * the parent of the now unreachable PTE.
- */
- if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
- struct kvm_mmu_page *child;
- u64 pte = *sptep;
- child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK);
- drop_parent_pte(child, sptep);
- flush = true;
- } else if (pfn != spte_to_pfn(*sptep)) {
- pgprintk("hfn old %llx new %llx\n",
- spte_to_pfn(*sptep), pfn);
- drop_spte(vcpu->kvm, sptep);
- flush = true;
- } else
- was_rmapped = 1;
- }
- wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
- true, host_writable, &spte);
- if (*sptep == spte) {
- ret = RET_PF_SPURIOUS;
- } else {
- flush |= mmu_spte_update(sptep, spte);
- trace_kvm_mmu_set_spte(level, gfn, sptep);
- }
- if (wrprot) {
- if (write_fault)
- ret = RET_PF_EMULATE;
- }
- if (flush)
- kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
- KVM_PAGES_PER_HPAGE(level));
- pgprintk("%s: setting spte %llx\n", __func__, *sptep);
- if (!was_rmapped) {
- WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
- rmap_add(vcpu, slot, sptep, gfn, pte_access);
- } else {
- /* Already rmapped but the pte_access bits may have changed. */
- kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
- }
- return ret;
- }
- static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp,
- u64 *start, u64 *end)
- {
- struct page *pages[PTE_PREFETCH_NUM];
- struct kvm_memory_slot *slot;
- unsigned int access = sp->role.access;
- int i, ret;
- gfn_t gfn;
- gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
- slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
- if (!slot)
- return -1;
- ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
- if (ret <= 0)
- return -1;
- for (i = 0; i < ret; i++, gfn++, start++) {
- mmu_set_spte(vcpu, slot, start, access, gfn,
- page_to_pfn(pages[i]), NULL);
- put_page(pages[i]);
- }
- return 0;
- }
- static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp, u64 *sptep)
- {
- u64 *spte, *start = NULL;
- int i;
- WARN_ON(!sp->role.direct);
- i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
- spte = sp->spt + i;
- for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
- if (is_shadow_present_pte(*spte) || spte == sptep) {
- if (!start)
- continue;
- if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
- return;
- start = NULL;
- } else if (!start)
- start = spte;
- }
- if (start)
- direct_pte_prefetch_many(vcpu, sp, start, spte);
- }
- static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
- {
- struct kvm_mmu_page *sp;
- sp = sptep_to_sp(sptep);
- /*
- * Without accessed bits, there's no way to distinguish between
- * actually accessed translations and prefetched, so disable pte
- * prefetch if accessed bits aren't available.
- */
- if (sp_ad_disabled(sp))
- return;
- if (sp->role.level > PG_LEVEL_4K)
- return;
- /*
- * If addresses are being invalidated, skip prefetching to avoid
- * accidentally prefetching those addresses.
- */
- if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
- return;
- __direct_pte_prefetch(vcpu, sp, sptep);
- }
- /*
- * Lookup the mapping level for @gfn in the current mm.
- *
- * WARNING! Use of host_pfn_mapping_level() requires the caller and the end
- * consumer to be tied into KVM's handlers for MMU notifier events!
- *
- * There are several ways to safely use this helper:
- *
- * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before
- * consuming it. In this case, mmu_lock doesn't need to be held during the
- * lookup, but it does need to be held while checking the MMU notifier.
- *
- * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
- * event for the hva. This can be done by explicit checking the MMU notifier
- * or by ensuring that KVM already has a valid mapping that covers the hva.
- *
- * - Do not use the result to install new mappings, e.g. use the host mapping
- * level only to decide whether or not to zap an entry. In this case, it's
- * not required to hold mmu_lock (though it's highly likely the caller will
- * want to hold mmu_lock anyways, e.g. to modify SPTEs).
- *
- * Note! The lookup can still race with modifications to host page tables, but
- * the above "rules" ensure KVM will not _consume_ the result of the walk if a
- * race with the primary MMU occurs.
- */
- static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
- const struct kvm_memory_slot *slot)
- {
- int level = PG_LEVEL_4K;
- unsigned long hva;
- unsigned long flags;
- pgd_t pgd;
- p4d_t p4d;
- pud_t pud;
- pmd_t pmd;
- /*
- * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
- * is not solely for performance, it's also necessary to avoid the
- * "writable" check in __gfn_to_hva_many(), which will always fail on
- * read-only memslots due to gfn_to_hva() assuming writes. Earlier
- * page fault steps have already verified the guest isn't writing a
- * read-only memslot.
- */
- hva = __gfn_to_hva_memslot(slot, gfn);
- /*
- * Disable IRQs to prevent concurrent tear down of host page tables,
- * e.g. if the primary MMU promotes a P*D to a huge page and then frees
- * the original page table.
- */
- local_irq_save(flags);
- /*
- * Read each entry once. As above, a non-leaf entry can be promoted to
- * a huge page _during_ this walk. Re-reading the entry could send the
- * walk into the weeks, e.g. p*d_large() returns false (sees the old
- * value) and then p*d_offset() walks into the target huge page instead
- * of the old page table (sees the new value).
- */
- pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
- if (pgd_none(pgd))
- goto out;
- p4d = READ_ONCE(*p4d_offset(&pgd, hva));
- if (p4d_none(p4d) || !p4d_present(p4d))
- goto out;
- pud = READ_ONCE(*pud_offset(&p4d, hva));
- if (pud_none(pud) || !pud_present(pud))
- goto out;
- if (pud_large(pud)) {
- level = PG_LEVEL_1G;
- goto out;
- }
- pmd = READ_ONCE(*pmd_offset(&pud, hva));
- if (pmd_none(pmd) || !pmd_present(pmd))
- goto out;
- if (pmd_large(pmd))
- level = PG_LEVEL_2M;
- out:
- local_irq_restore(flags);
- return level;
- }
- int kvm_mmu_max_mapping_level(struct kvm *kvm,
- const struct kvm_memory_slot *slot, gfn_t gfn,
- int max_level)
- {
- struct kvm_lpage_info *linfo;
- int host_level;
- max_level = min(max_level, max_huge_page_level);
- for ( ; max_level > PG_LEVEL_4K; max_level--) {
- linfo = lpage_info_slot(gfn, slot, max_level);
- if (!linfo->disallow_lpage)
- break;
- }
- if (max_level == PG_LEVEL_4K)
- return PG_LEVEL_4K;
- host_level = host_pfn_mapping_level(kvm, gfn, slot);
- return min(host_level, max_level);
- }
- void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
- {
- struct kvm_memory_slot *slot = fault->slot;
- kvm_pfn_t mask;
- fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
- if (unlikely(fault->max_level == PG_LEVEL_4K))
- return;
- if (is_error_noslot_pfn(fault->pfn))
- return;
- if (kvm_slot_dirty_track_enabled(slot))
- return;
- /*
- * Enforce the iTLB multihit workaround after capturing the requested
- * level, which will be used to do precise, accurate accounting.
- */
- fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
- fault->gfn, fault->max_level);
- if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
- return;
- /*
- * mmu_invalidate_retry() was successful and mmu_lock is held, so
- * the pmd can't be split from under us.
- */
- fault->goal_level = fault->req_level;
- mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
- VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
- fault->pfn &= ~mask;
- }
- void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
- {
- if (cur_level > PG_LEVEL_4K &&
- cur_level == fault->goal_level &&
- is_shadow_present_pte(spte) &&
- !is_large_pte(spte)) {
- /*
- * A small SPTE exists for this pfn, but FNAME(fetch)
- * and __direct_map would like to create a large PTE
- * instead: just force them to go down another level,
- * patching back for them into pfn the next 9 bits of
- * the address.
- */
- u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
- KVM_PAGES_PER_HPAGE(cur_level - 1);
- fault->pfn |= fault->gfn & page_mask;
- fault->goal_level--;
- }
- }
- static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
- {
- struct kvm_shadow_walk_iterator it;
- struct kvm_mmu_page *sp;
- int ret;
- gfn_t base_gfn = fault->gfn;
- kvm_mmu_hugepage_adjust(vcpu, fault);
- trace_kvm_mmu_spte_requested(fault);
- for_each_shadow_entry(vcpu, fault->addr, it) {
- /*
- * We cannot overwrite existing page tables with an NX
- * large page, as the leaf could be executable.
- */
- if (fault->nx_huge_page_workaround_enabled)
- disallowed_hugepage_adjust(fault, *it.sptep, it.level);
- base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
- if (it.level == fault->goal_level)
- break;
- sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
- if (sp == ERR_PTR(-EEXIST))
- continue;
- link_shadow_page(vcpu, it.sptep, sp);
- if (fault->is_tdp && fault->huge_page_disallowed &&
- fault->req_level >= it.level)
- account_huge_nx_page(vcpu->kvm, sp);
- }
- if (WARN_ON_ONCE(it.level != fault->goal_level))
- return -EFAULT;
- ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
- base_gfn, fault->pfn, fault);
- if (ret == RET_PF_SPURIOUS)
- return ret;
- direct_pte_prefetch(vcpu, it.sptep);
- return ret;
- }
- static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
- {
- send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
- }
- static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
- {
- /*
- * Do not cache the mmio info caused by writing the readonly gfn
- * into the spte otherwise read access on readonly gfn also can
- * caused mmio page fault and treat it as mmio access.
- */
- if (pfn == KVM_PFN_ERR_RO_FAULT)
- return RET_PF_EMULATE;
- if (pfn == KVM_PFN_ERR_HWPOISON) {
- kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
- return RET_PF_RETRY;
- }
- return -EFAULT;
- }
- static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
- unsigned int access)
- {
- /* The pfn is invalid, report the error! */
- if (unlikely(is_error_pfn(fault->pfn)))
- return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
- if (unlikely(!fault->slot)) {
- gva_t gva = fault->is_tdp ? 0 : fault->addr;
- vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
- access & shadow_mmio_access_mask);
- /*
- * If MMIO caching is disabled, emulate immediately without
- * touching the shadow page tables as attempting to install an
- * MMIO SPTE will just be an expensive nop. Do not cache MMIO
- * whose gfn is greater than host.MAXPHYADDR, any guest that
- * generates such gfns is running nested and is being tricked
- * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
- * and only if L1's MAXPHYADDR is inaccurate with respect to
- * the hardware's).
- */
- if (unlikely(!enable_mmio_caching) ||
- unlikely(fault->gfn > kvm_mmu_max_gfn()))
- return RET_PF_EMULATE;
- }
- return RET_PF_CONTINUE;
- }
- static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
- {
- /*
- * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
- * reach the common page fault handler if the SPTE has an invalid MMIO
- * generation number. Refreshing the MMIO generation needs to go down
- * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
- */
- if (fault->rsvd)
- return false;
- /*
- * #PF can be fast if:
- *
- * 1. The shadow page table entry is not present and A/D bits are
- * disabled _by KVM_, which could mean that the fault is potentially
- * caused by access tracking (if enabled). If A/D bits are enabled
- * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
- * bits for L2 and employ access tracking, but the fast page fault
- * mechanism only supports direct MMUs.
- * 2. The shadow page table entry is present, the access is a write,
- * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
- * the fault was caused by a write-protection violation. If the
- * SPTE is MMU-writable (determined later), the fault can be fixed
- * by setting the Writable bit, which can be done out of mmu_lock.
- */
- if (!fault->present)
- return !kvm_ad_enabled();
- /*
- * Note, instruction fetches and writes are mutually exclusive, ignore
- * the "exec" flag.
- */
- return fault->write;
- }
- /*
- * Returns true if the SPTE was fixed successfully. Otherwise,
- * someone else modified the SPTE from its original value.
- */
- static bool
- fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
- u64 *sptep, u64 old_spte, u64 new_spte)
- {
- /*
- * Theoretically we could also set dirty bit (and flush TLB) here in
- * order to eliminate unnecessary PML logging. See comments in
- * set_spte. But fast_page_fault is very unlikely to happen with PML
- * enabled, so we do not do this. This might result in the same GPA
- * to be logged in PML buffer again when the write really happens, and
- * eventually to be called by mark_page_dirty twice. But it's also no
- * harm. This also avoids the TLB flush needed after setting dirty bit
- * so non-PML cases won't be impacted.
- *
- * Compare with set_spte where instead shadow_dirty_mask is set.
- */
- if (!try_cmpxchg64(sptep, &old_spte, new_spte))
- return false;
- if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
- mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
- return true;
- }
- static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
- {
- if (fault->exec)
- return is_executable_pte(spte);
- if (fault->write)
- return is_writable_pte(spte);
- /* Fault was on Read access */
- return spte & PT_PRESENT_MASK;
- }
- /*
- * Returns the last level spte pointer of the shadow page walk for the given
- * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
- * walk could be performed, returns NULL and *spte does not contain valid data.
- *
- * Contract:
- * - Must be called between walk_shadow_page_lockless_{begin,end}.
- * - The returned sptep must not be used after walk_shadow_page_lockless_end.
