12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577 |
- // SPDX-License-Identifier: GPL-2.0-only
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/kernel.h>
- #include <linux/sched.h>
- #include <linux/sched/clock.h>
- #include <linux/init.h>
- #include <linux/export.h>
- #include <linux/timer.h>
- #include <linux/acpi_pmtmr.h>
- #include <linux/cpufreq.h>
- #include <linux/delay.h>
- #include <linux/clocksource.h>
- #include <linux/percpu.h>
- #include <linux/timex.h>
- #include <linux/static_key.h>
- #include <linux/static_call.h>
- #include <asm/hpet.h>
- #include <asm/timer.h>
- #include <asm/vgtod.h>
- #include <asm/time.h>
- #include <asm/delay.h>
- #include <asm/hypervisor.h>
- #include <asm/nmi.h>
- #include <asm/x86_init.h>
- #include <asm/geode.h>
- #include <asm/apic.h>
- #include <asm/intel-family.h>
- #include <asm/i8259.h>
- #include <asm/uv/uv.h>
- unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
- EXPORT_SYMBOL(cpu_khz);
- unsigned int __read_mostly tsc_khz;
- EXPORT_SYMBOL(tsc_khz);
- #define KHZ 1000
- /*
- * TSC can be unstable due to cpufreq or due to unsynced TSCs
- */
- static int __read_mostly tsc_unstable;
- static unsigned int __initdata tsc_early_khz;
- static DEFINE_STATIC_KEY_FALSE(__use_tsc);
- int tsc_clocksource_reliable;
- static u32 art_to_tsc_numerator;
- static u32 art_to_tsc_denominator;
- static u64 art_to_tsc_offset;
- struct clocksource *art_related_clocksource;
- struct cyc2ns {
- struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
- seqcount_latch_t seq; /* 32 + 4 = 36 */
- }; /* fits one cacheline */
- static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
- static int __init tsc_early_khz_setup(char *buf)
- {
- return kstrtouint(buf, 0, &tsc_early_khz);
- }
- early_param("tsc_early_khz", tsc_early_khz_setup);
- __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
- {
- int seq, idx;
- preempt_disable_notrace();
- do {
- seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
- idx = seq & 1;
- data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
- data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
- data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
- } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
- }
- __always_inline void cyc2ns_read_end(void)
- {
- preempt_enable_notrace();
- }
- /*
- * Accelerators for sched_clock()
- * convert from cycles(64bits) => nanoseconds (64bits)
- * basic equation:
- * ns = cycles / (freq / ns_per_sec)
- * ns = cycles * (ns_per_sec / freq)
- * ns = cycles * (10^9 / (cpu_khz * 10^3))
- * ns = cycles * (10^6 / cpu_khz)
- *
- * Then we use scaling math (suggested by [email protected]) to get:
- * ns = cycles * (10^6 * SC / cpu_khz) / SC
- * ns = cycles * cyc2ns_scale / SC
- *
- * And since SC is a constant power of two, we can convert the div
- * into a shift. The larger SC is, the more accurate the conversion, but
- * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
- * (64-bit result) can be used.
- *
- * We can use khz divisor instead of mhz to keep a better precision.
- * ([email protected])
- *
- * [email protected] "math is hard, lets go shopping!"
- */
- static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
- {
- struct cyc2ns_data data;
- unsigned long long ns;
- cyc2ns_read_begin(&data);
- ns = data.cyc2ns_offset;
- ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
- cyc2ns_read_end();
- return ns;
- }
- static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
- {
- unsigned long long ns_now;
- struct cyc2ns_data data;
- struct cyc2ns *c2n;
- ns_now = cycles_2_ns(tsc_now);
- /*
- * Compute a new multiplier as per the above comment and ensure our
- * time function is continuous; see the comment near struct
- * cyc2ns_data.
- */
- clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
- NSEC_PER_MSEC, 0);
- /*
- * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
- * not expected to be greater than 31 due to the original published
- * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
- * value) - refer perf_event_mmap_page documentation in perf_event.h.
- */
- if (data.cyc2ns_shift == 32) {
- data.cyc2ns_shift = 31;
- data.cyc2ns_mul >>= 1;
- }
- data.cyc2ns_offset = ns_now -
- mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
- c2n = per_cpu_ptr(&cyc2ns, cpu);
- raw_write_seqcount_latch(&c2n->seq);
- c2n->data[0] = data;
- raw_write_seqcount_latch(&c2n->seq);
- c2n->data[1] = data;
- }
- static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
- {
- unsigned long flags;
- local_irq_save(flags);
- sched_clock_idle_sleep_event();
- if (khz)
- __set_cyc2ns_scale(khz, cpu, tsc_now);
- sched_clock_idle_wakeup_event();
- local_irq_restore(flags);
- }
- /*
- * Initialize cyc2ns for boot cpu
- */
- static void __init cyc2ns_init_boot_cpu(void)
- {
- struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
- seqcount_latch_init(&c2n->seq);
- __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
- }
- /*
- * Secondary CPUs do not run through tsc_init(), so set up
- * all the scale factors for all CPUs, assuming the same
- * speed as the bootup CPU.
