1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471 |
- /*
- * Copyright (C) 1991, 1992 Linus Torvalds
- * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
- *
- * Pentium III FXSR, SSE support
- * Gareth Hughes <[email protected]>, May 2000
- */
- /*
- * Handle hardware traps and faults.
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/context_tracking.h>
- #include <linux/interrupt.h>
- #include <linux/kallsyms.h>
- #include <linux/kmsan.h>
- #include <linux/spinlock.h>
- #include <linux/kprobes.h>
- #include <linux/uaccess.h>
- #include <linux/kdebug.h>
- #include <linux/kgdb.h>
- #include <linux/kernel.h>
- #include <linux/export.h>
- #include <linux/ptrace.h>
- #include <linux/uprobes.h>
- #include <linux/string.h>
- #include <linux/delay.h>
- #include <linux/errno.h>
- #include <linux/kexec.h>
- #include <linux/sched.h>
- #include <linux/sched/task_stack.h>
- #include <linux/timer.h>
- #include <linux/init.h>
- #include <linux/bug.h>
- #include <linux/nmi.h>
- #include <linux/mm.h>
- #include <linux/smp.h>
- #include <linux/io.h>
- #include <linux/hardirq.h>
- #include <linux/atomic.h>
- #include <linux/ioasid.h>
- #include <asm/stacktrace.h>
- #include <asm/processor.h>
- #include <asm/debugreg.h>
- #include <asm/realmode.h>
- #include <asm/text-patching.h>
- #include <asm/ftrace.h>
- #include <asm/traps.h>
- #include <asm/desc.h>
- #include <asm/fpu/api.h>
- #include <asm/cpu.h>
- #include <asm/cpu_entry_area.h>
- #include <asm/mce.h>
- #include <asm/fixmap.h>
- #include <asm/mach_traps.h>
- #include <asm/alternative.h>
- #include <asm/fpu/xstate.h>
- #include <asm/vm86.h>
- #include <asm/umip.h>
- #include <asm/insn.h>
- #include <asm/insn-eval.h>
- #include <asm/vdso.h>
- #include <asm/tdx.h>
- #include <asm/cfi.h>
- #ifdef CONFIG_X86_64
- #include <asm/x86_init.h>
- #include <asm/proto.h>
- #else
- #include <asm/processor-flags.h>
- #include <asm/setup.h>
- #include <asm/proto.h>
- #endif
- DECLARE_BITMAP(system_vectors, NR_VECTORS);
- static inline void cond_local_irq_enable(struct pt_regs *regs)
- {
- if (regs->flags & X86_EFLAGS_IF)
- local_irq_enable();
- }
- static inline void cond_local_irq_disable(struct pt_regs *regs)
- {
- if (regs->flags & X86_EFLAGS_IF)
- local_irq_disable();
- }
- __always_inline int is_valid_bugaddr(unsigned long addr)
- {
- if (addr < TASK_SIZE_MAX)
- return 0;
- /*
- * We got #UD, if the text isn't readable we'd have gotten
- * a different exception.
- */
- return *(unsigned short *)addr == INSN_UD2;
- }
- static nokprobe_inline int
- do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
- struct pt_regs *regs, long error_code)
- {
- if (v8086_mode(regs)) {
- /*
- * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
- * On nmi (interrupt 2), do_trap should not be called.
- */
- if (trapnr < X86_TRAP_UD) {
- if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
- error_code, trapnr))
- return 0;
- }
- } else if (!user_mode(regs)) {
- if (fixup_exception(regs, trapnr, error_code, 0))
- return 0;
- tsk->thread.error_code = error_code;
- tsk->thread.trap_nr = trapnr;
- die(str, regs, error_code);
- } else {
- if (fixup_vdso_exception(regs, trapnr, error_code, 0))
- return 0;
- }
- /*
- * We want error_code and trap_nr set for userspace faults and
- * kernelspace faults which result in die(), but not
- * kernelspace faults which are fixed up. die() gives the
- * process no chance to handle the signal and notice the
- * kernel fault information, so that won't result in polluting
- * the information about previously queued, but not yet
- * delivered, faults. See also exc_general_protection below.
- */
- tsk->thread.error_code = error_code;
- tsk->thread.trap_nr = trapnr;
- return -1;
- }
- static void show_signal(struct task_struct *tsk, int signr,
- const char *type, const char *desc,
- struct pt_regs *regs, long error_code)
- {
- if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
- printk_ratelimit()) {
- pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
- tsk->comm, task_pid_nr(tsk), type, desc,
- regs->ip, regs->sp, error_code);
- print_vma_addr(KERN_CONT " in ", regs->ip);
- pr_cont("\n");
- }
- }
- static void
- do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
- long error_code, int sicode, void __user *addr)
- {
- struct task_struct *tsk = current;
- if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
- return;
- show_signal(tsk, signr, "trap ", str, regs, error_code);
- if (!sicode)
- force_sig(signr);
- else
- force_sig_fault(signr, sicode, addr);
- }
- NOKPROBE_SYMBOL(do_trap);
- static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
- unsigned long trapnr, int signr, int sicode, void __user *addr)
- {
- RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
- if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
- NOTIFY_STOP) {
- cond_local_irq_enable(regs);
- do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
- cond_local_irq_disable(regs);
- }
- }
- /*
- * Posix requires to provide the address of the faulting instruction for
- * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
- *
- * This address is usually regs->ip, but when an uprobe moved the code out
- * of line then regs->ip points to the XOL code which would confuse
- * anything which analyzes the fault address vs. the unmodified binary. If
- * a trap happened in XOL code then uprobe maps regs->ip back to the
- * original instruction address.