- */
- static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
- {
- struct kvm_shadow_walk_iterator iterator;
- u64 old_spte;
- u64 *sptep = NULL;
- for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
- sptep = iterator.sptep;
- *spte = old_spte;
- }
- return sptep;
- }
- /*
- * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
- */
- static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
- {
- struct kvm_mmu_page *sp;
- int ret = RET_PF_INVALID;
- u64 spte = 0ull;
- u64 *sptep = NULL;
- uint retry_count = 0;
- if (!page_fault_can_be_fast(fault))
- return ret;
- walk_shadow_page_lockless_begin(vcpu);
- do {
- u64 new_spte;
- if (is_tdp_mmu(vcpu->arch.mmu))
- sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
- else
- sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
- if (!is_shadow_present_pte(spte))
- break;
- sp = sptep_to_sp(sptep);
- if (!is_last_spte(spte, sp->role.level))
- break;
- /*
- * Check whether the memory access that caused the fault would
- * still cause it if it were to be performed right now. If not,
- * then this is a spurious fault caused by TLB lazily flushed,
- * or some other CPU has already fixed the PTE after the
- * current CPU took the fault.
- *
- * Need not check the access of upper level table entries since
- * they are always ACC_ALL.
- */
- if (is_access_allowed(fault, spte)) {
- ret = RET_PF_SPURIOUS;
- break;
- }
- new_spte = spte;
- /*
- * KVM only supports fixing page faults outside of MMU lock for
- * direct MMUs, nested MMUs are always indirect, and KVM always
- * uses A/D bits for non-nested MMUs. Thus, if A/D bits are
- * enabled, the SPTE can't be an access-tracked SPTE.
- */
- if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
- new_spte = restore_acc_track_spte(new_spte);
- /*
- * To keep things simple, only SPTEs that are MMU-writable can
- * be made fully writable outside of mmu_lock, e.g. only SPTEs
- * that were write-protected for dirty-logging or access
- * tracking are handled here. Don't bother checking if the
- * SPTE is writable to prioritize running with A/D bits enabled.
- * The is_access_allowed() check above handles the common case
- * of the fault being spurious, and the SPTE is known to be
- * shadow-present, i.e. except for access tracking restoration
- * making the new SPTE writable, the check is wasteful.
- */
- if (fault->write && is_mmu_writable_spte(spte)) {
- new_spte |= PT_WRITABLE_MASK;
- /*
- * Do not fix write-permission on the large spte when
- * dirty logging is enabled. Since we only dirty the
- * first page into the dirty-bitmap in
- * fast_pf_fix_direct_spte(), other pages are missed
- * if its slot has dirty logging enabled.
- *
- * Instead, we let the slow page fault path create a
- * normal spte to fix the access.
- */
- if (sp->role.level > PG_LEVEL_4K &&
- kvm_slot_dirty_track_enabled(fault->slot))
- break;
- }
- /* Verify that the fault can be handled in the fast path */
- if (new_spte == spte ||
- !is_access_allowed(fault, new_spte))
- break;
- /*
- * Currently, fast page fault only works for direct mapping
- * since the gfn is not stable for indirect shadow page. See
- * Documentation/virt/kvm/locking.rst to get more detail.
- */
- if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
- ret = RET_PF_FIXED;
- break;
- }
- if (++retry_count > 4) {
- printk_once(KERN_WARNING
- "kvm: Fast #PF retrying more than 4 times.\n");
- break;
- }
- } while (true);
- trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
- walk_shadow_page_lockless_end(vcpu);
- if (ret != RET_PF_INVALID)
- vcpu->stat.pf_fast++;
- return ret;
- }
- static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
- struct list_head *invalid_list)
- {
- struct kvm_mmu_page *sp;
- if (!VALID_PAGE(*root_hpa))
- return;
- sp = to_shadow_page(*root_hpa & SPTE_BASE_ADDR_MASK);
- if (WARN_ON(!sp))
- return;
- if (is_tdp_mmu_page(sp))
- kvm_tdp_mmu_put_root(kvm, sp, false);
- else if (!--sp->root_count && sp->role.invalid)
- kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
- *root_hpa = INVALID_PAGE;
- }
- /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
- void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
- ulong roots_to_free)
- {
- int i;
- LIST_HEAD(invalid_list);
- bool free_active_root;
- BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
- /* Before acquiring the MMU lock, see if we need to do any real work. */
- free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
- && VALID_PAGE(mmu->root.hpa);
- if (!free_active_root) {
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
- VALID_PAGE(mmu->prev_roots[i].hpa))
- break;
- if (i == KVM_MMU_NUM_PREV_ROOTS)
- return;
- }
- write_lock(&kvm->mmu_lock);
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
- mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
- &invalid_list);
- if (free_active_root) {
- if (to_shadow_page(mmu->root.hpa)) {
- mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
- } else if (mmu->pae_root) {
- for (i = 0; i < 4; ++i) {
- if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
- continue;
- mmu_free_root_page(kvm, &mmu->pae_root[i],
- &invalid_list);
- mmu->pae_root[i] = INVALID_PAE_ROOT;
- }
- }
- mmu->root.hpa = INVALID_PAGE;
- mmu->root.pgd = 0;
- }
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- write_unlock(&kvm->mmu_lock);
- }
- EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
- void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
- {
- unsigned long roots_to_free = 0;
- hpa_t root_hpa;
- int i;
- /*
- * This should not be called while L2 is active, L2 can't invalidate
- * _only_ its own roots, e.g. INVVPID unconditionally exits.
- */
- WARN_ON_ONCE(mmu->root_role.guest_mode);
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
- root_hpa = mmu->prev_roots[i].hpa;
- if (!VALID_PAGE(root_hpa))
- continue;
- if (!to_shadow_page(root_hpa) ||
- to_shadow_page(root_hpa)->role.guest_mode)
- roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
- }
- kvm_mmu_free_roots(kvm, mmu, roots_to_free);
- }
- EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
- static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
- {
- int ret = 0;
- if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
- kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
- ret = 1;
- }
- return ret;
- }
- static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
- u8 level)
- {
- union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
- struct kvm_mmu_page *sp;
- role.level = level;
- role.quadrant = quadrant;
- WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
- WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
- sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
- ++sp->root_count;
- return __pa(sp->spt);
- }
- static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
- {
- struct kvm_mmu *mmu = vcpu->arch.mmu;
- u8 shadow_root_level = mmu->root_role.level;
- hpa_t root;
- unsigned i;
- int r;
- write_lock(&vcpu->kvm->mmu_lock);
- r = make_mmu_pages_available(vcpu);
- if (r < 0)
- goto out_unlock;
- if (is_tdp_mmu_enabled(vcpu->kvm)) {
- root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
- mmu->root.hpa = root;
- } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
- root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
- mmu->root.hpa = root;
- } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
- if (WARN_ON_ONCE(!mmu->pae_root)) {
- r = -EIO;
- goto out_unlock;
- }
- for (i = 0; i < 4; ++i) {
- WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
- root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
- PT32_ROOT_LEVEL);
- mmu->pae_root[i] = root | PT_PRESENT_MASK |
- shadow_me_value;
- }
- mmu->root.hpa = __pa(mmu->pae_root);
- } else {
- WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
- r = -EIO;
- goto out_unlock;
- }
- /* root.pgd is ignored for direct MMUs. */
- mmu->root.pgd = 0;
- out_unlock:
- write_unlock(&vcpu->kvm->mmu_lock);
- return r;
- }
- static int mmu_first_shadow_root_alloc(struct kvm *kvm)
- {
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
- int r = 0, i, bkt;
- /*
- * Check if this is the first shadow root being allocated before
- * taking the lock.
- */
- if (kvm_shadow_root_allocated(kvm))
- return 0;
- mutex_lock(&kvm->slots_arch_lock);
- /* Recheck, under the lock, whether this is the first shadow root. */
- if (kvm_shadow_root_allocated(kvm))
- goto out_unlock;
- /*
- * Check if anything actually needs to be allocated, e.g. all metadata
- * will be allocated upfront if TDP is disabled.
- */
- if (kvm_memslots_have_rmaps(kvm) &&
- kvm_page_track_write_tracking_enabled(kvm))
- goto out_success;
- for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
- slots = __kvm_memslots(kvm, i);
- kvm_for_each_memslot(slot, bkt, slots) {
- /*
- * Both of these functions are no-ops if the target is
- * already allocated, so unconditionally calling both
- * is safe. Intentionally do NOT free allocations on
- * failure to avoid having to track which allocations
- * were made now versus when the memslot was created.
- * The metadata is guaranteed to be freed when the slot
- * is freed, and will be kept/used if userspace retries
- * KVM_RUN instead of killing the VM.
- */
- r = memslot_rmap_alloc(slot, slot->npages);
- if (r)
- goto out_unlock;
- r = kvm_page_track_write_tracking_alloc(slot);
- if (r)
- goto out_unlock;
- }
- }
- /*
- * Ensure that shadow_root_allocated becomes true strictly after
- * all the related pointers are set.
- */
- out_success:
- smp_store_release(&kvm->arch.shadow_root_allocated, true);
- out_unlock:
- mutex_unlock(&kvm->slots_arch_lock);
- return r;
- }
- static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
- {
- struct kvm_mmu *mmu = vcpu->arch.mmu;
- u64 pdptrs[4], pm_mask;
- gfn_t root_gfn, root_pgd;
- int quadrant, i, r;
- hpa_t root;
- root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
- root_gfn = root_pgd >> PAGE_SHIFT;
- if (mmu_check_root(vcpu, root_gfn))
- return 1;
- /*
- * On SVM, reading PDPTRs might access guest memory, which might fault
- * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
- */
- if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
- for (i = 0; i < 4; ++i) {
- pdptrs[i] = mmu->get_pdptr(vcpu, i);
- if (!(pdptrs[i] & PT_PRESENT_MASK))
- continue;
- if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
- return 1;
- }
- }
- r = mmu_first_shadow_root_alloc(vcpu->kvm);
- if (r)
- return r;
- write_lock(&vcpu->kvm->mmu_lock);
- r = make_mmu_pages_available(vcpu);
- if (r < 0)
- goto out_unlock;
- /*
- * Do we shadow a long mode page table? If so we need to
- * write-protect the guests page table root.
- */
- if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
- root = mmu_alloc_root(vcpu, root_gfn, 0,
- mmu->root_role.level);
- mmu->root.hpa = root;
- goto set_root_pgd;
- }
- if (WARN_ON_ONCE(!mmu->pae_root)) {
- r = -EIO;
- goto out_unlock;
- }
- /*
- * We shadow a 32 bit page table. This may be a legacy 2-level
- * or a PAE 3-level page table. In either case we need to be aware that
- * the shadow page table may be a PAE or a long mode page table.
- */
- pm_mask = PT_PRESENT_MASK | shadow_me_value;
- if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
- pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
- if (WARN_ON_ONCE(!mmu->pml4_root)) {
- r = -EIO;
- goto out_unlock;
- }
- mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
- if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
- if (WARN_ON_ONCE(!mmu->pml5_root)) {
- r = -EIO;
- goto out_unlock;
- }
- mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
- }
- }
- for (i = 0; i < 4; ++i) {
- WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
- if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
- if (!(pdptrs[i] & PT_PRESENT_MASK)) {
- mmu->pae_root[i] = INVALID_PAE_ROOT;
- continue;
- }
- root_gfn = pdptrs[i] >> PAGE_SHIFT;
- }
- /*
- * If shadowing 32-bit non-PAE page tables, each PAE page
- * directory maps one quarter of the guest's non-PAE page
- * directory. Othwerise each PAE page direct shadows one guest
- * PAE page directory so that quadrant should be 0.
- */
- quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
- root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
- mmu->pae_root[i] = root | pm_mask;
- }
- if (mmu->root_role.level == PT64_ROOT_5LEVEL)
- mmu->root.hpa = __pa(mmu->pml5_root);
- else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
- mmu->root.hpa = __pa(mmu->pml4_root);
- else
- mmu->root.hpa = __pa(mmu->pae_root);
- set_root_pgd:
- mmu->root.pgd = root_pgd;
- out_unlock:
- write_unlock(&vcpu->kvm->mmu_lock);
- return r;
- }
- static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
- {
- struct kvm_mmu *mmu = vcpu->arch.mmu;
- bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
- u64 *pml5_root = NULL;
- u64 *pml4_root = NULL;
- u64 *pae_root;
- /*
- * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
- * tables are allocated and initialized at root creation as there is no
- * equivalent level in the guest's NPT to shadow. Allocate the tables
- * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
- */
- if (mmu->root_role.direct ||
- mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
- mmu->root_role.level < PT64_ROOT_4LEVEL)
- return 0;
- /*
- * NPT, the only paging mode that uses this horror, uses a fixed number
- * of levels for the shadow page tables, e.g. all MMUs are 4-level or
- * all MMus are 5-level. Thus, this can safely require that pml5_root
- * is allocated if the other roots are valid and pml5 is needed, as any
- * prior MMU would also have required pml5.
- */
- if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
- return 0;
- /*
- * The special roots should always be allocated in concert. Yell and
- * bail if KVM ends up in a state where only one of the roots is valid.
- */
- if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
- (need_pml5 && mmu->pml5_root)))
- return -EIO;
- /*
- * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
- * doesn't need to be decrypted.