- */
- static void __init cyc2ns_init_secondary_cpus(void)
- {
- unsigned int cpu, this_cpu = smp_processor_id();
- struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
- struct cyc2ns_data *data = c2n->data;
- for_each_possible_cpu(cpu) {
- if (cpu != this_cpu) {
- seqcount_latch_init(&c2n->seq);
- c2n = per_cpu_ptr(&cyc2ns, cpu);
- c2n->data[0] = data[0];
- c2n->data[1] = data[1];
- }
- }
- }
- /*
- * Scheduler clock - returns current time in nanosec units.
- */
- u64 native_sched_clock(void)
- {
- if (static_branch_likely(&__use_tsc)) {
- u64 tsc_now = rdtsc();
- /* return the value in ns */
- return cycles_2_ns(tsc_now);
- }
- /*
- * Fall back to jiffies if there's no TSC available:
- * ( But note that we still use it if the TSC is marked
- * unstable. We do this because unlike Time Of Day,
- * the scheduler clock tolerates small errors and it's
- * very important for it to be as fast as the platform
- * can achieve it. )
- */
- /* No locking but a rare wrong value is not a big deal: */
- return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
- }
- /*
- * Generate a sched_clock if you already have a TSC value.
- */
- u64 native_sched_clock_from_tsc(u64 tsc)
- {
- return cycles_2_ns(tsc);
- }
- /* We need to define a real function for sched_clock, to override the
- weak default version */
- #ifdef CONFIG_PARAVIRT
- unsigned long long sched_clock(void)
- {
- return paravirt_sched_clock();
- }
- bool using_native_sched_clock(void)
- {
- return static_call_query(pv_sched_clock) == native_sched_clock;
- }
- #else
- unsigned long long
- sched_clock(void) __attribute__((alias("native_sched_clock")));
- bool using_native_sched_clock(void) { return true; }
- #endif
- int check_tsc_unstable(void)
- {
- return tsc_unstable;
- }
- EXPORT_SYMBOL_GPL(check_tsc_unstable);
- #ifdef CONFIG_X86_TSC
- int __init notsc_setup(char *str)
- {
- mark_tsc_unstable("boot parameter notsc");
- return 1;
- }
- #else
- /*
- * disable flag for tsc. Takes effect by clearing the TSC cpu flag
- * in cpu/common.c
- */
- int __init notsc_setup(char *str)
- {
- setup_clear_cpu_cap(X86_FEATURE_TSC);
- return 1;
- }
- #endif
- __setup("notsc", notsc_setup);
- static int no_sched_irq_time;
- static int no_tsc_watchdog;
- static int __init tsc_setup(char *str)
- {
- if (!strcmp(str, "reliable"))
- tsc_clocksource_reliable = 1;
- if (!strncmp(str, "noirqtime", 9))
- no_sched_irq_time = 1;
- if (!strcmp(str, "unstable"))
- mark_tsc_unstable("boot parameter");
- if (!strcmp(str, "nowatchdog"))
- no_tsc_watchdog = 1;
- return 1;
- }
- __setup("tsc=", tsc_setup);
- #define MAX_RETRIES 5
- #define TSC_DEFAULT_THRESHOLD 0x20000
- /*
- * Read TSC and the reference counters. Take care of any disturbances
- */
- static u64 tsc_read_refs(u64 *p, int hpet)
- {
- u64 t1, t2;
- u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
- int i;
- for (i = 0; i < MAX_RETRIES; i++) {
- t1 = get_cycles();
- if (hpet)
- *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
- else
- *p = acpi_pm_read_early();
- t2 = get_cycles();
- if ((t2 - t1) < thresh)
- return t2;
- }
- return ULLONG_MAX;
- }
- /*
- * Calculate the TSC frequency from HPET reference
- */
- static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
- {
- u64 tmp;
- if (hpet2 < hpet1)
- hpet2 += 0x100000000ULL;
- hpet2 -= hpet1;
- tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
- do_div(tmp, 1000000);
- deltatsc = div64_u64(deltatsc, tmp);
- return (unsigned long) deltatsc;
- }
- /*
- * Calculate the TSC frequency from PMTimer reference
- */
- static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
- {
- u64 tmp;
- if (!pm1 && !pm2)
- return ULONG_MAX;
- if (pm2 < pm1)
- pm2 += (u64)ACPI_PM_OVRRUN;
- pm2 -= pm1;
- tmp = pm2 * 1000000000LL;
- do_div(tmp, PMTMR_TICKS_PER_SEC);
- do_div(deltatsc, tmp);
- return (unsigned long) deltatsc;
- }
- #define CAL_MS 10
- #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
- #define CAL_PIT_LOOPS 1000
- #define CAL2_MS 50
- #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
- #define CAL2_PIT_LOOPS 5000
- /*
- * Try to calibrate the TSC against the Programmable
- * Interrupt Timer and return the frequency of the TSC
- * in kHz.
- *
- * Return ULONG_MAX on failure to calibrate.
- */
- static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
- {
- u64 tsc, t1, t2, delta;
- unsigned long tscmin, tscmax;
- int pitcnt;
- if (!has_legacy_pic()) {
- /*
- * Relies on tsc_early_delay_calibrate() to have given us semi
- * usable udelay(), wait for the same 50ms we would have with
- * the PIT loop below.