- */
- static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
- {
- return (void __user *)uprobe_get_trap_addr(regs);
- }
- DEFINE_IDTENTRY(exc_divide_error)
- {
- do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
- FPE_INTDIV, error_get_trap_addr(regs));
- }
- DEFINE_IDTENTRY(exc_overflow)
- {
- do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
- }
- #ifdef CONFIG_X86_KERNEL_IBT
- static __ro_after_init bool ibt_fatal = true;
- extern void ibt_selftest_ip(void); /* code label defined in asm below */
- enum cp_error_code {
- CP_EC = (1 << 15) - 1,
- CP_RET = 1,
- CP_IRET = 2,
- CP_ENDBR = 3,
- CP_RSTRORSSP = 4,
- CP_SETSSBSY = 5,
- CP_ENCL = 1 << 15,
- };
- DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)
- {
- if (!cpu_feature_enabled(X86_FEATURE_IBT)) {
- pr_err("Unexpected #CP\n");
- BUG();
- }
- if (WARN_ON_ONCE(user_mode(regs) || (error_code & CP_EC) != CP_ENDBR))
- return;
- if (unlikely(regs->ip == (unsigned long)&ibt_selftest_ip)) {
- regs->ax = 0;
- return;
- }
- pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs));
- if (!ibt_fatal) {
- printk(KERN_DEFAULT CUT_HERE);
- __warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
- return;
- }
- BUG();
- }
- /* Must be noinline to ensure uniqueness of ibt_selftest_ip. */
- noinline bool ibt_selftest(void)
- {
- unsigned long ret;
- asm (" lea ibt_selftest_ip(%%rip), %%rax\n\t"
- ANNOTATE_RETPOLINE_SAFE
- " jmp *%%rax\n\t"
- "ibt_selftest_ip:\n\t"
- UNWIND_HINT_FUNC
- ANNOTATE_NOENDBR
- " nop\n\t"
- : "=a" (ret) : : "memory");
- return !ret;
- }
- static int __init ibt_setup(char *str)
- {
- if (!strcmp(str, "off"))
- setup_clear_cpu_cap(X86_FEATURE_IBT);
- if (!strcmp(str, "warn"))
- ibt_fatal = false;
- return 1;
- }
- __setup("ibt=", ibt_setup);
- #endif /* CONFIG_X86_KERNEL_IBT */
- #ifdef CONFIG_X86_F00F_BUG
- void handle_invalid_op(struct pt_regs *regs)
- #else
- static inline void handle_invalid_op(struct pt_regs *regs)
- #endif
- {
- do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
- ILL_ILLOPN, error_get_trap_addr(regs));
- }
- static noinstr bool handle_bug(struct pt_regs *regs)
- {
- bool handled = false;
- /*
- * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
- * is a rare case that uses @regs without passing them to
- * irqentry_enter().
- */
- kmsan_unpoison_entry_regs(regs);
- if (!is_valid_bugaddr(regs->ip))
- return handled;
- /*
- * All lies, just get the WARN/BUG out.
- */
- instrumentation_begin();
- /*
- * Since we're emulating a CALL with exceptions, restore the interrupt
- * state to what it was at the exception site.
- */
- if (regs->flags & X86_EFLAGS_IF)
- raw_local_irq_enable();
- if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
- handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
- regs->ip += LEN_UD2;
- handled = true;
- }
- if (regs->flags & X86_EFLAGS_IF)
- raw_local_irq_disable();
- instrumentation_end();
- return handled;
- }
- DEFINE_IDTENTRY_RAW(exc_invalid_op)
- {
- irqentry_state_t state;
- /*
- * We use UD2 as a short encoding for 'CALL __WARN', as such
- * handle it before exception entry to avoid recursive WARN
- * in case exception entry is the one triggering WARNs.