- */
- pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
- if (!pae_root)
- return -ENOMEM;
- #ifdef CONFIG_X86_64
- pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
- if (!pml4_root)
- goto err_pml4;
- if (need_pml5) {
- pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
- if (!pml5_root)
- goto err_pml5;
- }
- #endif
- mmu->pae_root = pae_root;
- mmu->pml4_root = pml4_root;
- mmu->pml5_root = pml5_root;
- return 0;
- #ifdef CONFIG_X86_64
- err_pml5:
- free_page((unsigned long)pml4_root);
- err_pml4:
- free_page((unsigned long)pae_root);
- return -ENOMEM;
- #endif
- }
- static bool is_unsync_root(hpa_t root)
- {
- struct kvm_mmu_page *sp;
- if (!VALID_PAGE(root))
- return false;
- /*
- * The read barrier orders the CPU's read of SPTE.W during the page table
- * walk before the reads of sp->unsync/sp->unsync_children here.
- *
- * Even if another CPU was marking the SP as unsync-ed simultaneously,
- * any guest page table changes are not guaranteed to be visible anyway
- * until this VCPU issues a TLB flush strictly after those changes are
- * made. We only need to ensure that the other CPU sets these flags
- * before any actual changes to the page tables are made. The comments
- * in mmu_try_to_unsync_pages() describe what could go wrong if this
- * requirement isn't satisfied.
- */
- smp_rmb();
- sp = to_shadow_page(root);
- /*
- * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
- * PDPTEs for a given PAE root need to be synchronized individually.
- */
- if (WARN_ON_ONCE(!sp))
- return false;
- if (sp->unsync || sp->unsync_children)
- return true;
- return false;
- }
- void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
- {
- int i;
- struct kvm_mmu_page *sp;
- if (vcpu->arch.mmu->root_role.direct)
- return;
- if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
- return;
- vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
- if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
- hpa_t root = vcpu->arch.mmu->root.hpa;
- sp = to_shadow_page(root);
- if (!is_unsync_root(root))
- return;
- write_lock(&vcpu->kvm->mmu_lock);
- mmu_sync_children(vcpu, sp, true);
- write_unlock(&vcpu->kvm->mmu_lock);
- return;
- }
- write_lock(&vcpu->kvm->mmu_lock);
- for (i = 0; i < 4; ++i) {
- hpa_t root = vcpu->arch.mmu->pae_root[i];
- if (IS_VALID_PAE_ROOT(root)) {
- root &= SPTE_BASE_ADDR_MASK;
- sp = to_shadow_page(root);
- mmu_sync_children(vcpu, sp, true);
- }
- }
- write_unlock(&vcpu->kvm->mmu_lock);
- }
- void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
- {
- unsigned long roots_to_free = 0;
- int i;
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
- roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
- /* sync prev_roots by simply freeing them */
- kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
- }
- static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
- gpa_t vaddr, u64 access,
- struct x86_exception *exception)
- {
- if (exception)
- exception->error_code = 0;
- return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
- }
- static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
- {
- /*
- * A nested guest cannot use the MMIO cache if it is using nested
- * page tables, because cr2 is a nGPA while the cache stores GPAs.
- */
- if (mmu_is_nested(vcpu))
- return false;
- if (direct)
- return vcpu_match_mmio_gpa(vcpu, addr);
- return vcpu_match_mmio_gva(vcpu, addr);
- }
- /*
- * Return the level of the lowest level SPTE added to sptes.
- * That SPTE may be non-present.
- *
- * Must be called between walk_shadow_page_lockless_{begin,end}.
- */
- static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
- {
- struct kvm_shadow_walk_iterator iterator;
- int leaf = -1;
- u64 spte;
- for (shadow_walk_init(&iterator, vcpu, addr),
- *root_level = iterator.level;
- shadow_walk_okay(&iterator);
- __shadow_walk_next(&iterator, spte)) {
- leaf = iterator.level;
- spte = mmu_spte_get_lockless(iterator.sptep);
- sptes[leaf] = spte;
- }
- return leaf;
- }
- /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
- static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
- {
- u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
- struct rsvd_bits_validate *rsvd_check;
- int root, leaf, level;
- bool reserved = false;
- walk_shadow_page_lockless_begin(vcpu);
- if (is_tdp_mmu(vcpu->arch.mmu))
- leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
- else
- leaf = get_walk(vcpu, addr, sptes, &root);
- walk_shadow_page_lockless_end(vcpu);
- if (unlikely(leaf < 0)) {
- *sptep = 0ull;
- return reserved;
- }
- *sptep = sptes[leaf];
- /*
- * Skip reserved bits checks on the terminal leaf if it's not a valid
- * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
- * design, always have reserved bits set. The purpose of the checks is
- * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
- */
- if (!is_shadow_present_pte(sptes[leaf]))
- leaf++;
- rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
- for (level = root; level >= leaf; level--)
- reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
- if (reserved) {
- pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
- __func__, addr);
- for (level = root; level >= leaf; level--)
- pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
- sptes[level], level,
- get_rsvd_bits(rsvd_check, sptes[level], level));
- }
- return reserved;
- }
- static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
- {
- u64 spte;
- bool reserved;
- if (mmio_info_in_cache(vcpu, addr, direct))
- return RET_PF_EMULATE;
- reserved = get_mmio_spte(vcpu, addr, &spte);
- if (WARN_ON(reserved))
- return -EINVAL;
- if (is_mmio_spte(spte)) {
- gfn_t gfn = get_mmio_spte_gfn(spte);
- unsigned int access = get_mmio_spte_access(spte);
- if (!check_mmio_spte(vcpu, spte))
- return RET_PF_INVALID;
- if (direct)
- addr = 0;
- trace_handle_mmio_page_fault(addr, gfn, access);
- vcpu_cache_mmio_info(vcpu, addr, gfn, access);
- return RET_PF_EMULATE;
- }
- /*
- * If the page table is zapped by other cpus, let CPU fault again on
- * the address.
- */
- return RET_PF_RETRY;
- }
- static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
- struct kvm_page_fault *fault)
- {
- if (unlikely(fault->rsvd))
- return false;
- if (!fault->present || !fault->write)
- return false;
- /*
- * guest is writing the page which is write tracked which can
- * not be fixed by page fault handler.
- */
- if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
- return true;
- return false;
- }
- static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
- {
- struct kvm_shadow_walk_iterator iterator;
- u64 spte;
- walk_shadow_page_lockless_begin(vcpu);
- for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
- clear_sp_write_flooding_count(iterator.sptep);
- walk_shadow_page_lockless_end(vcpu);
- }
- static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
- {
- /* make sure the token value is not 0 */
- u32 id = vcpu->arch.apf.id;
- if (id << 12 == 0)
- vcpu->arch.apf.id = 1;
- return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
- }
- static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
- gfn_t gfn)
- {
- struct kvm_arch_async_pf arch;
- arch.token = alloc_apf_token(vcpu);
- arch.gfn = gfn;
- arch.direct_map = vcpu->arch.mmu->root_role.direct;
- arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
- return kvm_setup_async_pf(vcpu, cr2_or_gpa,
- kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
- }
- void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
- {
- int r;
- if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
- work->wakeup_all)
- return;
- r = kvm_mmu_reload(vcpu);
- if (unlikely(r))
- return;
- if (!vcpu->arch.mmu->root_role.direct &&
- work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
- return;
- kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
- }
- static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
- {
- struct kvm_memory_slot *slot = fault->slot;
- bool async;
- /*
- * Retry the page fault if the gfn hit a memslot that is being deleted
- * or moved. This ensures any existing SPTEs for the old memslot will
- * be zapped before KVM inserts a new MMIO SPTE for the gfn.
- */
- if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
- return RET_PF_RETRY;
- if (!kvm_is_visible_memslot(slot)) {
- /* Don't expose private memslots to L2. */
- if (is_guest_mode(vcpu)) {
- fault->slot = NULL;
- fault->pfn = KVM_PFN_NOSLOT;
- fault->map_writable = false;
- return RET_PF_CONTINUE;
- }
- /*
- * If the APIC access page exists but is disabled, go directly
- * to emulation without caching the MMIO access or creating a
- * MMIO SPTE. That way the cache doesn't need to be purged
- * when the AVIC is re-enabled.
- */
- if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
- !kvm_apicv_activated(vcpu->kvm))
- return RET_PF_EMULATE;
- }
- async = false;
- fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
- fault->write, &fault->map_writable,
- &fault->hva);
- if (!async)
- return RET_PF_CONTINUE; /* *pfn has correct page already */
- if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
- trace_kvm_try_async_get_page(fault->addr, fault->gfn);
- if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
- trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
- kvm_make_request(KVM_REQ_APF_HALT, vcpu);
- return RET_PF_RETRY;
- } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
- return RET_PF_RETRY;
- }
- }
- fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
- fault->write, &fault->map_writable,
- &fault->hva);
- return RET_PF_CONTINUE;
- }
- /*
- * Returns true if the page fault is stale and needs to be retried, i.e. if the
- * root was invalidated by a memslot update or a relevant mmu_notifier fired.
- */
- static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
- struct kvm_page_fault *fault,
- unsigned long mmu_seq)
- {
- struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
- /* Special roots, e.g. pae_root, are not backed by shadow pages. */
- if (sp && is_obsolete_sp(vcpu->kvm, sp))
- return true;
- /*
- * Roots without an associated shadow page are considered invalid if
- * there is a pending request to free obsolete roots. The request is
- * only a hint that the current root _may_ be obsolete and needs to be
- * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
- * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
- * to reload even if no vCPU is actively using the root.
- */
- if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
- return true;
- return fault->slot &&
- mmu_invalidate_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
- }
- static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
- {
- bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
- unsigned long mmu_seq;
- int r;
- fault->gfn = fault->addr >> PAGE_SHIFT;
- fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
- if (page_fault_handle_page_track(vcpu, fault))
- return RET_PF_EMULATE;
- r = fast_page_fault(vcpu, fault);
- if (r != RET_PF_INVALID)
- return r;
- r = mmu_topup_memory_caches(vcpu, false);
- if (r)
- return r;
- mmu_seq = vcpu->kvm->mmu_invalidate_seq;
- smp_rmb();
- r = kvm_faultin_pfn(vcpu, fault);
- if (r != RET_PF_CONTINUE)
- return r;
- r = handle_abnormal_pfn(vcpu, fault, ACC_ALL);
- if (r != RET_PF_CONTINUE)
- return r;
- r = RET_PF_RETRY;
- if (is_tdp_mmu_fault)
- read_lock(&vcpu->kvm->mmu_lock);
- else
- write_lock(&vcpu->kvm->mmu_lock);
- if (is_page_fault_stale(vcpu, fault, mmu_seq))
- goto out_unlock;
- if (is_tdp_mmu_fault) {
- r = kvm_tdp_mmu_map(vcpu, fault);
- } else {
- r = make_mmu_pages_available(vcpu);
- if (r)
- goto out_unlock;
- r = __direct_map(vcpu, fault);
- }
- out_unlock:
- if (is_tdp_mmu_fault)
- read_unlock(&vcpu->kvm->mmu_lock);
- else
- write_unlock(&vcpu->kvm->mmu_lock);
- kvm_release_pfn_clean(fault->pfn);
- return r;
- }
- static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
- struct kvm_page_fault *fault)
- {
- pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
- /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
- fault->max_level = PG_LEVEL_2M;
- return direct_page_fault(vcpu, fault);
- }
- int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
- u64 fault_address, char *insn, int insn_len)
- {
- int r = 1;
- u32 flags = vcpu->arch.apf.host_apf_flags;
- #ifndef CONFIG_X86_64
- /* A 64-bit CR2 should be impossible on 32-bit KVM. */
- if (WARN_ON_ONCE(fault_address >> 32))
- return -EFAULT;
- #endif
- vcpu->arch.l1tf_flush_l1d = true;
- if (!flags) {
- trace_kvm_page_fault(vcpu, fault_address, error_code);
- if (kvm_event_needs_reinjection(vcpu))
- kvm_mmu_unprotect_page_virt(vcpu, fault_address);
- r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
- insn_len);
- } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
- vcpu->arch.apf.host_apf_flags = 0;
- local_irq_disable();
- kvm_async_pf_task_wait_schedule(fault_address);
- local_irq_enable();
- } else {
- WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
- }
- return r;
- }
- EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
- int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
- {
- /*
- * If the guest's MTRRs may be used to compute the "real" memtype,
- * restrict the mapping level to ensure KVM uses a consistent memtype
- * across the entire mapping. If the host MTRRs are ignored by TDP
- * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA
- * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype
- * from the guest's MTRRs so that guest accesses to memory that is
- * DMA'd aren't cached against the guest's wishes.
- *
- * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
- * e.g. KVM will force UC memtype for host MMIO.
- */
- if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
- for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
- int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
- gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
- if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
- break;
- }
- }
- return direct_page_fault(vcpu, fault);
- }
- static void nonpaging_init_context(struct kvm_mmu *context)
- {
- context->page_fault = nonpaging_page_fault;
- context->gva_to_gpa = nonpaging_gva_to_gpa;
- context->sync_page = nonpaging_sync_page;
- context->invlpg = NULL;
- }
- static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
- union kvm_mmu_page_role role)
- {
- return (role.direct || pgd == root->pgd) &&
- VALID_PAGE(root->hpa) &&
- role.word == to_shadow_page(root->hpa)->role.word;
- }
- /*
- * Find out if a previously cached root matching the new pgd/role is available,
- * and insert the current root as the MRU in the cache.
- * If a matching root is found, it is assigned to kvm_mmu->root and
- * true is returned.
- * If no match is found, kvm_mmu->root is left invalid, the LRU root is
- * evicted to make room for the current root, and false is returned.