- */
- udelay(10 * USEC_PER_MSEC);
- udelay(10 * USEC_PER_MSEC);
- udelay(10 * USEC_PER_MSEC);
- udelay(10 * USEC_PER_MSEC);
- udelay(10 * USEC_PER_MSEC);
- return ULONG_MAX;
- }
- /* Set the Gate high, disable speaker */
- outb((inb(0x61) & ~0x02) | 0x01, 0x61);
- /*
- * Setup CTC channel 2* for mode 0, (interrupt on terminal
- * count mode), binary count. Set the latch register to 50ms
- * (LSB then MSB) to begin countdown.
- */
- outb(0xb0, 0x43);
- outb(latch & 0xff, 0x42);
- outb(latch >> 8, 0x42);
- tsc = t1 = t2 = get_cycles();
- pitcnt = 0;
- tscmax = 0;
- tscmin = ULONG_MAX;
- while ((inb(0x61) & 0x20) == 0) {
- t2 = get_cycles();
- delta = t2 - tsc;
- tsc = t2;
- if ((unsigned long) delta < tscmin)
- tscmin = (unsigned int) delta;
- if ((unsigned long) delta > tscmax)
- tscmax = (unsigned int) delta;
- pitcnt++;
- }
- /*
- * Sanity checks:
- *
- * If we were not able to read the PIT more than loopmin
- * times, then we have been hit by a massive SMI
- *
- * If the maximum is 10 times larger than the minimum,
- * then we got hit by an SMI as well.
- */
- if (pitcnt < loopmin || tscmax > 10 * tscmin)
- return ULONG_MAX;
- /* Calculate the PIT value */
- delta = t2 - t1;
- do_div(delta, ms);
- return delta;
- }
- /*
- * This reads the current MSB of the PIT counter, and
- * checks if we are running on sufficiently fast and
- * non-virtualized hardware.
- *
- * Our expectations are:
- *
- * - the PIT is running at roughly 1.19MHz
- *
- * - each IO is going to take about 1us on real hardware,
- * but we allow it to be much faster (by a factor of 10) or
- * _slightly_ slower (ie we allow up to a 2us read+counter
- * update - anything else implies a unacceptably slow CPU
- * or PIT for the fast calibration to work.
- *
- * - with 256 PIT ticks to read the value, we have 214us to
- * see the same MSB (and overhead like doing a single TSC
- * read per MSB value etc).
- *
- * - We're doing 2 reads per loop (LSB, MSB), and we expect
- * them each to take about a microsecond on real hardware.
- * So we expect a count value of around 100. But we'll be
- * generous, and accept anything over 50.
- *
- * - if the PIT is stuck, and we see *many* more reads, we
- * return early (and the next caller of pit_expect_msb()
- * then consider it a failure when they don't see the
- * next expected value).
- *
- * These expectations mean that we know that we have seen the
- * transition from one expected value to another with a fairly
- * high accuracy, and we didn't miss any events. We can thus
- * use the TSC value at the transitions to calculate a pretty
- * good value for the TSC frequency.
- */
- static inline int pit_verify_msb(unsigned char val)
- {
- /* Ignore LSB */
- inb(0x42);
- return inb(0x42) == val;
- }
- static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
- {
- int count;
- u64 tsc = 0, prev_tsc = 0;
- for (count = 0; count < 50000; count++) {
- if (!pit_verify_msb(val))
- break;
- prev_tsc = tsc;
- tsc = get_cycles();
- }
- *deltap = get_cycles() - prev_tsc;
- *tscp = tsc;
- /*
- * We require _some_ success, but the quality control
- * will be based on the error terms on the TSC values.
- */
- return count > 5;
- }
- /*
- * How many MSB values do we want to see? We aim for
- * a maximum error rate of 500ppm (in practice the
- * real error is much smaller), but refuse to spend
- * more than 50ms on it.
- */
- #define MAX_QUICK_PIT_MS 50
- #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
- static unsigned long quick_pit_calibrate(void)
- {
- int i;
- u64 tsc, delta;
- unsigned long d1, d2;
- if (!has_legacy_pic())
- return 0;
- /* Set the Gate high, disable speaker */
- outb((inb(0x61) & ~0x02) | 0x01, 0x61);
- /*
- * Counter 2, mode 0 (one-shot), binary count
- *
- * NOTE! Mode 2 decrements by two (and then the
- * output is flipped each time, giving the same
- * final output frequency as a decrement-by-one),
- * so mode 0 is much better when looking at the
- * individual counts.
- */
- outb(0xb0, 0x43);
- /* Start at 0xffff */
- outb(0xff, 0x42);
- outb(0xff, 0x42);
- /*
- * The PIT starts counting at the next edge, so we
- * need to delay for a microsecond. The easiest way
- * to do that is to just read back the 16-bit counter
- * once from the PIT.
- */
- pit_verify_msb(0);
- if (pit_expect_msb(0xff, &tsc, &d1)) {
- for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
- if (!pit_expect_msb(0xff-i, &delta, &d2))
- break;
- delta -= tsc;
- /*
- * Extrapolate the error and fail fast if the error will
- * never be below 500 ppm.
- */
- if (i == 1 &&
- d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
- return 0;
- /*
- * Iterate until the error is less than 500 ppm
- */
- if (d1+d2 >= delta >> 11)
- continue;
- /*
- * Check the PIT one more time to verify that
- * all TSC reads were stable wrt the PIT.
- *
- * This also guarantees serialization of the
- * last cycle read ('d2') in pit_expect_msb.