- */
- if (!user_mode(regs) && handle_bug(regs))
- return;
- state = irqentry_enter(regs);
- instrumentation_begin();
- handle_invalid_op(regs);
- instrumentation_end();
- irqentry_exit(regs, state);
- }
- DEFINE_IDTENTRY(exc_coproc_segment_overrun)
- {
- do_error_trap(regs, 0, "coprocessor segment overrun",
- X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
- }
- DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
- {
- do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
- 0, NULL);
- }
- DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
- {
- do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
- SIGBUS, 0, NULL);
- }
- DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
- {
- do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
- 0, NULL);
- }
- DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
- {
- char *str = "alignment check";
- if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
- return;
- if (!user_mode(regs))
- die("Split lock detected\n", regs, error_code);
- local_irq_enable();
- if (handle_user_split_lock(regs, error_code))
- goto out;
- do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
- error_code, BUS_ADRALN, NULL);
- out:
- local_irq_disable();
- }
- #ifdef CONFIG_VMAP_STACK
- __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
- unsigned long fault_address,
- struct stack_info *info)
- {
- const char *name = stack_type_name(info->type);
- printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
- name, (void *)fault_address, info->begin, info->end);
- die("stack guard page", regs, 0);
- /* Be absolutely certain we don't return. */
- panic("%s stack guard hit", name);
- }
- #endif
- /*
- * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
- *
- * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
- * SDM's warnings about double faults being unrecoverable, returning works as
- * expected. Presumably what the SDM actually means is that the CPU may get
- * the register state wrong on entry, so returning could be a bad idea.
- *
- * Various CPU engineers have promised that double faults due to an IRET fault
- * while the stack is read-only are, in fact, recoverable.
- *
- * On x86_32, this is entered through a task gate, and regs are synthesized
- * from the TSS. Returning is, in principle, okay, but changes to regs will
- * be lost. If, for some reason, we need to return to a context with modified
- * regs, the shim code could be adjusted to synchronize the registers.
- *
- * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
- * to be read before doing anything else.
- */
- DEFINE_IDTENTRY_DF(exc_double_fault)
- {
- static const char str[] = "double fault";
- struct task_struct *tsk = current;
- #ifdef CONFIG_VMAP_STACK
- unsigned long address = read_cr2();
- struct stack_info info;
- #endif
- #ifdef CONFIG_X86_ESPFIX64
- extern unsigned char native_irq_return_iret[];
- /*
- * If IRET takes a non-IST fault on the espfix64 stack, then we
- * end up promoting it to a doublefault. In that case, take
- * advantage of the fact that we're not using the normal (TSS.sp0)
- * stack right now. We can write a fake #GP(0) frame at TSS.sp0
- * and then modify our own IRET frame so that, when we return,
- * we land directly at the #GP(0) vector with the stack already
- * set up according to its expectations.
- *
- * The net result is that our #GP handler will think that we
- * entered from usermode with the bad user context.
- *
- * No need for nmi_enter() here because we don't use RCU.
- */
- if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
- regs->cs == __KERNEL_CS &&
- regs->ip == (unsigned long)native_irq_return_iret)
- {
- struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
- unsigned long *p = (unsigned long *)regs->sp;
- /*
- * regs->sp points to the failing IRET frame on the
- * ESPFIX64 stack. Copy it to the entry stack. This fills
- * in gpregs->ss through gpregs->ip.
- *
- */
- gpregs->ip = p[0];
- gpregs->cs = p[1];
- gpregs->flags = p[2];
- gpregs->sp = p[3];
- gpregs->ss = p[4];
- gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
- /*
- * Adjust our frame so that we return straight to the #GP
- * vector with the expected RSP value. This is safe because
- * we won't enable interrupts or schedule before we invoke
- * general_protection, so nothing will clobber the stack
- * frame we just set up.
- *
- * We will enter general_protection with kernel GSBASE,
- * which is what the stub expects, given that the faulting
- * RIP will be the IRET instruction.
- */
- regs->ip = (unsigned long)asm_exc_general_protection;
- regs->sp = (unsigned long)&gpregs->orig_ax;
- return;
- }
- #endif
- irqentry_nmi_enter(regs);
- instrumentation_begin();
- notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
- tsk->thread.error_code = error_code;
- tsk->thread.trap_nr = X86_TRAP_DF;
- #ifdef CONFIG_VMAP_STACK
- /*
- * If we overflow the stack into a guard page, the CPU will fail
- * to deliver #PF and will send #DF instead. Similarly, if we
- * take any non-IST exception while too close to the bottom of
- * the stack, the processor will get a page fault while
- * delivering the exception and will generate a double fault.
- *
- * According to the SDM (footnote in 6.15 under "Interrupt 14 -
- * Page-Fault Exception (#PF):
- *
- * Processors update CR2 whenever a page fault is detected. If a
- * second page fault occurs while an earlier page fault is being
- * delivered, the faulting linear address of the second fault will
- * overwrite the contents of CR2 (replacing the previous
- * address). These updates to CR2 occur even if the page fault
- * results in a double fault or occurs during the delivery of a
- * double fault.
- *
- * The logic below has a small possibility of incorrectly diagnosing
- * some errors as stack overflows. For example, if the IDT or GDT
- * gets corrupted such that #GP delivery fails due to a bad descriptor
- * causing #GP and we hit this condition while CR2 coincidentally
- * points to the stack guard page, we'll think we overflowed the
- * stack. Given that we're going to panic one way or another
- * if this happens, this isn't necessarily worth fixing.