- */
- static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
- gpa_t new_pgd,
- union kvm_mmu_page_role new_role)
- {
- uint i;
- if (is_root_usable(&mmu->root, new_pgd, new_role))
- return true;
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
- /*
- * The swaps end up rotating the cache like this:
- * C 0 1 2 3 (on entry to the function)
- * 0 C 1 2 3
- * 1 C 0 2 3
- * 2 C 0 1 3
- * 3 C 0 1 2 (on exit from the loop)
- */
- swap(mmu->root, mmu->prev_roots[i]);
- if (is_root_usable(&mmu->root, new_pgd, new_role))
- return true;
- }
- kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
- return false;
- }
- /*
- * Find out if a previously cached root matching the new pgd/role is available.
- * On entry, mmu->root is invalid.
- * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
- * of the cache becomes invalid, and true is returned.
- * If no match is found, kvm_mmu->root is left invalid and false is returned.
- */
- static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
- gpa_t new_pgd,
- union kvm_mmu_page_role new_role)
- {
- uint i;
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
- goto hit;
- return false;
- hit:
- swap(mmu->root, mmu->prev_roots[i]);
- /* Bubble up the remaining roots. */
- for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
- mmu->prev_roots[i] = mmu->prev_roots[i + 1];
- mmu->prev_roots[i].hpa = INVALID_PAGE;
- return true;
- }
- static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
- gpa_t new_pgd, union kvm_mmu_page_role new_role)
- {
- /*
- * For now, limit the caching to 64-bit hosts+VMs in order to avoid
- * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
- * later if necessary.
- */
- if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
- kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
- if (VALID_PAGE(mmu->root.hpa))
- return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
- else
- return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
- }
- void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
- {
- struct kvm_mmu *mmu = vcpu->arch.mmu;
- union kvm_mmu_page_role new_role = mmu->root_role;
- if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
- /* kvm_mmu_ensure_valid_pgd will set up a new root. */
- return;
- }
- /*
- * It's possible that the cached previous root page is obsolete because
- * of a change in the MMU generation number. However, changing the
- * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
- * which will free the root set here and allocate a new one.
- */
- kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
- if (force_flush_and_sync_on_reuse) {
- kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
- kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
- }
- /*
- * The last MMIO access's GVA and GPA are cached in the VCPU. When
- * switching to a new CR3, that GVA->GPA mapping may no longer be
- * valid. So clear any cached MMIO info even when we don't need to sync
- * the shadow page tables.
- */
- vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
- /*
- * If this is a direct root page, it doesn't have a write flooding
- * count. Otherwise, clear the write flooding count.
- */
- if (!new_role.direct)
- __clear_sp_write_flooding_count(
- to_shadow_page(vcpu->arch.mmu->root.hpa));
- }
- EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
- static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
- unsigned int access)
- {
- if (unlikely(is_mmio_spte(*sptep))) {
- if (gfn != get_mmio_spte_gfn(*sptep)) {
- mmu_spte_clear_no_track(sptep);
- return true;
- }
- mark_mmio_spte(vcpu, sptep, gfn, access);
- return true;
- }
- return false;
- }
- #define PTTYPE_EPT 18 /* arbitrary */
- #define PTTYPE PTTYPE_EPT
- #include "paging_tmpl.h"
- #undef PTTYPE
- #define PTTYPE 64
- #include "paging_tmpl.h"
- #undef PTTYPE
- #define PTTYPE 32
- #include "paging_tmpl.h"
- #undef PTTYPE
- static void
- __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
- u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
- bool pse, bool amd)
- {
- u64 gbpages_bit_rsvd = 0;
- u64 nonleaf_bit8_rsvd = 0;
- u64 high_bits_rsvd;
- rsvd_check->bad_mt_xwr = 0;
- if (!gbpages)
- gbpages_bit_rsvd = rsvd_bits(7, 7);
- if (level == PT32E_ROOT_LEVEL)
- high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
- else
- high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
- /* Note, NX doesn't exist in PDPTEs, this is handled below. */
- if (!nx)
- high_bits_rsvd |= rsvd_bits(63, 63);
- /*
- * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
- * leaf entries) on AMD CPUs only.
- */
- if (amd)
- nonleaf_bit8_rsvd = rsvd_bits(8, 8);
- switch (level) {
- case PT32_ROOT_LEVEL:
- /* no rsvd bits for 2 level 4K page table entries */
- rsvd_check->rsvd_bits_mask[0][1] = 0;
- rsvd_check->rsvd_bits_mask[0][0] = 0;
- rsvd_check->rsvd_bits_mask[1][0] =
- rsvd_check->rsvd_bits_mask[0][0];
- if (!pse) {
- rsvd_check->rsvd_bits_mask[1][1] = 0;
- break;
- }
- if (is_cpuid_PSE36())
- /* 36bits PSE 4MB page */
- rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
- else
- /* 32 bits PSE 4MB page */
- rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
- break;
- case PT32E_ROOT_LEVEL:
- rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
- high_bits_rsvd |
- rsvd_bits(5, 8) |
- rsvd_bits(1, 2); /* PDPTE */
- rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
- rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
- rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
- rsvd_bits(13, 20); /* large page */
- rsvd_check->rsvd_bits_mask[1][0] =
- rsvd_check->rsvd_bits_mask[0][0];
- break;
- case PT64_ROOT_5LEVEL:
- rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
- nonleaf_bit8_rsvd |
- rsvd_bits(7, 7);
- rsvd_check->rsvd_bits_mask[1][4] =
- rsvd_check->rsvd_bits_mask[0][4];
- fallthrough;
- case PT64_ROOT_4LEVEL:
- rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
- nonleaf_bit8_rsvd |
- rsvd_bits(7, 7);
- rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
- gbpages_bit_rsvd;
- rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
- rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
- rsvd_check->rsvd_bits_mask[1][3] =
- rsvd_check->rsvd_bits_mask[0][3];
- rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
- gbpages_bit_rsvd |
- rsvd_bits(13, 29);
- rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
- rsvd_bits(13, 20); /* large page */
- rsvd_check->rsvd_bits_mask[1][0] =
- rsvd_check->rsvd_bits_mask[0][0];
- break;
- }
- }
- static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
- {
- /*
- * If TDP is enabled, let the guest use GBPAGES if they're supported in
- * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
- * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
- * walk for performance and complexity reasons. Not to mention KVM
- * _can't_ solve the problem because GVA->GPA walks aren't visible to
- * KVM once a TDP translation is installed. Mimic hardware behavior so
- * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
- */
- return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
- guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
- }
- static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context)
- {
- __reset_rsvds_bits_mask(&context->guest_rsvd_check,
- vcpu->arch.reserved_gpa_bits,
- context->cpu_role.base.level, is_efer_nx(context),
- guest_can_use_gbpages(vcpu),
- is_cr4_pse(context),
- guest_cpuid_is_amd_or_hygon(vcpu));
- }
- static void
- __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
- u64 pa_bits_rsvd, bool execonly, int huge_page_level)
- {
- u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
- u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
- u64 bad_mt_xwr;
- if (huge_page_level < PG_LEVEL_1G)
- large_1g_rsvd = rsvd_bits(7, 7);
- if (huge_page_level < PG_LEVEL_2M)
- large_2m_rsvd = rsvd_bits(7, 7);
- rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
- rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
- rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
- rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
- rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
- /* large page */
- rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
- rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
- rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
- rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
- rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
- bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
- bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
- bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
- bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
- bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
- if (!execonly) {
- /* bits 0..2 must not be 100 unless VMX capabilities allow it */
- bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
- }
- rsvd_check->bad_mt_xwr = bad_mt_xwr;
- }
- static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context, bool execonly, int huge_page_level)
- {
- __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
- vcpu->arch.reserved_gpa_bits, execonly,
- huge_page_level);
- }
- static inline u64 reserved_hpa_bits(void)
- {
- return rsvd_bits(shadow_phys_bits, 63);
- }
- /*
- * the page table on host is the shadow page table for the page
- * table in guest or amd nested guest, its mmu features completely
- * follow the features in guest.
- */
- static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context)
- {
- /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
- bool is_amd = true;
- /* KVM doesn't use 2-level page tables for the shadow MMU. */
- bool is_pse = false;
- struct rsvd_bits_validate *shadow_zero_check;
- int i;
- WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
- shadow_zero_check = &context->shadow_zero_check;
- __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
- context->root_role.level,
- context->root_role.efer_nx,
- guest_can_use_gbpages(vcpu), is_pse, is_amd);
- if (!shadow_me_mask)
- return;
- for (i = context->root_role.level; --i >= 0;) {
- /*
- * So far shadow_me_value is a constant during KVM's life
- * time. Bits in shadow_me_value are allowed to be set.
- * Bits in shadow_me_mask but not in shadow_me_value are
- * not allowed to be set.
- */
- shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
- shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
- shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
- shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
- }
- }
- static inline bool boot_cpu_is_amd(void)
- {
- WARN_ON_ONCE(!tdp_enabled);
- return shadow_x_mask == 0;
- }
- /*
- * the direct page table on host, use as much mmu features as
- * possible, however, kvm currently does not do execution-protection.
- */
- static void
- reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
- {
- struct rsvd_bits_validate *shadow_zero_check;
- int i;
- shadow_zero_check = &context->shadow_zero_check;
- if (boot_cpu_is_amd())
- __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
- context->root_role.level, true,
- boot_cpu_has(X86_FEATURE_GBPAGES),
- false, true);
- else
- __reset_rsvds_bits_mask_ept(shadow_zero_check,
- reserved_hpa_bits(), false,
- max_huge_page_level);
- if (!shadow_me_mask)
- return;
- for (i = context->root_role.level; --i >= 0;) {
- shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
- shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
- }
- }
- /*
- * as the comments in reset_shadow_zero_bits_mask() except it
- * is the shadow page table for intel nested guest.
- */
- static void
- reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
- {
- __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
- reserved_hpa_bits(), execonly,
- max_huge_page_level);
- }
- #define BYTE_MASK(access) \
- ((1 & (access) ? 2 : 0) | \
- (2 & (access) ? 4 : 0) | \
- (3 & (access) ? 8 : 0) | \
- (4 & (access) ? 16 : 0) | \
- (5 & (access) ? 32 : 0) | \
- (6 & (access) ? 64 : 0) | \
- (7 & (access) ? 128 : 0))
- static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
- {
- unsigned byte;
- const u8 x = BYTE_MASK(ACC_EXEC_MASK);
- const u8 w = BYTE_MASK(ACC_WRITE_MASK);
- const u8 u = BYTE_MASK(ACC_USER_MASK);
- bool cr4_smep = is_cr4_smep(mmu);
- bool cr4_smap = is_cr4_smap(mmu);
- bool cr0_wp = is_cr0_wp(mmu);
- bool efer_nx = is_efer_nx(mmu);
- for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
- unsigned pfec = byte << 1;
- /*
- * Each "*f" variable has a 1 bit for each UWX value
- * that causes a fault with the given PFEC.
- */
- /* Faults from writes to non-writable pages */
- u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
- /* Faults from user mode accesses to supervisor pages */
- u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
- /* Faults from fetches of non-executable pages*/
- u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
- /* Faults from kernel mode fetches of user pages */
- u8 smepf = 0;
- /* Faults from kernel mode accesses of user pages */
- u8 smapf = 0;
- if (!ept) {
- /* Faults from kernel mode accesses to user pages */
- u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
- /* Not really needed: !nx will cause pte.nx to fault */
- if (!efer_nx)
- ff = 0;
- /* Allow supervisor writes if !cr0.wp */
- if (!cr0_wp)
- wf = (pfec & PFERR_USER_MASK) ? wf : 0;
- /* Disallow supervisor fetches of user code if cr4.smep */
- if (cr4_smep)
- smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
- /*
- * SMAP:kernel-mode data accesses from user-mode
- * mappings should fault. A fault is considered
- * as a SMAP violation if all of the following
- * conditions are true:
- * - X86_CR4_SMAP is set in CR4
- * - A user page is accessed
- * - The access is not a fetch
- * - The access is supervisor mode
- * - If implicit supervisor access or X86_EFLAGS_AC is clear
- *
- * Here, we cover the first four conditions.
- * The fifth is computed dynamically in permission_fault();
- * PFERR_RSVD_MASK bit will be set in PFEC if the access is
- * *not* subject to SMAP restrictions.
- */
- if (cr4_smap)
- smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
- }
- mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
- }
- }
- /*
- * PKU is an additional mechanism by which the paging controls access to
- * user-mode addresses based on the value in the PKRU register. Protection
- * key violations are reported through a bit in the page fault error code.
- * Unlike other bits of the error code, the PK bit is not known at the
- * call site of e.g. gva_to_gpa; it must be computed directly in
- * permission_fault based on two bits of PKRU, on some machine state (CR4,
- * CR0, EFER, CPL), and on other bits of the error code and the page tables.
- *
- * In particular the following conditions come from the error code, the
- * page tables and the machine state:
- * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
- * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
- * - PK is always zero if U=0 in the page tables
- * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
- *
- * The PKRU bitmask caches the result of these four conditions. The error
- * code (minus the P bit) and the page table's U bit form an index into the
- * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
- * with the two bits of the PKRU register corresponding to the protection key.
- * For the first three conditions above the bits will be 00, thus masking
- * away both AD and WD. For all reads or if the last condition holds, WD
- * only will be masked away.
