mmu.h 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef __KVM_X86_MMU_H
  3. #define __KVM_X86_MMU_H
  4. #include <linux/kvm_host.h>
  5. #include "kvm_cache_regs.h"
  6. #include "cpuid.h"
  7. extern bool __read_mostly enable_mmio_caching;
  8. #define PT_WRITABLE_SHIFT 1
  9. #define PT_USER_SHIFT 2
  10. #define PT_PRESENT_MASK (1ULL << 0)
  11. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  12. #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
  13. #define PT_PWT_MASK (1ULL << 3)
  14. #define PT_PCD_MASK (1ULL << 4)
  15. #define PT_ACCESSED_SHIFT 5
  16. #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
  17. #define PT_DIRTY_SHIFT 6
  18. #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
  19. #define PT_PAGE_SIZE_SHIFT 7
  20. #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
  21. #define PT_PAT_MASK (1ULL << 7)
  22. #define PT_GLOBAL_MASK (1ULL << 8)
  23. #define PT64_NX_SHIFT 63
  24. #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  25. #define PT_PAT_SHIFT 7
  26. #define PT_DIR_PAT_SHIFT 12
  27. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  28. #define PT64_ROOT_5LEVEL 5
  29. #define PT64_ROOT_4LEVEL 4
  30. #define PT32_ROOT_LEVEL 2
  31. #define PT32E_ROOT_LEVEL 3
  32. #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
  33. X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
  34. #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
  35. #define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
  36. static __always_inline u64 rsvd_bits(int s, int e)
  37. {
  38. BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
  39. if (__builtin_constant_p(e))
  40. BUILD_BUG_ON(e > 63);
  41. else
  42. e &= 63;
  43. if (e < s)
  44. return 0;
  45. return ((2ULL << (e - s)) - 1) << s;
  46. }
  47. /*
  48. * The number of non-reserved physical address bits irrespective of features
  49. * that repurpose legal bits, e.g. MKTME.
  50. */
  51. extern u8 __read_mostly shadow_phys_bits;
  52. static inline gfn_t kvm_mmu_max_gfn(void)
  53. {
  54. /*
  55. * Note that this uses the host MAXPHYADDR, not the guest's.
  56. * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
  57. * assuming KVM is running on bare metal, guest accesses beyond
  58. * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
  59. * (either EPT Violation/Misconfig or #NPF), and so KVM will never
  60. * install a SPTE for such addresses. If KVM is running as a VM
  61. * itself, on the other hand, it might see a MAXPHYADDR that is less
  62. * than hardware's real MAXPHYADDR. Using the host MAXPHYADDR
  63. * disallows such SPTEs entirely and simplifies the TDP MMU.
  64. */
  65. int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
  66. return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
  67. }
  68. static inline u8 kvm_get_shadow_phys_bits(void)
  69. {
  70. /*
  71. * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
  72. * in CPU detection code, but the processor treats those reduced bits as
  73. * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
  74. * the physical address bits reported by CPUID.
  75. */
  76. if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
  77. return cpuid_eax(0x80000008) & 0xff;
  78. /*
  79. * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
  80. * custom CPUID. Proceed with whatever the kernel found since these features
  81. * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
  82. */
  83. return boot_cpu_data.x86_phys_bits;
  84. }
  85. void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
  86. void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
  87. void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
  88. void kvm_init_mmu(struct kvm_vcpu *vcpu);
  89. void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
  90. unsigned long cr4, u64 efer, gpa_t nested_cr3);
  91. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
  92. int huge_page_level, bool accessed_dirty,
  93. gpa_t new_eptp);
  94. bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
  95. int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
  96. u64 fault_address, char *insn, int insn_len);
  97. void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
  98. struct kvm_mmu *mmu);
  99. int kvm_mmu_load(struct kvm_vcpu *vcpu);
  100. void kvm_mmu_unload(struct kvm_vcpu *vcpu);
  101. void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
  102. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
  103. void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
  104. static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
  105. {
  106. if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
  107. return 0;
  108. return kvm_mmu_load(vcpu);
  109. }
  110. static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
  111. {
  112. BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
  113. return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
  114. ? cr3 & X86_CR3_PCID_MASK
  115. : 0;
  116. }
  117. static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
  118. {
  119. return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
  120. }
  121. static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
  122. {
  123. u64 root_hpa = vcpu->arch.mmu->root.hpa;
  124. if (!VALID_PAGE(root_hpa))
  125. return;
  126. static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
  127. vcpu->arch.mmu->root_role.level);
  128. }
  129. static inline void kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
  130. struct kvm_mmu *mmu)
  131. {
  132. /*
  133. * When EPT is enabled, KVM may passthrough CR0.WP to the guest, i.e.