- *
- * If necessary, we could improve the test by only diagnosing
- * a stack overflow if the saved RSP points within 47 bytes of
- * the bottom of the stack: if RSP == tsk_stack + 48 and we
- * take an exception, the stack is already aligned and there
- * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
- * possible error code, so a stack overflow would *not* double
- * fault. With any less space left, exception delivery could
- * fail, and, as a practical matter, we've overflowed the
- * stack even if the actual trigger for the double fault was
- * something else.
- */
- if (get_stack_guard_info((void *)address, &info))
- handle_stack_overflow(regs, address, &info);
- #endif
- pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
- die("double fault", regs, error_code);
- panic("Machine halted.");
- instrumentation_end();
- }
- DEFINE_IDTENTRY(exc_bounds)
- {
- if (notify_die(DIE_TRAP, "bounds", regs, 0,
- X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
- return;
- cond_local_irq_enable(regs);
- if (!user_mode(regs))
- die("bounds", regs, 0);
- do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
- cond_local_irq_disable(regs);
- }
- enum kernel_gp_hint {
- GP_NO_HINT,
- GP_NON_CANONICAL,
- GP_CANONICAL
- };
- /*
- * When an uncaught #GP occurs, try to determine the memory address accessed by
- * the instruction and return that address to the caller. Also, try to figure
- * out whether any part of the access to that address was non-canonical.
- */
- static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
- unsigned long *addr)
- {
- u8 insn_buf[MAX_INSN_SIZE];
- struct insn insn;
- int ret;
- if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
- MAX_INSN_SIZE))
- return GP_NO_HINT;
- ret = insn_decode_kernel(&insn, insn_buf);
- if (ret < 0)
- return GP_NO_HINT;
- *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
- if (*addr == -1UL)
- return GP_NO_HINT;
- #ifdef CONFIG_X86_64
- /*
- * Check that:
- * - the operand is not in the kernel half
- * - the last byte of the operand is not in the user canonical half
- */
- if (*addr < ~__VIRTUAL_MASK &&
- *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
- return GP_NON_CANONICAL;
- #endif
- return GP_CANONICAL;
- }
- #define GPFSTR "general protection fault"
- static bool fixup_iopl_exception(struct pt_regs *regs)
- {
- struct thread_struct *t = ¤t->thread;
- unsigned char byte;
- unsigned long ip;
- if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
- return false;
- if (insn_get_effective_ip(regs, &ip))
- return false;
- if (get_user(byte, (const char __user *)ip))
- return false;
- if (byte != 0xfa && byte != 0xfb)
- return false;
- if (!t->iopl_warn && printk_ratelimit()) {
- pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
- current->comm, task_pid_nr(current), ip);
- print_vma_addr(KERN_CONT " in ", ip);
- pr_cont("\n");
- t->iopl_warn = 1;
- }
- regs->ip += 1;
- return true;
- }
- /*
- * The unprivileged ENQCMD instruction generates #GPs if the
- * IA32_PASID MSR has not been populated. If possible, populate
- * the MSR from a PASID previously allocated to the mm.
- */
- static bool try_fixup_enqcmd_gp(void)
- {
- #ifdef CONFIG_IOMMU_SVA
- u32 pasid;
- /*
- * MSR_IA32_PASID is managed using XSAVE. Directly
- * writing to the MSR is only possible when fpregs
- * are valid and the fpstate is not. This is
- * guaranteed when handling a userspace exception
- * in *before* interrupts are re-enabled.
- */
- lockdep_assert_irqs_disabled();
- /*
- * Hardware without ENQCMD will not generate
- * #GPs that can be fixed up here.
- */
- if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
- return false;
- pasid = current->mm->pasid;
- /*
- * If the mm has not been allocated a
- * PASID, the #GP can not be fixed up.
- */
- if (!pasid_valid(pasid))
- return false;
- /*
- * Did this thread already have its PASID activated?
- * If so, the #GP must be from something else.
- */
- if (current->pasid_activated)
- return false;
- wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
- current->pasid_activated = 1;
- return true;
- #else
- return false;
- #endif
- }
- static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
- unsigned long error_code, const char *str,
- unsigned long address)
- {
- if (fixup_exception(regs, trapnr, error_code, address))
- return true;
- current->thread.error_code = error_code;
- current->thread.trap_nr = trapnr;
- /*
- * To be potentially processing a kprobe fault and to trust the result
- * from kprobe_running(), we have to be non-preemptible.
- */
- if (!preemptible() && kprobe_running() &&
- kprobe_fault_handler(regs, trapnr))
- return true;
- return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
- }
- static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
- unsigned long error_code, const char *str)
- {
- current->thread.error_code = error_code;
- current->thread.trap_nr = trapnr;
- show_signal(current, SIGSEGV, "", str, regs, error_code);
- force_sig(SIGSEGV);
- }
- DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
- {
- char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
- enum kernel_gp_hint hint = GP_NO_HINT;
- unsigned long gp_addr;
- if (user_mode(regs) && try_fixup_enqcmd_gp())
- return;
- cond_local_irq_enable(regs);
- if (static_cpu_has(X86_FEATURE_UMIP)) {
- if (user_mode(regs) && fixup_umip_exception(regs))
- goto exit;
- }
- if (v8086_mode(regs)) {
- local_irq_enable();
- handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
- local_irq_disable();
- return;
- }
- if (user_mode(regs)) {
- if (fixup_iopl_exception(regs))
- goto exit;
- if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
- goto exit;
- gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
- goto exit;
- }
- if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
- goto exit;
- if (error_code)
- snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
- else
- hint = get_kernel_gp_address(regs, &gp_addr);
- if (hint != GP_NO_HINT)
- snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
- (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
- : "maybe for address",
- gp_addr);
- /*
- * KASAN is interested only in the non-canonical case, clear it
- * otherwise.