- */
- static void update_pkru_bitmask(struct kvm_mmu *mmu)
- {
- unsigned bit;
- bool wp;
- mmu->pkru_mask = 0;
- if (!is_cr4_pke(mmu))
- return;
- wp = is_cr0_wp(mmu);
- for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
- unsigned pfec, pkey_bits;
- bool check_pkey, check_write, ff, uf, wf, pte_user;
- pfec = bit << 1;
- ff = pfec & PFERR_FETCH_MASK;
- uf = pfec & PFERR_USER_MASK;
- wf = pfec & PFERR_WRITE_MASK;
- /* PFEC.RSVD is replaced by ACC_USER_MASK. */
- pte_user = pfec & PFERR_RSVD_MASK;
- /*
- * Only need to check the access which is not an
- * instruction fetch and is to a user page.
- */
- check_pkey = (!ff && pte_user);
- /*
- * write access is controlled by PKRU if it is a
- * user access or CR0.WP = 1.
- */
- check_write = check_pkey && wf && (uf || wp);
- /* PKRU.AD stops both read and write access. */
- pkey_bits = !!check_pkey;
- /* PKRU.WD stops write access. */
- pkey_bits |= (!!check_write) << 1;
- mmu->pkru_mask |= (pkey_bits & 3) << pfec;
- }
- }
- static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
- struct kvm_mmu *mmu)
- {
- if (!is_cr0_pg(mmu))
- return;
- reset_guest_rsvds_bits_mask(vcpu, mmu);
- update_permission_bitmask(mmu, false);
- update_pkru_bitmask(mmu);
- }
- static void paging64_init_context(struct kvm_mmu *context)
- {
- context->page_fault = paging64_page_fault;
- context->gva_to_gpa = paging64_gva_to_gpa;
- context->sync_page = paging64_sync_page;
- context->invlpg = paging64_invlpg;
- }
- static void paging32_init_context(struct kvm_mmu *context)
- {
- context->page_fault = paging32_page_fault;
- context->gva_to_gpa = paging32_gva_to_gpa;
- context->sync_page = paging32_sync_page;
- context->invlpg = paging32_invlpg;
- }
- static union kvm_cpu_role
- kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs)
- {
- union kvm_cpu_role role = {0};
- role.base.access = ACC_ALL;
- role.base.smm = is_smm(vcpu);
- role.base.guest_mode = is_guest_mode(vcpu);
- role.ext.valid = 1;
- if (!____is_cr0_pg(regs)) {
- role.base.direct = 1;
- return role;
- }
- role.base.efer_nx = ____is_efer_nx(regs);
- role.base.cr0_wp = ____is_cr0_wp(regs);
- role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
- role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
- role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
- if (____is_efer_lma(regs))
- role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
- : PT64_ROOT_4LEVEL;
- else if (____is_cr4_pae(regs))
- role.base.level = PT32E_ROOT_LEVEL;
- else
- role.base.level = PT32_ROOT_LEVEL;
- role.ext.cr4_smep = ____is_cr4_smep(regs);
- role.ext.cr4_smap = ____is_cr4_smap(regs);
- role.ext.cr4_pse = ____is_cr4_pse(regs);
- /* PKEY and LA57 are active iff long mode is active. */
- role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
- role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
- role.ext.efer_lma = ____is_efer_lma(regs);
- return role;
- }
- void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
- struct kvm_mmu *mmu)
- {
- const bool cr0_wp = !!kvm_read_cr0_bits(vcpu, X86_CR0_WP);
- BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
- BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
- if (is_cr0_wp(mmu) == cr0_wp)
- return;
- mmu->cpu_role.base.cr0_wp = cr0_wp;
- reset_guest_paging_metadata(vcpu, mmu);
- }
- static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
- {
- /* tdp_root_level is architecture forced level, use it if nonzero */
- if (tdp_root_level)
- return tdp_root_level;
- /* Use 5-level TDP if and only if it's useful/necessary. */
- if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
- return 4;
- return max_tdp_level;
- }
- static union kvm_mmu_page_role
- kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
- union kvm_cpu_role cpu_role)
- {
- union kvm_mmu_page_role role = {0};
- role.access = ACC_ALL;
- role.cr0_wp = true;
- role.efer_nx = true;
- role.smm = cpu_role.base.smm;
- role.guest_mode = cpu_role.base.guest_mode;
- role.ad_disabled = !kvm_ad_enabled();
- role.level = kvm_mmu_get_tdp_level(vcpu);
- role.direct = true;
- role.has_4_byte_gpte = false;
- return role;
- }
- static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
- union kvm_cpu_role cpu_role)
- {
- struct kvm_mmu *context = &vcpu->arch.root_mmu;
- union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
- if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
- root_role.word == context->root_role.word)
- return;
- context->cpu_role.as_u64 = cpu_role.as_u64;
- context->root_role.word = root_role.word;
- context->page_fault = kvm_tdp_page_fault;
- context->sync_page = nonpaging_sync_page;
- context->invlpg = NULL;
- context->get_guest_pgd = get_guest_cr3;
- context->get_pdptr = kvm_pdptr_read;
- context->inject_page_fault = kvm_inject_page_fault;
- if (!is_cr0_pg(context))
- context->gva_to_gpa = nonpaging_gva_to_gpa;
- else if (is_cr4_pae(context))
- context->gva_to_gpa = paging64_gva_to_gpa;
- else
- context->gva_to_gpa = paging32_gva_to_gpa;
- reset_guest_paging_metadata(vcpu, context);
- reset_tdp_shadow_zero_bits_mask(context);
- }
- static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
- union kvm_cpu_role cpu_role,
- union kvm_mmu_page_role root_role)
- {
- if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
- root_role.word == context->root_role.word)
- return;
- context->cpu_role.as_u64 = cpu_role.as_u64;
- context->root_role.word = root_role.word;
- if (!is_cr0_pg(context))
- nonpaging_init_context(context);
- else if (is_cr4_pae(context))
- paging64_init_context(context);
- else
- paging32_init_context(context);
- reset_guest_paging_metadata(vcpu, context);
- reset_shadow_zero_bits_mask(vcpu, context);
- }
- static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
- union kvm_cpu_role cpu_role)
- {
- struct kvm_mmu *context = &vcpu->arch.root_mmu;
- union kvm_mmu_page_role root_role;
- root_role = cpu_role.base;
- /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
- root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
- /*
- * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
- * KVM uses NX when TDP is disabled to handle a variety of scenarios,
- * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
- * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
- * The iTLB multi-hit workaround can be toggled at any time, so assume
- * NX can be used by any non-nested shadow MMU to avoid having to reset
- * MMU contexts.
- */
- root_role.efer_nx = true;
- shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
- }
- void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
- unsigned long cr4, u64 efer, gpa_t nested_cr3)
- {
- struct kvm_mmu *context = &vcpu->arch.guest_mmu;
- struct kvm_mmu_role_regs regs = {
- .cr0 = cr0,
- .cr4 = cr4 & ~X86_CR4_PKE,
- .efer = efer,
- };
- union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s);
- union kvm_mmu_page_role root_role;
- /* NPT requires CR0.PG=1. */
- WARN_ON_ONCE(cpu_role.base.direct);
- root_role = cpu_role.base;
- root_role.level = kvm_mmu_get_tdp_level(vcpu);
- if (root_role.level == PT64_ROOT_5LEVEL &&
- cpu_role.base.level == PT64_ROOT_4LEVEL)
- root_role.passthrough = 1;
- shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
- kvm_mmu_new_pgd(vcpu, nested_cr3);
- }
- EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
- static union kvm_cpu_role
- kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
- bool execonly, u8 level)
- {
- union kvm_cpu_role role = {0};
- /*
- * KVM does not support SMM transfer monitors, and consequently does not
- * support the "entry to SMM" control either. role.base.smm is always 0.
- */
- WARN_ON_ONCE(is_smm(vcpu));
- role.base.level = level;
- role.base.has_4_byte_gpte = false;
- role.base.direct = false;
- role.base.ad_disabled = !accessed_dirty;
- role.base.guest_mode = true;
- role.base.access = ACC_ALL;
- role.ext.word = 0;
- role.ext.execonly = execonly;
- role.ext.valid = 1;
- return role;
- }
- void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
- int huge_page_level, bool accessed_dirty,
- gpa_t new_eptp)
- {
- struct kvm_mmu *context = &vcpu->arch.guest_mmu;
- u8 level = vmx_eptp_page_walk_level(new_eptp);
- union kvm_cpu_role new_mode =
- kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
- execonly, level);
- if (new_mode.as_u64 != context->cpu_role.as_u64) {
- /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
- context->cpu_role.as_u64 = new_mode.as_u64;
- context->root_role.word = new_mode.base.word;
- context->page_fault = ept_page_fault;
- context->gva_to_gpa = ept_gva_to_gpa;
- context->sync_page = ept_sync_page;
- context->invlpg = ept_invlpg;
- update_permission_bitmask(context, true);
- context->pkru_mask = 0;
- reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
- reset_ept_shadow_zero_bits_mask(context, execonly);
- }
- kvm_mmu_new_pgd(vcpu, new_eptp);
- }
- EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
- static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
- union kvm_cpu_role cpu_role)
- {
- struct kvm_mmu *context = &vcpu->arch.root_mmu;
- kvm_init_shadow_mmu(vcpu, cpu_role);
- context->get_guest_pgd = get_guest_cr3;
- context->get_pdptr = kvm_pdptr_read;
- context->inject_page_fault = kvm_inject_page_fault;
- }
- static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
- union kvm_cpu_role new_mode)
- {
- struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
- if (new_mode.as_u64 == g_context->cpu_role.as_u64)
- return;
- g_context->cpu_role.as_u64 = new_mode.as_u64;
- g_context->get_guest_pgd = get_guest_cr3;
- g_context->get_pdptr = kvm_pdptr_read;
- g_context->inject_page_fault = kvm_inject_page_fault;
- /*
- * L2 page tables are never shadowed, so there is no need to sync
- * SPTEs.
- */
- g_context->invlpg = NULL;
- /*
- * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
- * L1's nested page tables (e.g. EPT12). The nested translation
- * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
- * L2's page tables as the first level of translation and L1's
- * nested page tables as the second level of translation. Basically
- * the gva_to_gpa functions between mmu and nested_mmu are swapped.
- */
- if (!is_paging(vcpu))
- g_context->gva_to_gpa = nonpaging_gva_to_gpa;
- else if (is_long_mode(vcpu))
- g_context->gva_to_gpa = paging64_gva_to_gpa;
- else if (is_pae(vcpu))
- g_context->gva_to_gpa = paging64_gva_to_gpa;
- else
- g_context->gva_to_gpa = paging32_gva_to_gpa;
- reset_guest_paging_metadata(vcpu, g_context);
- }
- void kvm_init_mmu(struct kvm_vcpu *vcpu)
- {
- struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
- union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s);
- if (mmu_is_nested(vcpu))
- init_kvm_nested_mmu(vcpu, cpu_role);
- else if (tdp_enabled)
- init_kvm_tdp_mmu(vcpu, cpu_role);
- else
- init_kvm_softmmu(vcpu, cpu_role);
- }
- EXPORT_SYMBOL_GPL(kvm_init_mmu);
- void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
- {
- /*
- * Invalidate all MMU roles to force them to reinitialize as CPUID
- * information is factored into reserved bit calculations.
- *
- * Correctly handling multiple vCPU models with respect to paging and
- * physical address properties) in a single VM would require tracking
- * all relevant CPUID information in kvm_mmu_page_role. That is very
- * undesirable as it would increase the memory requirements for
- * gfn_track (see struct kvm_mmu_page_role comments). For now that
- * problem is swept under the rug; KVM's CPUID API is horrific and
- * it's all but impossible to solve it without introducing a new API.
- */
- vcpu->arch.root_mmu.root_role.word = 0;
- vcpu->arch.guest_mmu.root_role.word = 0;
- vcpu->arch.nested_mmu.root_role.word = 0;
- vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
- vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
- vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
- kvm_mmu_reset_context(vcpu);
- /*
- * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
- * kvm_arch_vcpu_ioctl().
- */
- KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
- }
- void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
- {
- kvm_mmu_unload(vcpu);
- kvm_init_mmu(vcpu);
- }
- EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
- int kvm_mmu_load(struct kvm_vcpu *vcpu)
- {
- int r;
- r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
- if (r)
- goto out;
- r = mmu_alloc_special_roots(vcpu);
- if (r)
- goto out;
- if (vcpu->arch.mmu->root_role.direct)
- r = mmu_alloc_direct_roots(vcpu);
- else
- r = mmu_alloc_shadow_roots(vcpu);
- if (r)
- goto out;
- kvm_mmu_sync_roots(vcpu);
- kvm_mmu_load_pgd(vcpu);
- /*
- * Flush any TLB entries for the new root, the provenance of the root
- * is unknown. Even if KVM ensures there are no stale TLB entries
- * for a freed root, in theory another hypervisor could have left
- * stale entries. Flushing on alloc also allows KVM to skip the TLB
- * flush when freeing a root (see kvm_tdp_mmu_put_root()).