- */
- if (!pit_verify_msb(0xfe - i))
- break;
- goto success;
- }
- }
- pr_info("Fast TSC calibration failed\n");
- return 0;
- success:
- /*
- * Ok, if we get here, then we've seen the
- * MSB of the PIT decrement 'i' times, and the
- * error has shrunk to less than 500 ppm.
- *
- * As a result, we can depend on there not being
- * any odd delays anywhere, and the TSC reads are
- * reliable (within the error).
- *
- * kHz = ticks / time-in-seconds / 1000;
- * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
- * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
- */
- delta *= PIT_TICK_RATE;
- do_div(delta, i*256*1000);
- pr_info("Fast TSC calibration using PIT\n");
- return delta;
- }
- /**
- * native_calibrate_tsc
- * Determine TSC frequency via CPUID, else return 0.
- */
- unsigned long native_calibrate_tsc(void)
- {
- unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
- unsigned int crystal_khz;
- if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
- return 0;
- if (boot_cpu_data.cpuid_level < 0x15)
- return 0;
- eax_denominator = ebx_numerator = ecx_hz = edx = 0;
- /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
- cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
- if (ebx_numerator == 0 || eax_denominator == 0)
- return 0;
- crystal_khz = ecx_hz / 1000;
- /*
- * Denverton SoCs don't report crystal clock, and also don't support
- * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
- * clock.
- */
- if (crystal_khz == 0 &&
- boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
- crystal_khz = 25000;
- /*
- * TSC frequency reported directly by CPUID is a "hardware reported"
- * frequency and is the most accurate one so far we have. This
- * is considered a known frequency.
- */
- if (crystal_khz != 0)
- setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
- /*
- * Some Intel SoCs like Skylake and Kabylake don't report the crystal
- * clock, but we can easily calculate it to a high degree of accuracy
- * by considering the crystal ratio and the CPU speed.
- */
- if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
- unsigned int eax_base_mhz, ebx, ecx, edx;
- cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
- crystal_khz = eax_base_mhz * 1000 *
- eax_denominator / ebx_numerator;
- }
- if (crystal_khz == 0)
- return 0;
- /*
- * For Atom SoCs TSC is the only reliable clocksource.
- * Mark TSC reliable so no watchdog on it.
- */
- if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
- setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
- #ifdef CONFIG_X86_LOCAL_APIC
- /*
- * The local APIC appears to be fed by the core crystal clock
- * (which sounds entirely sensible). We can set the global
- * lapic_timer_period here to avoid having to calibrate the APIC
- * timer later.
- */
- lapic_timer_period = crystal_khz * 1000 / HZ;
- #endif
- return crystal_khz * ebx_numerator / eax_denominator;
- }
- static unsigned long cpu_khz_from_cpuid(void)
- {
- unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
- if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
- return 0;
- if (boot_cpu_data.cpuid_level < 0x16)
- return 0;
- eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
- cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
- return eax_base_mhz * 1000;
- }
- /*
- * calibrate cpu using pit, hpet, and ptimer methods. They are available
- * later in boot after acpi is initialized.
- */
- static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
- {
- u64 tsc1, tsc2, delta, ref1, ref2;
- unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
- unsigned long flags, latch, ms;
- int hpet = is_hpet_enabled(), i, loopmin;
- /*
- * Run 5 calibration loops to get the lowest frequency value
- * (the best estimate). We use two different calibration modes
- * here:
- *
- * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
- * load a timeout of 50ms. We read the time right after we
- * started the timer and wait until the PIT count down reaches
- * zero. In each wait loop iteration we read the TSC and check
- * the delta to the previous read. We keep track of the min
- * and max values of that delta. The delta is mostly defined
- * by the IO time of the PIT access, so we can detect when
- * any disturbance happened between the two reads. If the
- * maximum time is significantly larger than the minimum time,
- * then we discard the result and have another try.
- *
- * 2) Reference counter. If available we use the HPET or the
- * PMTIMER as a reference to check the sanity of that value.
- * We use separate TSC readouts and check inside of the
- * reference read for any possible disturbance. We discard
- * disturbed values here as well. We do that around the PIT
- * calibration delay loop as we have to wait for a certain
- * amount of time anyway.
- */
- /* Preset PIT loop values */
- latch = CAL_LATCH;
- ms = CAL_MS;
- loopmin = CAL_PIT_LOOPS;
- for (i = 0; i < 3; i++) {
- unsigned long tsc_pit_khz;
- /*
- * Read the start value and the reference count of
- * hpet/pmtimer when available. Then do the PIT
- * calibration, which will take at least 50ms, and
- * read the end value.
- */
- local_irq_save(flags);
- tsc1 = tsc_read_refs(&ref1, hpet);
- tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
- tsc2 = tsc_read_refs(&ref2, hpet);
- local_irq_restore(flags);
- /* Pick the lowest PIT TSC calibration so far */
- tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
- /* hpet or pmtimer available ? */
- if (ref1 == ref2)
- continue;
- /* Check, whether the sampling was disturbed */
- if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
- continue;
- tsc2 = (tsc2 - tsc1) * 1000000LL;
- if (hpet)
- tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
- else
- tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
- tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
- /* Check the reference deviation */
- delta = ((u64) tsc_pit_min) * 100;
- do_div(delta, tsc_ref_min);
- /*
- * If both calibration results are inside a 10% window
- * then we can be sure, that the calibration
- * succeeded. We break out of the loop right away. We
- * use the reference value, as it is more precise.