- */
- if (hint != GP_NON_CANONICAL)
- gp_addr = 0;
- die_addr(desc, regs, error_code, gp_addr);
- exit:
- cond_local_irq_disable(regs);
- }
- static bool do_int3(struct pt_regs *regs)
- {
- int res;
- #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
- if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
- SIGTRAP) == NOTIFY_STOP)
- return true;
- #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
- #ifdef CONFIG_KPROBES
- if (kprobe_int3_handler(regs))
- return true;
- #endif
- res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
- return res == NOTIFY_STOP;
- }
- NOKPROBE_SYMBOL(do_int3);
- static void do_int3_user(struct pt_regs *regs)
- {
- if (do_int3(regs))
- return;
- cond_local_irq_enable(regs);
- do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
- cond_local_irq_disable(regs);
- }
- DEFINE_IDTENTRY_RAW(exc_int3)
- {
- /*
- * poke_int3_handler() is completely self contained code; it does (and
- * must) *NOT* call out to anything, lest it hits upon yet another
- * INT3.
- */
- if (poke_int3_handler(regs))
- return;
- /*
- * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
- * and therefore can trigger INT3, hence poke_int3_handler() must
- * be done before. If the entry came from kernel mode, then use
- * nmi_enter() because the INT3 could have been hit in any context
- * including NMI.
- */
- if (user_mode(regs)) {
- irqentry_enter_from_user_mode(regs);
- instrumentation_begin();
- do_int3_user(regs);
- instrumentation_end();
- irqentry_exit_to_user_mode(regs);
- } else {
- irqentry_state_t irq_state = irqentry_nmi_enter(regs);
- instrumentation_begin();
- if (!do_int3(regs))
- die("int3", regs, 0);
- instrumentation_end();
- irqentry_nmi_exit(regs, irq_state);
- }
- }
- #ifdef CONFIG_X86_64
- /*
- * Help handler running on a per-cpu (IST or entry trampoline) stack
- * to switch to the normal thread stack if the interrupted code was in
- * user mode. The actual stack switch is done in entry_64.S
- */
- asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
- {
- struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
- if (regs != eregs)
- *regs = *eregs;
- return regs;
- }
- #ifdef CONFIG_AMD_MEM_ENCRYPT
- asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
- {
- unsigned long sp, *stack;
- struct stack_info info;
- struct pt_regs *regs_ret;
- /*
- * In the SYSCALL entry path the RSP value comes from user-space - don't
- * trust it and switch to the current kernel stack
- */
- if (ip_within_syscall_gap(regs)) {
- sp = this_cpu_read(cpu_current_top_of_stack);
- goto sync;
- }
- /*
- * From here on the RSP value is trusted. Now check whether entry
- * happened from a safe stack. Not safe are the entry or unknown stacks,
- * use the fall-back stack instead in this case.
- */
- sp = regs->sp;
- stack = (unsigned long *)sp;
- if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
- info.type > STACK_TYPE_EXCEPTION_LAST)
- sp = __this_cpu_ist_top_va(VC2);
- sync:
- /*
- * Found a safe stack - switch to it as if the entry didn't happen via
- * IST stack. The code below only copies pt_regs, the real switch happens
- * in assembly code.
- */
- sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
- regs_ret = (struct pt_regs *)sp;
- *regs_ret = *regs;
- return regs_ret;
- }
- #endif
- asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
- {
- struct pt_regs tmp, *new_stack;
- /*
- * This is called from entry_64.S early in handling a fault
- * caused by a bad iret to user mode. To handle the fault
- * correctly, we want to move our stack frame to where it would
- * be had we entered directly on the entry stack (rather than
- * just below the IRET frame) and we want to pretend that the
- * exception came from the IRET target.
- */
- new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
- /* Copy the IRET target to the temporary storage. */
- __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
- /* Copy the remainder of the stack from the current stack. */
- __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
- /* Update the entry stack */
- __memcpy(new_stack, &tmp, sizeof(tmp));
- BUG_ON(!user_mode(new_stack));
- return new_stack;
- }
- #endif
- static bool is_sysenter_singlestep(struct pt_regs *regs)
- {
- /*
- * We don't try for precision here. If we're anywhere in the region of
- * code that can be single-stepped in the SYSENTER entry path, then
- * assume that this is a useless single-step trap due to SYSENTER
- * being invoked with TF set. (We don't know in advance exactly
- * which instructions will be hit because BTF could plausibly
- * be set.)