- */
- static_call(kvm_x86_flush_tlb_current)(vcpu);
- out:
- return r;
- }
- void kvm_mmu_unload(struct kvm_vcpu *vcpu)
- {
- struct kvm *kvm = vcpu->kvm;
- kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
- WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
- kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
- WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
- vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
- }
- static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
- {
- struct kvm_mmu_page *sp;
- if (!VALID_PAGE(root_hpa))
- return false;
- /*
- * When freeing obsolete roots, treat roots as obsolete if they don't
- * have an associated shadow page. This does mean KVM will get false
- * positives and free roots that don't strictly need to be freed, but
- * such false positives are relatively rare:
- *
- * (a) only PAE paging and nested NPT has roots without shadow pages
- * (b) remote reloads due to a memslot update obsoletes _all_ roots
- * (c) KVM doesn't track previous roots for PAE paging, and the guest
- * is unlikely to zap an in-use PGD.
- */
- sp = to_shadow_page(root_hpa);
- return !sp || is_obsolete_sp(kvm, sp);
- }
- static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
- {
- unsigned long roots_to_free = 0;
- int i;
- if (is_obsolete_root(kvm, mmu->root.hpa))
- roots_to_free |= KVM_MMU_ROOT_CURRENT;
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
- if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
- roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
- }
- if (roots_to_free)
- kvm_mmu_free_roots(kvm, mmu, roots_to_free);
- }
- void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
- {
- __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
- __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
- }
- static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
- int *bytes)
- {
- u64 gentry = 0;
- int r;
- /*
- * Assume that the pte write on a page table of the same type
- * as the current vcpu paging mode since we update the sptes only
- * when they have the same mode.
- */
- if (is_pae(vcpu) && *bytes == 4) {
- /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
- *gpa &= ~(gpa_t)7;
- *bytes = 8;
- }
- if (*bytes == 4 || *bytes == 8) {
- r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
- if (r)
- gentry = 0;
- }
- return gentry;
- }
- /*
- * If we're seeing too many writes to a page, it may no longer be a page table,
- * or we may be forking, in which case it is better to unmap the page.
- */
- static bool detect_write_flooding(struct kvm_mmu_page *sp)
- {
- /*
- * Skip write-flooding detected for the sp whose level is 1, because
- * it can become unsync, then the guest page is not write-protected.
- */
- if (sp->role.level == PG_LEVEL_4K)
- return false;
- atomic_inc(&sp->write_flooding_count);
- return atomic_read(&sp->write_flooding_count) >= 3;
- }
- /*
- * Misaligned accesses are too much trouble to fix up; also, they usually
- * indicate a page is not used as a page table.
- */
- static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
- int bytes)
- {
- unsigned offset, pte_size, misaligned;
- pgprintk("misaligned: gpa %llx bytes %d role %x\n",
- gpa, bytes, sp->role.word);
- offset = offset_in_page(gpa);
- pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
- /*
- * Sometimes, the OS only writes the last one bytes to update status
- * bits, for example, in linux, andb instruction is used in clear_bit().
- */
- if (!(offset & (pte_size - 1)) && bytes == 1)
- return false;
- misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
- misaligned |= bytes < 4;
- return misaligned;
- }
- static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
- {
- unsigned page_offset, quadrant;
- u64 *spte;
- int level;
- page_offset = offset_in_page(gpa);
- level = sp->role.level;
- *nspte = 1;
- if (sp->role.has_4_byte_gpte) {
- page_offset <<= 1; /* 32->64 */
- /*
- * A 32-bit pde maps 4MB while the shadow pdes map
- * only 2MB. So we need to double the offset again
- * and zap two pdes instead of one.
- */
- if (level == PT32_ROOT_LEVEL) {
- page_offset &= ~7; /* kill rounding error */
- page_offset <<= 1;
- *nspte = 2;
- }
- quadrant = page_offset >> PAGE_SHIFT;
- page_offset &= ~PAGE_MASK;
- if (quadrant != sp->role.quadrant)
- return NULL;
- }
- spte = &sp->spt[page_offset / sizeof(*spte)];
- return spte;
- }
- static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
- const u8 *new, int bytes,
- struct kvm_page_track_notifier_node *node)
- {
- gfn_t gfn = gpa >> PAGE_SHIFT;
- struct kvm_mmu_page *sp;
- LIST_HEAD(invalid_list);
- u64 entry, gentry, *spte;
- int npte;
- bool flush = false;
- /*
- * If we don't have indirect shadow pages, it means no page is
- * write-protected, so we can exit simply.
- */
- if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
- return;
- pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
- write_lock(&vcpu->kvm->mmu_lock);
- gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
- ++vcpu->kvm->stat.mmu_pte_write;
- for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
- if (detect_write_misaligned(sp, gpa, bytes) ||
- detect_write_flooding(sp)) {
- kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
- ++vcpu->kvm->stat.mmu_flooded;
- continue;
- }
- spte = get_written_sptes(sp, gpa, &npte);
- if (!spte)
- continue;
- while (npte--) {
- entry = *spte;
- mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
- if (gentry && sp->role.level != PG_LEVEL_4K)
- ++vcpu->kvm->stat.mmu_pde_zapped;
- if (is_shadow_present_pte(entry))
- flush = true;
- ++spte;
- }
- }
- kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
- write_unlock(&vcpu->kvm->mmu_lock);
- }
- int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
- void *insn, int insn_len)
- {
- int r, emulation_type = EMULTYPE_PF;
- bool direct = vcpu->arch.mmu->root_role.direct;
- if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
- return RET_PF_RETRY;
- r = RET_PF_INVALID;
- if (unlikely(error_code & PFERR_RSVD_MASK)) {
- r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
- if (r == RET_PF_EMULATE)
- goto emulate;
- }
- if (r == RET_PF_INVALID) {
- r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
- lower_32_bits(error_code), false);
- if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
- return -EIO;
- }
- if (r < 0)
- return r;
- if (r != RET_PF_EMULATE)
- return 1;
- /*
- * Before emulating the instruction, check if the error code
- * was due to a RO violation while translating the guest page.
- * This can occur when using nested virtualization with nested
- * paging in both guests. If true, we simply unprotect the page
- * and resume the guest.
- */
- if (vcpu->arch.mmu->root_role.direct &&
- (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
- kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
- return 1;
- }
- /*
- * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
- * optimistically try to just unprotect the page and let the processor
- * re-execute the instruction that caused the page fault. Do not allow
- * retrying MMIO emulation, as it's not only pointless but could also
- * cause us to enter an infinite loop because the processor will keep
- * faulting on the non-existent MMIO address. Retrying an instruction
- * from a nested guest is also pointless and dangerous as we are only
- * explicitly shadowing L1's page tables, i.e. unprotecting something
- * for L1 isn't going to magically fix whatever issue cause L2 to fail.
- */
- if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
- emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
- emulate:
- return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
- insn_len);
- }
- EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
- void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
- gva_t gva, hpa_t root_hpa)
- {
- int i;
- /* It's actually a GPA for vcpu->arch.guest_mmu. */
- if (mmu != &vcpu->arch.guest_mmu) {
- /* INVLPG on a non-canonical address is a NOP according to the SDM. */
- if (is_noncanonical_address(gva, vcpu))
- return;
- static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
- }
- if (!mmu->invlpg)
- return;
- if (root_hpa == INVALID_PAGE) {
- mmu->invlpg(vcpu, gva, mmu->root.hpa);
- /*
- * INVLPG is required to invalidate any global mappings for the VA,
- * irrespective of PCID. Since it would take us roughly similar amount
- * of work to determine whether any of the prev_root mappings of the VA
- * is marked global, or to just sync it blindly, so we might as well
- * just always sync it.
- *
- * Mappings not reachable via the current cr3 or the prev_roots will be
- * synced when switching to that cr3, so nothing needs to be done here
- * for them.
- */
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if (VALID_PAGE(mmu->prev_roots[i].hpa))
- mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
- } else {
- mmu->invlpg(vcpu, gva, root_hpa);
- }
- }
- void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
- {
- kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
- ++vcpu->stat.invlpg;
- }
- EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
- void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
- {
- struct kvm_mmu *mmu = vcpu->arch.mmu;
- bool tlb_flush = false;
- uint i;
- if (pcid == kvm_get_active_pcid(vcpu)) {
- if (mmu->invlpg)
- mmu->invlpg(vcpu, gva, mmu->root.hpa);
- tlb_flush = true;
- }
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
- if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
- pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
- if (mmu->invlpg)
- mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
- tlb_flush = true;
- }
- }
- if (tlb_flush)
- static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
- ++vcpu->stat.invlpg;
- /*
- * Mappings not reachable via the current cr3 or the prev_roots will be
- * synced when switching to that cr3, so nothing needs to be done here
- * for them.
- */
- }
- void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
- int tdp_max_root_level, int tdp_huge_page_level)
- {
- tdp_enabled = enable_tdp;
- tdp_root_level = tdp_forced_root_level;
- max_tdp_level = tdp_max_root_level;
- /*
- * max_huge_page_level reflects KVM's MMU capabilities irrespective
- * of kernel support, e.g. KVM may be capable of using 1GB pages when
- * the kernel is not. But, KVM never creates a page size greater than
- * what is used by the kernel for any given HVA, i.e. the kernel's
- * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
- */
- if (tdp_enabled)
- max_huge_page_level = tdp_huge_page_level;
- else if (boot_cpu_has(X86_FEATURE_GBPAGES))
- max_huge_page_level = PG_LEVEL_1G;
- else
- max_huge_page_level = PG_LEVEL_2M;
- }
- EXPORT_SYMBOL_GPL(kvm_configure_mmu);
- /* The return value indicates if tlb flush on all vcpus is needed. */
- typedef bool (*slot_level_handler) (struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot);
- /* The caller should hold mmu-lock before calling this function. */
- static __always_inline bool
- slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
- slot_level_handler fn, int start_level, int end_level,
- gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
- bool flush)
- {
- struct slot_rmap_walk_iterator iterator;
- for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
- end_gfn, &iterator) {
- if (iterator.rmap)
- flush |= fn(kvm, iterator.rmap, memslot);
- if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
- if (flush && flush_on_yield) {
- kvm_flush_remote_tlbs_with_address(kvm,
- start_gfn,
- iterator.gfn - start_gfn + 1);
- flush = false;
- }
- cond_resched_rwlock_write(&kvm->mmu_lock);
- }
- }
- return flush;
- }
- static __always_inline bool
- slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
- slot_level_handler fn, int start_level, int end_level,
- bool flush_on_yield)
- {
- return slot_handle_level_range(kvm, memslot, fn, start_level,
- end_level, memslot->base_gfn,
- memslot->base_gfn + memslot->npages - 1,
- flush_on_yield, false);
- }
- static __always_inline bool
- slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
- slot_level_handler fn, bool flush_on_yield)
- {
- return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
- PG_LEVEL_4K, flush_on_yield);
- }
- static void free_mmu_pages(struct kvm_mmu *mmu)
- {
- if (!tdp_enabled && mmu->pae_root)
- set_memory_encrypted((unsigned long)mmu->pae_root, 1);
- free_page((unsigned long)mmu->pae_root);
- free_page((unsigned long)mmu->pml4_root);
- free_page((unsigned long)mmu->pml5_root);
- }
- static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
- {
- struct page *page;
- int i;
- mmu->root.hpa = INVALID_PAGE;
- mmu->root.pgd = 0;
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
- /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
- if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
- return 0;
- /*
- * When using PAE paging, the four PDPTEs are treated as 'root' pages,
- * while the PDP table is a per-vCPU construct that's allocated at MMU
- * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
- * x86_64. Therefore we need to allocate the PDP table in the first
- * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
- * generally doesn't use PAE paging and can skip allocating the PDP
- * table. The main exception, handled here, is SVM's 32-bit NPT. The
- * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
- * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
- */
- if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
- return 0;
- page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
- if (!page)
- return -ENOMEM;
- mmu->pae_root = page_address(page);
- /*
- * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
- * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
- * that KVM's writes and the CPU's reads get along. Note, this is
- * only necessary when using shadow paging, as 64-bit NPT can get at
- * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
- * by 32-bit kernels (when KVM itself uses 32-bit NPT).
- */
- if (!tdp_enabled)
- set_memory_decrypted((unsigned long)mmu->pae_root, 1);
- else
- WARN_ON_ONCE(shadow_me_value);
- for (i = 0; i < 4; ++i)
- mmu->pae_root[i] = INVALID_PAE_ROOT;
- return 0;
- }
- int kvm_mmu_create(struct kvm_vcpu *vcpu)
- {
- int ret;
- vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
- vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
- vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
- vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
- vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
- vcpu->arch.mmu = &vcpu->arch.root_mmu;
- vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
- ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
- if (ret)
- return ret;
- ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
- if (ret)
- goto fail_allocate_root;
- return ret;
- fail_allocate_root:
- free_mmu_pages(&vcpu->arch.guest_mmu);
- return ret;
- }
- #define BATCH_ZAP_PAGES 10
- static void kvm_zap_obsolete_pages(struct kvm *kvm)
- {
- struct kvm_mmu_page *sp, *node;
- int nr_zapped, batch = 0;
- bool unstable;
- restart:
- list_for_each_entry_safe_reverse(sp, node,
- &kvm->arch.active_mmu_pages, link) {
- /*
- * No obsolete valid page exists before a newly created page
- * since active_mmu_pages is a FIFO list.
- */
- if (!is_obsolete_sp(kvm, sp))
- break;
- /*
- * Invalid pages should never land back on the list of active
- * pages. Skip the bogus page, otherwise we'll get stuck in an
- * infinite loop if the page gets put back on the list (again).