  134. * @mmu's snapshot of CR0.WP and thus all related paging metadata may
  135. * be stale. Refresh CR0.WP and the metadata on-demand when checking
  136. * for permission faults. Exempt nested MMUs, i.e. MMUs for shadowing
  137. * nEPT and nNPT, as CR0.WP is ignored in both cases. Note, KVM does
  138. * need to refresh nested_mmu, a.k.a. the walker used to translate L2
  139. * GVAs to GPAs, as that "MMU" needs to honor L2's CR0.WP.
  140. */
  141. if (!tdp_enabled || mmu == &vcpu->arch.guest_mmu)
  142. return;
  143. __kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
  144. }
  145. /*
  146. * Check if a given access (described through the I/D, W/R and U/S bits of a
  147. * page fault error code pfec) causes a permission fault with the given PTE
  148. * access rights (in ACC_* format).
  149. *
  150. * Return zero if the access does not fault; return the page fault error code
  151. * if the access faults.
  152. */
  153. static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  154. unsigned pte_access, unsigned pte_pkey,
  155. u64 access)
  156. {
  157. /* strip nested paging fault error codes */
  158. unsigned int pfec = access;
  159. unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
  160. /*
  161. * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
  162. * For implicit supervisor accesses, SMAP cannot be overridden.
  163. *
  164. * SMAP works on supervisor accesses only, and not_smap can
  165. * be set or not set when user access with neither has any bearing
  166. * on the result.
  167. *
  168. * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
  169. * this bit will always be zero in pfec, but it will be one in index
  170. * if SMAP checks are being disabled.
  171. */
  172. u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
  173. bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
  174. int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
  175. u32 errcode = PFERR_PRESENT_MASK;
  176. bool fault;
  177. kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
  178. fault = (mmu->permissions[index] >> pte_access) & 1;
  179. WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
  180. if (unlikely(mmu->pkru_mask)) {
  181. u32 pkru_bits, offset;
  182. /*
  183. * PKRU defines 32 bits, there are 16 domains and 2
  184. * attribute bits per domain in pkru. pte_pkey is the
  185. * index of the protection domain, so pte_pkey * 2 is
  186. * is the index of the first bit for the domain.
  187. */
  188. pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
  189. /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
  190. offset = (pfec & ~1) +
  191. ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
  192. pkru_bits &= mmu->pkru_mask >> offset;
  193. errcode |= -pkru_bits & PFERR_PK_MASK;
  194. fault |= (pkru_bits != 0);
  195. }
  196. return -(u32)fault & errcode;
  197. }
  198. void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
  199. int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
  200. int kvm_mmu_post_init_vm(struct kvm *kvm);
  201. void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
  202. static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
  203. {
  204. /*
  205. * Read shadow_root_allocated before related pointers. Hence, threads
  206. * reading shadow_root_allocated in any lock context are guaranteed to
  207. * see the pointers. Pairs with smp_store_release in
  208. * mmu_first_shadow_root_alloc.
  209. */
  210. return smp_load_acquire(&kvm->arch.shadow_root_allocated);
  211. }
  212. #ifdef CONFIG_X86_64
  213. static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
  214. #else
  215. static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
  216. #endif
  217. static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
  218. {
  219. return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
  220. }
  221. static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
  222. {
  223. /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
  224. return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  225. (base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  226. }
  227. static inline unsigned long
  228. __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
  229. int level)
  230. {
  231. return gfn_to_index(slot->base_gfn + npages - 1,
  232. slot->base_gfn, level) + 1;
  233. }
  234. static inline unsigned long
  235. kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
  236. {
  237. return __kvm_mmu_slot_lpages(slot, slot->npages, level);
  238. }
  239. static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
  240. {
  241. atomic64_add(count, &kvm->stat.pages[level - 1]);
  242. }
  243. gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
  244. struct x86_exception *exception);
  245. static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
  246. struct kvm_mmu *mmu,
  247. gpa_t gpa, u64 access,
  248. struct x86_exception *exception)
  249. {
  250. if (mmu != &vcpu->arch.nested_mmu)
  251. return gpa;
  252. return translate_nested_gpa(vcpu, gpa, access, exception);
  253. }
  254. #endif