- */
- #ifdef CONFIG_X86_32
- return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
- (unsigned long)__end_SYSENTER_singlestep_region -
- (unsigned long)__begin_SYSENTER_singlestep_region;
- #elif defined(CONFIG_IA32_EMULATION)
- return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
- (unsigned long)__end_entry_SYSENTER_compat -
- (unsigned long)entry_SYSENTER_compat;
- #else
- return false;
- #endif
- }
- static __always_inline unsigned long debug_read_clear_dr6(void)
- {
- unsigned long dr6;
- /*
- * The Intel SDM says:
- *
- * Certain debug exceptions may clear bits 0-3. The remaining
- * contents of the DR6 register are never cleared by the
- * processor. To avoid confusion in identifying debug
- * exceptions, debug handlers should clear the register before
- * returning to the interrupted task.
- *
- * Keep it simple: clear DR6 immediately.
- */
- get_debugreg(dr6, 6);
- set_debugreg(DR6_RESERVED, 6);
- dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
- return dr6;
- }
- /*
- * Our handling of the processor debug registers is non-trivial.
- * We do not clear them on entry and exit from the kernel. Therefore
- * it is possible to get a watchpoint trap here from inside the kernel.
- * However, the code in ./ptrace.c has ensured that the user can
- * only set watchpoints on userspace addresses. Therefore the in-kernel
- * watchpoint trap can only occur in code which is reading/writing
- * from user space. Such code must not hold kernel locks (since it
- * can equally take a page fault), therefore it is safe to call
- * force_sig_info even though that claims and releases locks.
- *
- * Code in ./signal.c ensures that the debug control register
- * is restored before we deliver any signal, and therefore that
- * user code runs with the correct debug control register even though
- * we clear it here.
- *
- * Being careful here means that we don't have to be as careful in a
- * lot of more complicated places (task switching can be a bit lazy
- * about restoring all the debug state, and ptrace doesn't have to
- * find every occurrence of the TF bit that could be saved away even
- * by user code)
- *
- * May run on IST stack.
- */
- static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
- {
- /*
- * Notifiers will clear bits in @dr6 to indicate the event has been
- * consumed - hw_breakpoint_handler(), single_stop_cont().
- *
- * Notifiers will set bits in @virtual_dr6 to indicate the desire
- * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
- */
- if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
- return true;
- return false;
- }
- static __always_inline void exc_debug_kernel(struct pt_regs *regs,
- unsigned long dr6)
- {
- /*
- * Disable breakpoints during exception handling; recursive exceptions
- * are exceedingly 'fun'.
- *
- * Since this function is NOKPROBE, and that also applies to
- * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
- * HW_BREAKPOINT_W on our stack)
- *
- * Entry text is excluded for HW_BP_X and cpu_entry_area, which
- * includes the entry stack is excluded for everything.
- */
- unsigned long dr7 = local_db_save();
- irqentry_state_t irq_state = irqentry_nmi_enter(regs);
- instrumentation_begin();
- /*
- * If something gets miswired and we end up here for a user mode
- * #DB, we will malfunction.
- */
- WARN_ON_ONCE(user_mode(regs));
- if (test_thread_flag(TIF_BLOCKSTEP)) {
- /*
- * The SDM says "The processor clears the BTF flag when it
- * generates a debug exception." but PTRACE_BLOCKSTEP requested
- * it for userspace, but we just took a kernel #DB, so re-set
- * BTF.
- */
- unsigned long debugctl;
- rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
- debugctl |= DEBUGCTLMSR_BTF;
- wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
- }
- /*
- * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
- * watchpoint at the same time then that will still be handled.
- */
- if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
- dr6 &= ~DR_STEP;
- /*
- * The kernel doesn't use INT1
- */
- if (!dr6)
- goto out;
- if (notify_debug(regs, &dr6))
- goto out;
- /*
- * The kernel doesn't use TF single-step outside of:
- *
- * - Kprobes, consumed through kprobe_debug_handler()
- * - KGDB, consumed through notify_debug()
- *
- * So if we get here with DR_STEP set, something is wonky.
- *
- * A known way to trigger this is through QEMU's GDB stub,
- * which leaks #DB into the guest and causes IST recursion.
- */
- if (WARN_ON_ONCE(dr6 & DR_STEP))
- regs->flags &= ~X86_EFLAGS_TF;
- out:
- instrumentation_end();
- irqentry_nmi_exit(regs, irq_state);
- local_db_restore(dr7);
- }
- static __always_inline void exc_debug_user(struct pt_regs *regs,
- unsigned long dr6)
- {
- bool icebp;
- /*
- * If something gets miswired and we end up here for a kernel mode
- * #DB, we will malfunction.
- */
- WARN_ON_ONCE(!user_mode(regs));
- /*
- * NB: We can't easily clear DR7 here because
- * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
- * user memory, etc. This means that a recursive #DB is possible. If
- * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
- * Since we're not on the IST stack right now, everything will be
- * fine.