- */
- if (WARN_ON(sp->role.invalid))
- continue;
- /*
- * No need to flush the TLB since we're only zapping shadow
- * pages with an obsolete generation number and all vCPUS have
- * loaded a new root, i.e. the shadow pages being zapped cannot
- * be in active use by the guest.
- */
- if (batch >= BATCH_ZAP_PAGES &&
- cond_resched_rwlock_write(&kvm->mmu_lock)) {
- batch = 0;
- goto restart;
- }
- unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
- &kvm->arch.zapped_obsolete_pages, &nr_zapped);
- batch += nr_zapped;
- if (unstable)
- goto restart;
- }
- /*
- * Kick all vCPUs (via remote TLB flush) before freeing the page tables
- * to ensure KVM is not in the middle of a lockless shadow page table
- * walk, which may reference the pages. The remote TLB flush itself is
- * not required and is simply a convenient way to kick vCPUs as needed.
- * KVM performs a local TLB flush when allocating a new root (see
- * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
- * running with an obsolete MMU.
- */
- kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
- }
- /*
- * Fast invalidate all shadow pages and use lock-break technique
- * to zap obsolete pages.
- *
- * It's required when memslot is being deleted or VM is being
- * destroyed, in these cases, we should ensure that KVM MMU does
- * not use any resource of the being-deleted slot or all slots
- * after calling the function.
- */
- static void kvm_mmu_zap_all_fast(struct kvm *kvm)
- {
- lockdep_assert_held(&kvm->slots_lock);
- write_lock(&kvm->mmu_lock);
- trace_kvm_mmu_zap_all_fast(kvm);
- /*
- * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
- * held for the entire duration of zapping obsolete pages, it's
- * impossible for there to be multiple invalid generations associated
- * with *valid* shadow pages at any given time, i.e. there is exactly
- * one valid generation and (at most) one invalid generation.
- */
- kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
- /*
- * In order to ensure all vCPUs drop their soon-to-be invalid roots,
- * invalidating TDP MMU roots must be done while holding mmu_lock for
- * write and in the same critical section as making the reload request,
- * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
- */
- if (is_tdp_mmu_enabled(kvm))
- kvm_tdp_mmu_invalidate_all_roots(kvm);
- /*
- * Notify all vcpus to reload its shadow page table and flush TLB.
- * Then all vcpus will switch to new shadow page table with the new
- * mmu_valid_gen.
- *
- * Note: we need to do this under the protection of mmu_lock,
- * otherwise, vcpu would purge shadow page but miss tlb flush.
- */
- kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
- kvm_zap_obsolete_pages(kvm);
- write_unlock(&kvm->mmu_lock);
- /*
- * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
- * returning to the caller, e.g. if the zap is in response to a memslot
- * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
- * associated with the deleted memslot once the update completes, and
- * Deferring the zap until the final reference to the root is put would
- * lead to use-after-free.
- */
- if (is_tdp_mmu_enabled(kvm))
- kvm_tdp_mmu_zap_invalidated_roots(kvm);
- }
- static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
- {
- return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
- }
- static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- struct kvm_page_track_notifier_node *node)
- {
- kvm_mmu_zap_all_fast(kvm);
- }
- void kvm_mmu_init_vm(struct kvm *kvm)
- {
- struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
- INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
- INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
- INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
- spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
- kvm_mmu_init_tdp_mmu(kvm);
- node->track_write = kvm_mmu_pte_write;
- node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
- kvm_page_track_register_notifier(kvm, node);
- kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
- kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
- kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
- kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
- kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
- }
- static void mmu_free_vm_memory_caches(struct kvm *kvm)
- {
- kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
- kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
- kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
- }
- void kvm_mmu_uninit_vm(struct kvm *kvm)
- {
- struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
- kvm_page_track_unregister_notifier(kvm, node);
- kvm_mmu_uninit_tdp_mmu(kvm);
- mmu_free_vm_memory_caches(kvm);
- }
- static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
- {
- const struct kvm_memory_slot *memslot;
- struct kvm_memslots *slots;
- struct kvm_memslot_iter iter;
- bool flush = false;
- gfn_t start, end;
- int i;
- if (!kvm_memslots_have_rmaps(kvm))
- return flush;
- for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
- slots = __kvm_memslots(kvm, i);
- kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
- memslot = iter.slot;
- start = max(gfn_start, memslot->base_gfn);
- end = min(gfn_end, memslot->base_gfn + memslot->npages);
- if (WARN_ON_ONCE(start >= end))
- continue;
- flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap,
- PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
- start, end - 1, true, flush);
- }
- }
- return flush;
- }
- /*
- * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
- * (not including it)
- */
- void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
- {
- bool flush;
- if (WARN_ON_ONCE(gfn_end <= gfn_start))
- return;
- write_lock(&kvm->mmu_lock);
- kvm_mmu_invalidate_begin(kvm, 0, -1ul);
- flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
- if (is_tdp_mmu_enabled(kvm))
- flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
- if (flush)
- kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
- gfn_end - gfn_start);
- kvm_mmu_invalidate_end(kvm, 0, -1ul);
- write_unlock(&kvm->mmu_lock);
- }
- static bool slot_rmap_write_protect(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
- {
- return rmap_write_protect(rmap_head, false);
- }
- void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
- const struct kvm_memory_slot *memslot,
- int start_level)
- {
- if (kvm_memslots_have_rmaps(kvm)) {
- write_lock(&kvm->mmu_lock);
- slot_handle_level(kvm, memslot, slot_rmap_write_protect,
- start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
- write_unlock(&kvm->mmu_lock);
- }
- if (is_tdp_mmu_enabled(kvm)) {
- read_lock(&kvm->mmu_lock);
- kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
- read_unlock(&kvm->mmu_lock);
- }
- }
- static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
- {
- return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
- }
- static bool need_topup_split_caches_or_resched(struct kvm *kvm)
- {
- if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
- return true;
- /*
- * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
- * to split a single huge page. Calculating how many are actually needed
- * is possible but not worth the complexity.
- */
- return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
- need_topup(&kvm->arch.split_page_header_cache, 1) ||
- need_topup(&kvm->arch.split_shadow_page_cache, 1);
- }
- static int topup_split_caches(struct kvm *kvm)
- {
- /*
- * Allocating rmap list entries when splitting huge pages for nested
- * MMUs is uncommon as KVM needs to use a list if and only if there is
- * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
- * aliased by multiple L2 gfns and/or from multiple nested roots with
- * different roles. Aliasing gfns when using TDP is atypical for VMMs;
- * a few gfns are often aliased during boot, e.g. when remapping BIOS,
- * but aliasing rarely occurs post-boot or for many gfns. If there is
- * only one rmap entry, rmap->val points directly at that one entry and
- * doesn't need to allocate a list. Buffer the cache by the default
- * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
- * encounters an aliased gfn or two.
- */
- const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
- KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
- int r;
- lockdep_assert_held(&kvm->slots_lock);
- r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
- SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
- if (r)
- return r;
- r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
- if (r)
- return r;
- return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
- }
- static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
- {
- struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
- struct shadow_page_caches caches = {};
- union kvm_mmu_page_role role;
- unsigned int access;
- gfn_t gfn;
- gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
- access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
- /*
- * Note, huge page splitting always uses direct shadow pages, regardless
- * of whether the huge page itself is mapped by a direct or indirect
- * shadow page, since the huge page region itself is being directly
- * mapped with smaller pages.
- */
- role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
- /* Direct SPs do not require a shadowed_info_cache. */
- caches.page_header_cache = &kvm->arch.split_page_header_cache;
- caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
- /* Safe to pass NULL for vCPU since requesting a direct SP. */
- return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
- }
- static void shadow_mmu_split_huge_page(struct kvm *kvm,
- const struct kvm_memory_slot *slot,
- u64 *huge_sptep)
- {
- struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
- u64 huge_spte = READ_ONCE(*huge_sptep);
- struct kvm_mmu_page *sp;
- bool flush = false;
- u64 *sptep, spte;
- gfn_t gfn;
- int index;
- sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
- for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
- sptep = &sp->spt[index];
- gfn = kvm_mmu_page_get_gfn(sp, index);
- /*
- * The SP may already have populated SPTEs, e.g. if this huge
- * page is aliased by multiple sptes with the same access
- * permissions. These entries are guaranteed to map the same
- * gfn-to-pfn translation since the SP is direct, so no need to
- * modify them.
- *
- * However, if a given SPTE points to a lower level page table,
- * that lower level page table may only be partially populated.
- * Installing such SPTEs would effectively unmap a potion of the
- * huge page. Unmapping guest memory always requires a TLB flush
- * since a subsequent operation on the unmapped regions would
- * fail to detect the need to flush.
- */
- if (is_shadow_present_pte(*sptep)) {
- flush |= !is_last_spte(*sptep, sp->role.level);
- continue;
- }
- spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
- mmu_spte_set(sptep, spte);
- __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
- }
- __link_shadow_page(kvm, cache, huge_sptep, sp, flush);
- }
- static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
- const struct kvm_memory_slot *slot,
- u64 *huge_sptep)
- {
- struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
- int level, r = 0;
- gfn_t gfn;
- u64 spte;
- /* Grab information for the tracepoint before dropping the MMU lock. */
- gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
- level = huge_sp->role.level;
- spte = *huge_sptep;
- if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
- r = -ENOSPC;
- goto out;
- }
- if (need_topup_split_caches_or_resched(kvm)) {
- write_unlock(&kvm->mmu_lock);
- cond_resched();
- /*
- * If the topup succeeds, return -EAGAIN to indicate that the
- * rmap iterator should be restarted because the MMU lock was
- * dropped.
- */
- r = topup_split_caches(kvm) ?: -EAGAIN;
- write_lock(&kvm->mmu_lock);
- goto out;
- }
- shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
- out:
- trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
- return r;
- }
- static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
- {
- struct rmap_iterator iter;
- struct kvm_mmu_page *sp;
- u64 *huge_sptep;
- int r;
- restart:
- for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
- sp = sptep_to_sp(huge_sptep);
- /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
- if (WARN_ON_ONCE(!sp->role.guest_mode))
- continue;
- /* The rmaps should never contain non-leaf SPTEs. */
- if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
- continue;
- /* SPs with level >PG_LEVEL_4K should never by unsync. */
- if (WARN_ON_ONCE(sp->unsync))
- continue;
- /* Don't bother splitting huge pages on invalid SPs. */
- if (sp->role.invalid)
- continue;
- r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
- /*
- * The split succeeded or needs to be retried because the MMU
- * lock was dropped. Either way, restart the iterator to get it
- * back into a consistent state.
- */
- if (!r || r == -EAGAIN)
- goto restart;
- /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
- break;
- }
- return false;
- }
- static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
- const struct kvm_memory_slot *slot,
- gfn_t start, gfn_t end,
- int target_level)
- {
- int level;
- /*
- * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
- * down to the target level. This ensures pages are recursively split
- * all the way to the target level. There's no need to split pages
- * already at the target level.
- */
- for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) {
- slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages,
- level, level, start, end - 1, true, false);
- }
- }
- /* Must be called with the mmu_lock held in write-mode. */
- void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
- const struct kvm_memory_slot *memslot,
- u64 start, u64 end,
- int target_level)
- {
- if (!is_tdp_mmu_enabled(kvm))
- return;
- if (kvm_memslots_have_rmaps(kvm))
- kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
- kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
- /*
- * A TLB flush is unnecessary at this point for the same resons as in
- * kvm_mmu_slot_try_split_huge_pages().
- */
- }
- void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
- const struct kvm_memory_slot *memslot,
- int target_level)
- {
- u64 start = memslot->base_gfn;
- u64 end = start + memslot->npages;
- if (!is_tdp_mmu_enabled(kvm))
- return;
- if (kvm_memslots_have_rmaps(kvm)) {
- write_lock(&kvm->mmu_lock);
- kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
- write_unlock(&kvm->mmu_lock);
- }
- read_lock(&kvm->mmu_lock);
- kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
- read_unlock(&kvm->mmu_lock);
- /*
- * No TLB flush is necessary here. KVM will flush TLBs after
- * write-protecting and/or clearing dirty on the newly split SPTEs to
- * ensure that guest writes are reflected in the dirty log before the
- * ioctl to enable dirty logging on this memslot completes. Since the
- * split SPTEs retain the write and dirty bits of the huge SPTE, it is
- * safe for KVM to decide if a TLB flush is necessary based on the split
- * SPTEs.
- */
- }
- static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
- {
- u64 *sptep;
- struct rmap_iterator iter;
- int need_tlb_flush = 0;
- struct kvm_mmu_page *sp;
- restart:
- for_each_rmap_spte(rmap_head, &iter, sptep) {
- sp = sptep_to_sp(sptep);
- /*
- * We cannot do huge page mapping for indirect shadow pages,
- * which are found on the last rmap (level = 1) when not using
- * tdp; such shadow pages are synced with the page table in
- * the guest, and the guest page table is using 4K page size
- * mapping if the indirect sp has level = 1.