- */
- if (delta >= 90 && delta <= 110) {
- pr_info("PIT calibration matches %s. %d loops\n",
- hpet ? "HPET" : "PMTIMER", i + 1);
- return tsc_ref_min;
- }
- /*
- * Check whether PIT failed more than once. This
- * happens in virtualized environments. We need to
- * give the virtual PC a slightly longer timeframe for
- * the HPET/PMTIMER to make the result precise.
- */
- if (i == 1 && tsc_pit_min == ULONG_MAX) {
- latch = CAL2_LATCH;
- ms = CAL2_MS;
- loopmin = CAL2_PIT_LOOPS;
- }
- }
- /*
- * Now check the results.
- */
- if (tsc_pit_min == ULONG_MAX) {
- /* PIT gave no useful value */
- pr_warn("Unable to calibrate against PIT\n");
- /* We don't have an alternative source, disable TSC */
- if (!hpet && !ref1 && !ref2) {
- pr_notice("No reference (HPET/PMTIMER) available\n");
- return 0;
- }
- /* The alternative source failed as well, disable TSC */
- if (tsc_ref_min == ULONG_MAX) {
- pr_warn("HPET/PMTIMER calibration failed\n");
- return 0;
- }
- /* Use the alternative source */
- pr_info("using %s reference calibration\n",
- hpet ? "HPET" : "PMTIMER");
- return tsc_ref_min;
- }
- /* We don't have an alternative source, use the PIT calibration value */
- if (!hpet && !ref1 && !ref2) {
- pr_info("Using PIT calibration value\n");
- return tsc_pit_min;
- }
- /* The alternative source failed, use the PIT calibration value */
- if (tsc_ref_min == ULONG_MAX) {
- pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
- return tsc_pit_min;
- }
- /*
- * The calibration values differ too much. In doubt, we use
- * the PIT value as we know that there are PMTIMERs around
- * running at double speed. At least we let the user know:
- */
- pr_warn("PIT calibration deviates from %s: %lu %lu\n",
- hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
- pr_info("Using PIT calibration value\n");
- return tsc_pit_min;
- }
- /**
- * native_calibrate_cpu_early - can calibrate the cpu early in boot
- */
- unsigned long native_calibrate_cpu_early(void)
- {
- unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
- if (!fast_calibrate)
- fast_calibrate = cpu_khz_from_msr();
- if (!fast_calibrate) {
- local_irq_save(flags);
- fast_calibrate = quick_pit_calibrate();
- local_irq_restore(flags);
- }
- return fast_calibrate;
- }
- /**
- * native_calibrate_cpu - calibrate the cpu
- */
- static unsigned long native_calibrate_cpu(void)
- {
- unsigned long tsc_freq = native_calibrate_cpu_early();
- if (!tsc_freq)
- tsc_freq = pit_hpet_ptimer_calibrate_cpu();
- return tsc_freq;
- }
- void recalibrate_cpu_khz(void)
- {
- #ifndef CONFIG_SMP
- unsigned long cpu_khz_old = cpu_khz;
- if (!boot_cpu_has(X86_FEATURE_TSC))
- return;
- cpu_khz = x86_platform.calibrate_cpu();
- tsc_khz = x86_platform.calibrate_tsc();
- if (tsc_khz == 0)
- tsc_khz = cpu_khz;
- else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
- cpu_khz = tsc_khz;
- cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
- cpu_khz_old, cpu_khz);
- #endif
- }
- EXPORT_SYMBOL(recalibrate_cpu_khz);
- static unsigned long long cyc2ns_suspend;
- void tsc_save_sched_clock_state(void)
- {
- if (!sched_clock_stable())
- return;
- cyc2ns_suspend = sched_clock();
- }
- /*
- * Even on processors with invariant TSC, TSC gets reset in some the
- * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
- * arbitrary value (still sync'd across cpu's) during resume from such sleep
- * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
- * that sched_clock() continues from the point where it was left off during
- * suspend.
- */
- void tsc_restore_sched_clock_state(void)
- {
- unsigned long long offset;
- unsigned long flags;
- int cpu;
- if (!sched_clock_stable())
- return;
- local_irq_save(flags);
- /*
- * We're coming out of suspend, there's no concurrency yet; don't
- * bother being nice about the RCU stuff, just write to both
- * data fields.
- */
- this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
- this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
- offset = cyc2ns_suspend - sched_clock();
- for_each_possible_cpu(cpu) {
- per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
- per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
- }
- local_irq_restore(flags);
- }
- #ifdef CONFIG_CPU_FREQ
- /*
- * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
- * changes.
- *
- * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
- * as unstable and give up in those cases.
- *
- * Should fix up last_tsc too. Currently gettimeofday in the
- * first tick after the change will be slightly wrong.