- */
- irqentry_enter_from_user_mode(regs);
- instrumentation_begin();
- /*
- * Start the virtual/ptrace DR6 value with just the DR_STEP mask
- * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
- *
- * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
- * even if it is not the result of PTRACE_SINGLESTEP.
- */
- current->thread.virtual_dr6 = (dr6 & DR_STEP);
- /*
- * The SDM says "The processor clears the BTF flag when it
- * generates a debug exception." Clear TIF_BLOCKSTEP to keep
- * TIF_BLOCKSTEP in sync with the hardware BTF flag.
- */
- clear_thread_flag(TIF_BLOCKSTEP);
- /*
- * If dr6 has no reason to give us about the origin of this trap,
- * then it's very likely the result of an icebp/int01 trap.
- * User wants a sigtrap for that.
- */
- icebp = !dr6;
- if (notify_debug(regs, &dr6))
- goto out;
- /* It's safe to allow irq's after DR6 has been saved */
- local_irq_enable();
- if (v8086_mode(regs)) {
- handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
- goto out_irq;
- }
- /* #DB for bus lock can only be triggered from userspace. */
- if (dr6 & DR_BUS_LOCK)
- handle_bus_lock(regs);
- /* Add the virtual_dr6 bits for signals. */
- dr6 |= current->thread.virtual_dr6;
- if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
- send_sigtrap(regs, 0, get_si_code(dr6));
- out_irq:
- local_irq_disable();
- out:
- instrumentation_end();
- irqentry_exit_to_user_mode(regs);
- }
- #ifdef CONFIG_X86_64
- /* IST stack entry */
- DEFINE_IDTENTRY_DEBUG(exc_debug)
- {
- exc_debug_kernel(regs, debug_read_clear_dr6());
- }
- /* User entry, runs on regular task stack */
- DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
- {
- exc_debug_user(regs, debug_read_clear_dr6());
- }
- #else
- /* 32 bit does not have separate entry points. */
- DEFINE_IDTENTRY_RAW(exc_debug)
- {
- unsigned long dr6 = debug_read_clear_dr6();
- if (user_mode(regs))
- exc_debug_user(regs, dr6);
- else
- exc_debug_kernel(regs, dr6);
- }
- #endif
- /*
- * Note that we play around with the 'TS' bit in an attempt to get
- * the correct behaviour even in the presence of the asynchronous
- * IRQ13 behaviour
- */
- static void math_error(struct pt_regs *regs, int trapnr)
- {
- struct task_struct *task = current;
- struct fpu *fpu = &task->thread.fpu;
- int si_code;
- char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
- "simd exception";
- cond_local_irq_enable(regs);
- if (!user_mode(regs)) {
- if (fixup_exception(regs, trapnr, 0, 0))
- goto exit;
- task->thread.error_code = 0;
- task->thread.trap_nr = trapnr;
- if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
- SIGFPE) != NOTIFY_STOP)
- die(str, regs, 0);
- goto exit;
- }
- /*
- * Synchronize the FPU register state to the memory register state
- * if necessary. This allows the exception handler to inspect it.
- */
- fpu_sync_fpstate(fpu);
- task->thread.trap_nr = trapnr;
- task->thread.error_code = 0;
- si_code = fpu__exception_code(fpu, trapnr);
- /* Retry when we get spurious exceptions: */
- if (!si_code)
- goto exit;
- if (fixup_vdso_exception(regs, trapnr, 0, 0))
- goto exit;
- force_sig_fault(SIGFPE, si_code,
- (void __user *)uprobe_get_trap_addr(regs));
- exit:
- cond_local_irq_disable(regs);
- }
- DEFINE_IDTENTRY(exc_coprocessor_error)
- {
- math_error(regs, X86_TRAP_MF);
- }
- DEFINE_IDTENTRY(exc_simd_coprocessor_error)
- {
- if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
- /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
- if (!static_cpu_has(X86_FEATURE_XMM)) {
- __exc_general_protection(regs, 0);
- return;
- }
- }
- math_error(regs, X86_TRAP_XF);
- }
- DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
- {
- /*
- * This addresses a Pentium Pro Erratum:
- *
- * PROBLEM: If the APIC subsystem is configured in mixed mode with
- * Virtual Wire mode implemented through the local APIC, an
- * interrupt vector of 0Fh (Intel reserved encoding) may be
- * generated by the local APIC (Int 15). This vector may be
- * generated upon receipt of a spurious interrupt (an interrupt
- * which is removed before the system receives the INTA sequence)
- * instead of the programmed 8259 spurious interrupt vector.
- *
- * IMPLICATION: The spurious interrupt vector programmed in the
- * 8259 is normally handled by an operating system's spurious
- * interrupt handler. However, a vector of 0Fh is unknown to some
- * operating systems, which would crash if this erratum occurred.
- *
- * In theory this could be limited to 32bit, but the handler is not
- * hurting and who knows which other CPUs suffer from this.