- */
- if (sp->role.direct &&
- sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
- PG_LEVEL_NUM)) {
- kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
- if (kvm_available_flush_tlb_with_range())
- kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
- KVM_PAGES_PER_HPAGE(sp->role.level));
- else
- need_tlb_flush = 1;
- goto restart;
- }
- }
- return need_tlb_flush;
- }
- static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
- const struct kvm_memory_slot *slot)
- {
- /*
- * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
- * pages that are already mapped at the maximum hugepage level.
- */
- if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte,
- PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
- kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
- }
- void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
- const struct kvm_memory_slot *slot)
- {
- if (kvm_memslots_have_rmaps(kvm)) {
- write_lock(&kvm->mmu_lock);
- kvm_rmap_zap_collapsible_sptes(kvm, slot);
- write_unlock(&kvm->mmu_lock);
- }
- if (is_tdp_mmu_enabled(kvm)) {
- read_lock(&kvm->mmu_lock);
- kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
- read_unlock(&kvm->mmu_lock);
- }
- }
- void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
- const struct kvm_memory_slot *memslot)
- {
- /*
- * All current use cases for flushing the TLBs for a specific memslot
- * related to dirty logging, and many do the TLB flush out of mmu_lock.
- * The interaction between the various operations on memslot must be
- * serialized by slots_locks to ensure the TLB flush from one operation
- * is observed by any other operation on the same memslot.
- */
- lockdep_assert_held(&kvm->slots_lock);
- kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
- memslot->npages);
- }
- void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
- const struct kvm_memory_slot *memslot)
- {
- if (kvm_memslots_have_rmaps(kvm)) {
- write_lock(&kvm->mmu_lock);
- /*
- * Clear dirty bits only on 4k SPTEs since the legacy MMU only
- * support dirty logging at a 4k granularity.
- */
- slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
- write_unlock(&kvm->mmu_lock);
- }
- if (is_tdp_mmu_enabled(kvm)) {
- read_lock(&kvm->mmu_lock);
- kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
- read_unlock(&kvm->mmu_lock);
- }
- /*
- * The caller will flush the TLBs after this function returns.
- *
- * It's also safe to flush TLBs out of mmu lock here as currently this
- * function is only used for dirty logging, in which case flushing TLB
- * out of mmu lock also guarantees no dirty pages will be lost in
- * dirty_bitmap.
- */
- }
- void kvm_mmu_zap_all(struct kvm *kvm)
- {
- struct kvm_mmu_page *sp, *node;
- LIST_HEAD(invalid_list);
- int ign;
- write_lock(&kvm->mmu_lock);
- restart:
- list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
- if (WARN_ON(sp->role.invalid))
- continue;
- if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
- goto restart;
- if (cond_resched_rwlock_write(&kvm->mmu_lock))
- goto restart;
- }
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- if (is_tdp_mmu_enabled(kvm))
- kvm_tdp_mmu_zap_all(kvm);
- write_unlock(&kvm->mmu_lock);
- }
- void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
- {
- WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
- gen &= MMIO_SPTE_GEN_MASK;
- /*
- * Generation numbers are incremented in multiples of the number of
- * address spaces in order to provide unique generations across all
- * address spaces. Strip what is effectively the address space
- * modifier prior to checking for a wrap of the MMIO generation so
- * that a wrap in any address space is detected.
- */
- gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
- /*
- * The very rare case: if the MMIO generation number has wrapped,
- * zap all shadow pages.
- */
- if (unlikely(gen == 0)) {
- kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
- kvm_mmu_zap_all_fast(kvm);
- }
- }
- static unsigned long
- mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
- {
- struct kvm *kvm;
- int nr_to_scan = sc->nr_to_scan;
- unsigned long freed = 0;
- mutex_lock(&kvm_lock);
- list_for_each_entry(kvm, &vm_list, vm_list) {
- int idx;
- LIST_HEAD(invalid_list);
- /*
- * Never scan more than sc->nr_to_scan VM instances.
- * Will not hit this condition practically since we do not try
- * to shrink more than one VM and it is very unlikely to see
- * !n_used_mmu_pages so many times.
- */
- if (!nr_to_scan--)
- break;
- /*
- * n_used_mmu_pages is accessed without holding kvm->mmu_lock
- * here. We may skip a VM instance errorneosly, but we do not
- * want to shrink a VM that only started to populate its MMU
- * anyway.
- */
- if (!kvm->arch.n_used_mmu_pages &&
- !kvm_has_zapped_obsolete_pages(kvm))
- continue;
- idx = srcu_read_lock(&kvm->srcu);
- write_lock(&kvm->mmu_lock);
- if (kvm_has_zapped_obsolete_pages(kvm)) {
- kvm_mmu_commit_zap_page(kvm,
- &kvm->arch.zapped_obsolete_pages);
- goto unlock;
- }
- freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
- unlock:
- write_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, idx);
- /*
- * unfair on small ones
- * per-vm shrinkers cry out
- * sadness comes quickly
- */
- list_move_tail(&kvm->vm_list, &vm_list);
- break;
- }
- mutex_unlock(&kvm_lock);
- return freed;
- }
- static unsigned long
- mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
- {
- return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
- }
- static struct shrinker mmu_shrinker = {
- .count_objects = mmu_shrink_count,
- .scan_objects = mmu_shrink_scan,
- .seeks = DEFAULT_SEEKS * 10,
- };
- static void mmu_destroy_caches(void)
- {
- kmem_cache_destroy(pte_list_desc_cache);
- kmem_cache_destroy(mmu_page_header_cache);
- }
- static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
- {
- if (nx_hugepage_mitigation_hard_disabled)
- return sprintf(buffer, "never\n");
- return param_get_bool(buffer, kp);
- }
- static bool get_nx_auto_mode(void)
- {
- /* Return true when CPU has the bug, and mitigations are ON */
- return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
- }
- static void __set_nx_huge_pages(bool val)
- {
- nx_huge_pages = itlb_multihit_kvm_mitigation = val;
- }
- static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
- {
- bool old_val = nx_huge_pages;
- bool new_val;
- if (nx_hugepage_mitigation_hard_disabled)
- return -EPERM;
- /* In "auto" mode deploy workaround only if CPU has the bug. */
- if (sysfs_streq(val, "off")) {
- new_val = 0;
- } else if (sysfs_streq(val, "force")) {
- new_val = 1;
- } else if (sysfs_streq(val, "auto")) {
- new_val = get_nx_auto_mode();
- } else if (sysfs_streq(val, "never")) {
- new_val = 0;
- mutex_lock(&kvm_lock);
- if (!list_empty(&vm_list)) {
- mutex_unlock(&kvm_lock);
- return -EBUSY;
- }
- nx_hugepage_mitigation_hard_disabled = true;
- mutex_unlock(&kvm_lock);
- } else if (kstrtobool(val, &new_val) < 0) {
- return -EINVAL;
- }
- __set_nx_huge_pages(new_val);
- if (new_val != old_val) {
- struct kvm *kvm;
- mutex_lock(&kvm_lock);
- list_for_each_entry(kvm, &vm_list, vm_list) {
- mutex_lock(&kvm->slots_lock);
- kvm_mmu_zap_all_fast(kvm);
- mutex_unlock(&kvm->slots_lock);
- wake_up_process(kvm->arch.nx_lpage_recovery_thread);
- }
- mutex_unlock(&kvm_lock);
- }
- return 0;
- }
- /*
- * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
- * its default value of -1 is technically undefined behavior for a boolean.
- * Forward the module init call to SPTE code so that it too can handle module
- * params that need to be resolved/snapshot.
- */
- void __init kvm_mmu_x86_module_init(void)
- {
- if (nx_huge_pages == -1)
- __set_nx_huge_pages(get_nx_auto_mode());
- kvm_mmu_spte_module_init();
- }
- /*
- * The bulk of the MMU initialization is deferred until the vendor module is
- * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
- * to be reset when a potentially different vendor module is loaded.
- */
- int kvm_mmu_vendor_module_init(void)
- {
- int ret = -ENOMEM;
- /*
- * MMU roles use union aliasing which is, generally speaking, an
- * undefined behavior. However, we supposedly know how compilers behave
- * and the current status quo is unlikely to change. Guardians below are
- * supposed to let us know if the assumption becomes false.
- */
- BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
- BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
- BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
- kvm_mmu_reset_all_pte_masks();
- pte_list_desc_cache = kmem_cache_create("pte_list_desc",
- sizeof(struct pte_list_desc),
- 0, SLAB_ACCOUNT, NULL);
- if (!pte_list_desc_cache)
- goto out;
- mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
- sizeof(struct kvm_mmu_page),
- 0, SLAB_ACCOUNT, NULL);
- if (!mmu_page_header_cache)
- goto out;
- if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
- goto out;
- ret = register_shrinker(&mmu_shrinker, "x86-mmu");
- if (ret)
- goto out_shrinker;
- return 0;
- out_shrinker:
- percpu_counter_destroy(&kvm_total_used_mmu_pages);
- out:
- mmu_destroy_caches();
- return ret;
- }
- void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
- {
- kvm_mmu_unload(vcpu);
- free_mmu_pages(&vcpu->arch.root_mmu);
- free_mmu_pages(&vcpu->arch.guest_mmu);
- mmu_free_memory_caches(vcpu);
- }
- void kvm_mmu_vendor_module_exit(void)
- {
- mmu_destroy_caches();
- percpu_counter_destroy(&kvm_total_used_mmu_pages);
- unregister_shrinker(&mmu_shrinker);
- }
- /*
- * Calculate the effective recovery period, accounting for '0' meaning "let KVM
- * select a halving time of 1 hour". Returns true if recovery is enabled.
- */
- static bool calc_nx_huge_pages_recovery_period(uint *period)
- {
- /*
- * Use READ_ONCE to get the params, this may be called outside of the
- * param setters, e.g. by the kthread to compute its next timeout.
- */
- bool enabled = READ_ONCE(nx_huge_pages);
- uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
- if (!enabled || !ratio)
- return false;
- *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
- if (!*period) {
- /* Make sure the period is not less than one second. */
- ratio = min(ratio, 3600u);
- *period = 60 * 60 * 1000 / ratio;
- }
- return true;
- }
- static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
- {
- bool was_recovery_enabled, is_recovery_enabled;
- uint old_period, new_period;
- int err;
- if (nx_hugepage_mitigation_hard_disabled)
- return -EPERM;
- was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
- err = param_set_uint(val, kp);
- if (err)
- return err;
- is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
- if (is_recovery_enabled &&
- (!was_recovery_enabled || old_period > new_period)) {
- struct kvm *kvm;
- mutex_lock(&kvm_lock);
- list_for_each_entry(kvm, &vm_list, vm_list)
- wake_up_process(kvm->arch.nx_lpage_recovery_thread);
- mutex_unlock(&kvm_lock);
- }
- return err;
- }
- static void kvm_recover_nx_lpages(struct kvm *kvm)
- {
- unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
- int rcu_idx;
- struct kvm_mmu_page *sp;
- unsigned int ratio;
- LIST_HEAD(invalid_list);
- bool flush = false;
- ulong to_zap;
- rcu_idx = srcu_read_lock(&kvm->srcu);
- write_lock(&kvm->mmu_lock);
- /*
- * Zapping TDP MMU shadow pages, including the remote TLB flush, must
- * be done under RCU protection, because the pages are freed via RCU
- * callback.
- */
- rcu_read_lock();
- ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
- to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
- for ( ; to_zap; --to_zap) {
- if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
- break;
- /*
- * We use a separate list instead of just using active_mmu_pages
- * because the number of lpage_disallowed pages is expected to
- * be relatively small compared to the total.
- */
- sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
- struct kvm_mmu_page,
- lpage_disallowed_link);
- WARN_ON_ONCE(!sp->lpage_disallowed);
- if (is_tdp_mmu_page(sp)) {
- flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
- } else {
- kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
- WARN_ON_ONCE(sp->lpage_disallowed);
- }
- if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
- kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
- rcu_read_unlock();
- cond_resched_rwlock_write(&kvm->mmu_lock);
- flush = false;
- rcu_read_lock();
- }
- }
- kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
- rcu_read_unlock();
- write_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, rcu_idx);
- }
- static long get_nx_lpage_recovery_timeout(u64 start_time)
- {
- bool enabled;
- uint period;
- enabled = calc_nx_huge_pages_recovery_period(&period);
- return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
- : MAX_SCHEDULE_TIMEOUT;
- }
- static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
- {
- u64 start_time;
- long remaining_time;
- while (true) {
- start_time = get_jiffies_64();
- remaining_time = get_nx_lpage_recovery_timeout(start_time);
- set_current_state(TASK_INTERRUPTIBLE);
- while (!kthread_should_stop() && remaining_time > 0) {
- schedule_timeout(remaining_time);
- remaining_time = get_nx_lpage_recovery_timeout(start_time);
- set_current_state(TASK_INTERRUPTIBLE);
- }
- set_current_state(TASK_RUNNING);
- if (kthread_should_stop())
- return 0;
- kvm_recover_nx_lpages(kvm);
- }
- }
- int kvm_mmu_post_init_vm(struct kvm *kvm)
- {
- int err;
- if (nx_hugepage_mitigation_hard_disabled)
- return 0;
- err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
- "kvm-nx-lpage-recovery",
- &kvm->arch.nx_lpage_recovery_thread);
- if (!err)
- kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
- return err;
- }
- void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
- {
- if (kvm->arch.nx_lpage_recovery_thread)
- kthread_stop(kvm->arch.nx_lpage_recovery_thread);
- }
|