- */
- static unsigned int ref_freq;
- static unsigned long loops_per_jiffy_ref;
- static unsigned long tsc_khz_ref;
- static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
- void *data)
- {
- struct cpufreq_freqs *freq = data;
- if (num_online_cpus() > 1) {
- mark_tsc_unstable("cpufreq changes on SMP");
- return 0;
- }
- if (!ref_freq) {
- ref_freq = freq->old;
- loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
- tsc_khz_ref = tsc_khz;
- }
- if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
- (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
- boot_cpu_data.loops_per_jiffy =
- cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
- tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
- if (!(freq->flags & CPUFREQ_CONST_LOOPS))
- mark_tsc_unstable("cpufreq changes");
- set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
- }
- return 0;
- }
- static struct notifier_block time_cpufreq_notifier_block = {
- .notifier_call = time_cpufreq_notifier
- };
- static int __init cpufreq_register_tsc_scaling(void)
- {
- if (!boot_cpu_has(X86_FEATURE_TSC))
- return 0;
- if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
- return 0;
- cpufreq_register_notifier(&time_cpufreq_notifier_block,
- CPUFREQ_TRANSITION_NOTIFIER);
- return 0;
- }
- core_initcall(cpufreq_register_tsc_scaling);
- #endif /* CONFIG_CPU_FREQ */
- #define ART_CPUID_LEAF (0x15)
- #define ART_MIN_DENOMINATOR (1)
- /*
- * If ART is present detect the numerator:denominator to convert to TSC
- */
- static void __init detect_art(void)
- {
- unsigned int unused[2];
- if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
- return;
- /*
- * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
- * and the TSC counter resets must not occur asynchronously.
- */
- if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
- !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
- !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
- tsc_async_resets)
- return;
- cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
- &art_to_tsc_numerator, unused, unused+1);
- if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
- return;
- rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
- /* Make this sticky over multiple CPU init calls */
- setup_force_cpu_cap(X86_FEATURE_ART);
- }
- /* clocksource code */
- static void tsc_resume(struct clocksource *cs)
- {
- tsc_verify_tsc_adjust(true);
- }
- /*
- * We used to compare the TSC to the cycle_last value in the clocksource
- * structure to avoid a nasty time-warp. This can be observed in a
- * very small window right after one CPU updated cycle_last under
- * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
- * is smaller than the cycle_last reference value due to a TSC which
- * is slightly behind. This delta is nowhere else observable, but in
- * that case it results in a forward time jump in the range of hours
- * due to the unsigned delta calculation of the time keeping core
- * code, which is necessary to support wrapping clocksources like pm
- * timer.
- *
- * This sanity check is now done in the core timekeeping code.
- * checking the result of read_tsc() - cycle_last for being negative.
- * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
- */
- static u64 read_tsc(struct clocksource *cs)
- {
- return (u64)rdtsc_ordered();
- }
- static void tsc_cs_mark_unstable(struct clocksource *cs)
- {
- if (tsc_unstable)
- return;
- tsc_unstable = 1;
- if (using_native_sched_clock())
- clear_sched_clock_stable();
- disable_sched_clock_irqtime();
- pr_info("Marking TSC unstable due to clocksource watchdog\n");
- }
- static void tsc_cs_tick_stable(struct clocksource *cs)
- {
- if (tsc_unstable)
- return;
- if (using_native_sched_clock())
- sched_clock_tick_stable();
- }
- static int tsc_cs_enable(struct clocksource *cs)
- {
- vclocks_set_used(VDSO_CLOCKMODE_TSC);
- return 0;
- }
- /*
- * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
- */
- static struct clocksource clocksource_tsc_early = {
- .name = "tsc-early",
- .rating = 299,
- .uncertainty_margin = 32 * NSEC_PER_MSEC,
- .read = read_tsc,
- .mask = CLOCKSOURCE_MASK(64),
- .flags = CLOCK_SOURCE_IS_CONTINUOUS |
- CLOCK_SOURCE_MUST_VERIFY,
- .vdso_clock_mode = VDSO_CLOCKMODE_TSC,
- .enable = tsc_cs_enable,
- .resume = tsc_resume,
- .mark_unstable = tsc_cs_mark_unstable,
- .tick_stable = tsc_cs_tick_stable,
- .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
- };
- /*
- * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
- * this one will immediately take over. We will only register if TSC has
- * been found good.
- */
- static struct clocksource clocksource_tsc = {
- .name = "tsc",
- .rating = 300,
- .read = read_tsc,
- .mask = CLOCKSOURCE_MASK(64),
- .flags = CLOCK_SOURCE_IS_CONTINUOUS |
- CLOCK_SOURCE_VALID_FOR_HRES |
- CLOCK_SOURCE_MUST_VERIFY |
- CLOCK_SOURCE_VERIFY_PERCPU,
- .vdso_clock_mode = VDSO_CLOCKMODE_TSC,
- .enable = tsc_cs_enable,
- .resume = tsc_resume,
- .mark_unstable = tsc_cs_mark_unstable,
- .tick_stable = tsc_cs_tick_stable,
- .list = LIST_HEAD_INIT(clocksource_tsc.list),
- };
- void mark_tsc_unstable(char *reason)
- {
- if (tsc_unstable)
- return;
- tsc_unstable = 1;
- if (using_native_sched_clock())
- clear_sched_clock_stable();
- disable_sched_clock_irqtime();
- pr_info("Marking TSC unstable due to %s\n", reason);
- clocksource_mark_unstable(&clocksource_tsc_early);
- clocksource_mark_unstable(&clocksource_tsc);
- }
- EXPORT_SYMBOL_GPL(mark_tsc_unstable);
- static void __init tsc_disable_clocksource_watchdog(void)
- {
- clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
- clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
- }
- static void __init check_system_tsc_reliable(void)
- {
- #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
- if (is_geode_lx()) {
- /* RTSC counts during suspend */
- #define RTSC_SUSP 0x100
- unsigned long res_low, res_high;
- rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
- /* Geode_LX - the OLPC CPU has a very reliable TSC */
- if (res_low & RTSC_SUSP)
- tsc_clocksource_reliable = 1;
- }
- #endif
- if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
- tsc_clocksource_reliable = 1;
- /*
- * Disable the clocksource watchdog when the system has:
- * - TSC running at constant frequency
- * - TSC which does not stop in C-States
- * - the TSC_ADJUST register which allows to detect even minimal
- * modifications
- * - not more than two sockets. As the number of sockets cannot be
- * evaluated at the early boot stage where this has to be
- * invoked, check the number of online memory nodes as a
- * fallback solution which is an reasonable estimate.