- */
- }
- static bool handle_xfd_event(struct pt_regs *regs)
- {
- u64 xfd_err;
- int err;
- if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
- return false;
- rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
- if (!xfd_err)
- return false;
- wrmsrl(MSR_IA32_XFD_ERR, 0);
- /* Die if that happens in kernel space */
- if (WARN_ON(!user_mode(regs)))
- return false;
- local_irq_enable();
- err = xfd_enable_feature(xfd_err);
- switch (err) {
- case -EPERM:
- force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
- break;
- case -EFAULT:
- force_sig(SIGSEGV);
- break;
- }
- local_irq_disable();
- return true;
- }
- DEFINE_IDTENTRY(exc_device_not_available)
- {
- unsigned long cr0 = read_cr0();
- if (handle_xfd_event(regs))
- return;
- #ifdef CONFIG_MATH_EMULATION
- if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
- struct math_emu_info info = { };
- cond_local_irq_enable(regs);
- info.regs = regs;
- math_emulate(&info);
- cond_local_irq_disable(regs);
- return;
- }
- #endif
- /* This should not happen. */
- if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
- /* Try to fix it up and carry on. */
- write_cr0(cr0 & ~X86_CR0_TS);
- } else {
- /*
- * Something terrible happened, and we're better off trying
- * to kill the task than getting stuck in a never-ending
- * loop of #NM faults.
- */
- die("unexpected #NM exception", regs, 0);
- }
- }
- #ifdef CONFIG_INTEL_TDX_GUEST
- #define VE_FAULT_STR "VE fault"
- static void ve_raise_fault(struct pt_regs *regs, long error_code,
- unsigned long address)
- {
- if (user_mode(regs)) {
- gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
- return;
- }
- if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
- VE_FAULT_STR, address)) {
- return;
- }
- die_addr(VE_FAULT_STR, regs, error_code, address);
- }
- /*
- * Virtualization Exceptions (#VE) are delivered to TDX guests due to
- * specific guest actions which may happen in either user space or the
- * kernel:
- *
- * * Specific instructions (WBINVD, for example)
- * * Specific MSR accesses
- * * Specific CPUID leaf accesses
- * * Access to specific guest physical addresses
- *
- * In the settings that Linux will run in, virtualization exceptions are
- * never generated on accesses to normal, TD-private memory that has been
- * accepted (by BIOS or with tdx_enc_status_changed()).
- *
- * Syscall entry code has a critical window where the kernel stack is not
- * yet set up. Any exception in this window leads to hard to debug issues
- * and can be exploited for privilege escalation. Exceptions in the NMI
- * entry code also cause issues. Returning from the exception handler with
- * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
- *
- * For these reasons, the kernel avoids #VEs during the syscall gap and
- * the NMI entry code. Entry code paths do not access TD-shared memory,
- * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
- * that might generate #VE. VMM can remove memory from TD at any point,
- * but access to unaccepted (or missing) private memory leads to VM
- * termination, not to #VE.
- *
- * Similarly to page faults and breakpoints, #VEs are allowed in NMI
- * handlers once the kernel is ready to deal with nested NMIs.
- *
- * During #VE delivery, all interrupts, including NMIs, are blocked until
- * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
- * the VE info.
- *
- * If a guest kernel action which would normally cause a #VE occurs in
- * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
- * exception) is delivered to the guest which will result in an oops.
- *
- * The entry code has been audited carefully for following these expectations.
- * Changes in the entry code have to be audited for correctness vs. this
- * aspect. Similarly to #PF, #VE in these places will expose kernel to
- * privilege escalation or may lead to random crashes.
- */
- DEFINE_IDTENTRY(exc_virtualization_exception)
- {
- struct ve_info ve;
- /*
- * NMIs/Machine-checks/Interrupts will be in a disabled state
- * till TDGETVEINFO TDCALL is executed. This ensures that VE
- * info cannot be overwritten by a nested #VE.
- */
- tdx_get_ve_info(&ve);
- cond_local_irq_enable(regs);
- /*
- * If tdx_handle_virt_exception() could not process
- * it successfully, treat it as #GP(0) and handle it.
- */
- if (!tdx_handle_virt_exception(regs, &ve))
- ve_raise_fault(regs, 0, ve.gla);
- cond_local_irq_disable(regs);
- }
- #endif
- #ifdef CONFIG_X86_32
- DEFINE_IDTENTRY_SW(iret_error)
- {
- local_irq_enable();
- if (notify_die(DIE_TRAP, "iret exception", regs, 0,
- X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
- do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
- ILL_BADSTK, (void __user *)NULL);
- }
- local_irq_disable();
- }
- #endif
- void __init trap_init(void)
- {
- /* Init cpu_entry_area before IST entries are set up */
- setup_cpu_entry_areas();
- /* Init GHCB memory pages when running as an SEV-ES guest */
- sev_es_init_vc_handling();
- /* Initialize TSS before setting up traps so ISTs work */
- cpu_init_exception_handling();
- /* Setup traps as cpu_init() might #GP */
- idt_setup_traps();
- cpu_init();
- }
|