- */
- if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
- boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
- boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
- nr_online_nodes <= 2)
- tsc_disable_clocksource_watchdog();
- }
- /*
- * Make an educated guess if the TSC is trustworthy and synchronized
- * over all CPUs.
- */
- int unsynchronized_tsc(void)
- {
- if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
- return 1;
- #ifdef CONFIG_SMP
- if (apic_is_clustered_box())
- return 1;
- #endif
- if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
- return 0;
- if (tsc_clocksource_reliable)
- return 0;
- /*
- * Intel systems are normally all synchronized.
- * Exceptions must mark TSC as unstable:
- */
- if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
- /* assume multi socket systems are not synchronized: */
- if (num_possible_cpus() > 1)
- return 1;
- }
- return 0;
- }
- /*
- * Convert ART to TSC given numerator/denominator found in detect_art()
- */
- struct system_counterval_t convert_art_to_tsc(u64 art)
- {
- u64 tmp, res, rem;
- rem = do_div(art, art_to_tsc_denominator);
- res = art * art_to_tsc_numerator;
- tmp = rem * art_to_tsc_numerator;
- do_div(tmp, art_to_tsc_denominator);
- res += tmp + art_to_tsc_offset;
- return (struct system_counterval_t) {.cs = art_related_clocksource,
- .cycles = res};
- }
- EXPORT_SYMBOL(convert_art_to_tsc);
- /**
- * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
- * @art_ns: ART (Always Running Timer) in unit of nanoseconds
- *
- * PTM requires all timestamps to be in units of nanoseconds. When user
- * software requests a cross-timestamp, this function converts system timestamp
- * to TSC.
- *
- * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
- * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
- * that this flag is set before conversion to TSC is attempted.
- *
- * Return:
- * struct system_counterval_t - system counter value with the pointer to the
- * corresponding clocksource
- * @cycles: System counter value
- * @cs: Clocksource corresponding to system counter value. Used
- * by timekeeping code to verify comparability of two cycle
- * values.
- */
- struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
- {
- u64 tmp, res, rem;
- rem = do_div(art_ns, USEC_PER_SEC);
- res = art_ns * tsc_khz;
- tmp = rem * tsc_khz;
- do_div(tmp, USEC_PER_SEC);
- res += tmp;
- return (struct system_counterval_t) { .cs = art_related_clocksource,
- .cycles = res};
- }
- EXPORT_SYMBOL(convert_art_ns_to_tsc);
- static void tsc_refine_calibration_work(struct work_struct *work);
- static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
- /**
- * tsc_refine_calibration_work - Further refine tsc freq calibration
- * @work - ignored.
- *
- * This functions uses delayed work over a period of a
- * second to further refine the TSC freq value. Since this is
- * timer based, instead of loop based, we don't block the boot
- * process while this longer calibration is done.
- *
- * If there are any calibration anomalies (too many SMIs, etc),
- * or the refined calibration is off by 1% of the fast early
- * calibration, we throw out the new calibration and use the
- * early calibration.
- */
- static void tsc_refine_calibration_work(struct work_struct *work)
- {
- static u64 tsc_start = ULLONG_MAX, ref_start;
- static int hpet;
- u64 tsc_stop, ref_stop, delta;
- unsigned long freq;
- int cpu;
- /* Don't bother refining TSC on unstable systems */
- if (tsc_unstable)
- goto unreg;
- /*
- * Since the work is started early in boot, we may be
- * delayed the first time we expire. So set the workqueue
- * again once we know timers are working.
- */
- if (tsc_start == ULLONG_MAX) {
- restart:
- /*
- * Only set hpet once, to avoid mixing hardware
- * if the hpet becomes enabled later.
- */
- hpet = is_hpet_enabled();
- tsc_start = tsc_read_refs(&ref_start, hpet);
- schedule_delayed_work(&tsc_irqwork, HZ);
- return;
- }
- tsc_stop = tsc_read_refs(&ref_stop, hpet);
- /* hpet or pmtimer available ? */
- if (ref_start == ref_stop)
- goto out;
- /* Check, whether the sampling was disturbed */
- if (tsc_stop == ULLONG_MAX)
- goto restart;
- delta = tsc_stop - tsc_start;
- delta *= 1000000LL;
- if (hpet)
- freq = calc_hpet_ref(delta, ref_start, ref_stop);
- else
- freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
- /* Make sure we're within 1% */
- if (abs(tsc_khz - freq) > tsc_khz/100)
- goto out;
- tsc_khz = freq;
- pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
- (unsigned long)tsc_khz / 1000,
- (unsigned long)tsc_khz % 1000);
- /* Inform the TSC deadline clockevent devices about the recalibration */
- lapic_update_tsc_freq();
- /* Update the sched_clock() rate to match the clocksource one */
- for_each_possible_cpu(cpu)
- set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
- out:
- if (tsc_unstable)
- goto unreg;
- if (boot_cpu_has(X86_FEATURE_ART))
- art_related_clocksource = &clocksource_tsc;
- clocksource_register_khz(&clocksource_tsc, tsc_khz);
- unreg:
- clocksource_unregister(&clocksource_tsc_early);
- }
- static int __init init_tsc_clocksource(void)
- {
- if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
- return 0;
- if (tsc_unstable)
- goto unreg;
- if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
- clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
- /*
- * When TSC frequency is known (retrieved via MSR or CPUID), we skip
- * the refined calibration and directly register it as a clocksource.
- */
- if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
- if (boot_cpu_has(X86_FEATURE_ART))
- art_related_clocksource = &clocksource_tsc;
- clocksource_register_khz(&clocksource_tsc, tsc_khz);
- unreg:
- clocksource_unregister(&clocksource_tsc_early);
- return 0;
- }
- schedule_delayed_work(&tsc_irqwork, 0);
- return 0;
- }
- /*
- * We use device_initcall here, to ensure we run after the hpet
- * is fully initialized, which may occur at fs_initcall time.
- */
- device_initcall(init_tsc_clocksource);
- static bool __init determine_cpu_tsc_frequencies(bool early)
- {
- /* Make sure that cpu and tsc are not already calibrated */
- WARN_ON(cpu_khz || tsc_khz);
- if (early) {
- cpu_khz = x86_platform.calibrate_cpu();
- if (tsc_early_khz)
- tsc_khz = tsc_early_khz;
- else
- tsc_khz = x86_platform.calibrate_tsc();
- } else {
- /* We should not be here with non-native cpu calibration */
- WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
- cpu_khz = pit_hpet_ptimer_calibrate_cpu();
- }
- /*
- * Trust non-zero tsc_khz as authoritative,
- * and use it to sanity check cpu_khz,
- * which will be off if system timer is off.
- */
- if (tsc_khz == 0)
- tsc_khz = cpu_khz;
- else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
- cpu_khz = tsc_khz;
- if (tsc_khz == 0)
- return false;
- pr_info("Detected %lu.%03lu MHz processor\n",
- (unsigned long)cpu_khz / KHZ,
- (unsigned long)cpu_khz % KHZ);
- if (cpu_khz != tsc_khz) {
- pr_info("Detected %lu.%03lu MHz TSC",
- (unsigned long)tsc_khz / KHZ,
- (unsigned long)tsc_khz % KHZ);
- }
- return true;
- }
- static unsigned long __init get_loops_per_jiffy(void)
- {
- u64 lpj = (u64)tsc_khz * KHZ;
- do_div(lpj, HZ);
- return lpj;
- }
- static void __init tsc_enable_sched_clock(void)
- {
- loops_per_jiffy = get_loops_per_jiffy();
- use_tsc_delay();
- /* Sanitize TSC ADJUST before cyc2ns gets initialized */
- tsc_store_and_check_tsc_adjust(true);
- cyc2ns_init_boot_cpu();
- static_branch_enable(&__use_tsc);
- }
- void __init tsc_early_init(void)
- {
- if (!boot_cpu_has(X86_FEATURE_TSC))
- return;
- /* Don't change UV TSC multi-chassis synchronization */
- if (is_early_uv_system())
- return;
- if (!determine_cpu_tsc_frequencies(true))
- return;
- tsc_enable_sched_clock();
- }
- void __init tsc_init(void)
- {
- /*
- * native_calibrate_cpu_early can only calibrate using methods that are
- * available early in boot.
- */
- if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
- x86_platform.calibrate_cpu = native_calibrate_cpu;
- if (!boot_cpu_has(X86_FEATURE_TSC)) {
- setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
- return;
- }
- if (!tsc_khz) {
- /* We failed to determine frequencies earlier, try again */
- if (!determine_cpu_tsc_frequencies(false)) {
- mark_tsc_unstable("could not calculate TSC khz");
- setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
- return;
- }
- tsc_enable_sched_clock();
- }
- cyc2ns_init_secondary_cpus();
- if (!no_sched_irq_time)
- enable_sched_clock_irqtime();
- lpj_fine = get_loops_per_jiffy();
- check_system_tsc_reliable();
- if (unsynchronized_tsc()) {
- mark_tsc_unstable("TSCs unsynchronized");
- return;
- }
- if (tsc_clocksource_reliable || no_tsc_watchdog)
- tsc_disable_clocksource_watchdog();
- clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
- detect_art();
- }
- #ifdef CONFIG_SMP
- /*
- * If we have a constant TSC and are using the TSC for the delay loop,
- * we can skip clock calibration if another cpu in the same socket has already
- * been calibrated. This assumes that CONSTANT_TSC applies to all
- * cpus in the socket - this should be a safe assumption.
- */
- unsigned long calibrate_delay_is_known(void)
- {
- int sibling, cpu = smp_processor_id();
- int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
- const struct cpumask *mask = topology_core_cpumask(cpu);
- if (!constant_tsc || !mask)
- return 0;
- sibling = cpumask_any_but(mask, cpu);
- if (sibling < nr_cpu_ids)
- return cpu_data(sibling).loops_per_jiffy;
- return 0;
- }
- #endif
|