sm4-aesni-avx-asm_64.S 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. /* SPDX-License-Identifier: GPL-2.0-or-later */
  2. /*
  3. * SM4 Cipher Algorithm, AES-NI/AVX optimized.
  4. * as specified in
  5. * https://tools.ietf.org/id/draft-ribose-cfrg-sm4-10.html
  6. *
  7. * Copyright (C) 2018 Markku-Juhani O. Saarinen <[email protected]>
  8. * Copyright (C) 2020 Jussi Kivilinna <[email protected]>
  9. * Copyright (c) 2021 Tianjia Zhang <[email protected]>
  10. */
  11. /* Based on SM4 AES-NI work by libgcrypt and Markku-Juhani O. Saarinen at:
  12. * https://github.com/mjosaarinen/sm4ni
  13. */
  14. #include <linux/linkage.h>
  15. #include <linux/cfi_types.h>
  16. #include <asm/frame.h>
  17. #define rRIP (%rip)
  18. #define RX0 %xmm0
  19. #define RX1 %xmm1
  20. #define MASK_4BIT %xmm2
  21. #define RTMP0 %xmm3
  22. #define RTMP1 %xmm4
  23. #define RTMP2 %xmm5
  24. #define RTMP3 %xmm6
  25. #define RTMP4 %xmm7
  26. #define RA0 %xmm8
  27. #define RA1 %xmm9
  28. #define RA2 %xmm10
  29. #define RA3 %xmm11
  30. #define RB0 %xmm12
  31. #define RB1 %xmm13
  32. #define RB2 %xmm14
  33. #define RB3 %xmm15
  34. #define RNOT %xmm0
  35. #define RBSWAP %xmm1
  36. /* Transpose four 32-bit words between 128-bit vectors. */
  37. #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
  38. vpunpckhdq x1, x0, t2; \
  39. vpunpckldq x1, x0, x0; \
  40. \
  41. vpunpckldq x3, x2, t1; \
  42. vpunpckhdq x3, x2, x2; \
  43. \
  44. vpunpckhqdq t1, x0, x1; \
  45. vpunpcklqdq t1, x0, x0; \
  46. \
  47. vpunpckhqdq x2, t2, x3; \
  48. vpunpcklqdq x2, t2, x2;
  49. /* pre-SubByte transform. */
  50. #define transform_pre(x, lo_t, hi_t, mask4bit, tmp0) \
  51. vpand x, mask4bit, tmp0; \
  52. vpandn x, mask4bit, x; \
  53. vpsrld $4, x, x; \
  54. \
  55. vpshufb tmp0, lo_t, tmp0; \
  56. vpshufb x, hi_t, x; \
  57. vpxor tmp0, x, x;
  58. /* post-SubByte transform. Note: x has been XOR'ed with mask4bit by
  59. * 'vaeslastenc' instruction.
  60. */
  61. #define transform_post(x, lo_t, hi_t, mask4bit, tmp0) \
  62. vpandn mask4bit, x, tmp0; \
  63. vpsrld $4, x, x; \
  64. vpand x, mask4bit, x; \
  65. \
  66. vpshufb tmp0, lo_t, tmp0; \
  67. vpshufb x, hi_t, x; \
  68. vpxor tmp0, x, x;
  69. .section .rodata.cst16, "aM", @progbits, 16
  70. .align 16
  71. /*
  72. * Following four affine transform look-up tables are from work by
  73. * Markku-Juhani O. Saarinen, at https://github.com/mjosaarinen/sm4ni
  74. *
  75. * These allow exposing SM4 S-Box from AES SubByte.
  76. */
  77. /* pre-SubByte affine transform, from SM4 field to AES field. */
  78. .Lpre_tf_lo_s:
  79. .quad 0x9197E2E474720701, 0xC7C1B4B222245157
  80. .Lpre_tf_hi_s:
  81. .quad 0xE240AB09EB49A200, 0xF052B91BF95BB012
  82. /* post-SubByte affine transform, from AES field to SM4 field. */
  83. .Lpost_tf_lo_s:
  84. .quad 0x5B67F2CEA19D0834, 0xEDD14478172BBE82
  85. .Lpost_tf_hi_s:
  86. .quad 0xAE7201DD73AFDC00, 0x11CDBE62CC1063BF
  87. /* For isolating SubBytes from AESENCLAST, inverse shift row */
  88. .Linv_shift_row:
  89. .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
  90. .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
  91. /* Inverse shift row + Rotate left by 8 bits on 32-bit words with vpshufb */
  92. .Linv_shift_row_rol_8:
  93. .byte 0x07, 0x00, 0x0d, 0x0a, 0x0b, 0x04, 0x01, 0x0e
  94. .byte 0x0f, 0x08, 0x05, 0x02, 0x03, 0x0c, 0x09, 0x06
  95. /* Inverse shift row + Rotate left by 16 bits on 32-bit words with vpshufb */
  96. .Linv_shift_row_rol_16:
  97. .byte 0x0a, 0x07, 0x00, 0x0d, 0x0e, 0x0b, 0x04, 0x01
  98. .byte 0x02, 0x0f, 0x08, 0x05, 0x06, 0x03, 0x0c, 0x09
  99. /* Inverse shift row + Rotate left by 24 bits on 32-bit words with vpshufb */
  100. .Linv_shift_row_rol_24:
  101. .byte 0x0d, 0x0a, 0x07, 0x00, 0x01, 0x0e, 0x0b, 0x04
  102. .byte 0x05, 0x02, 0x0f, 0x08, 0x09, 0x06, 0x03, 0x0c
  103. /* For CTR-mode IV byteswap */
  104. .Lbswap128_mask:
  105. .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
  106. /* For input word byte-swap */
  107. .Lbswap32_mask:
  108. .byte 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12
  109. .align 4
  110. /* 4-bit mask */
  111. .L0f0f0f0f:
  112. .long 0x0f0f0f0f
  113. /* 12 bytes, only for padding */
  114. .Lpadding_deadbeef:
  115. .long 0xdeadbeef, 0xdeadbeef, 0xdeadbeef
  116. .text
  117. .align 16
  118. /*
  119. * void sm4_aesni_avx_crypt4(const u32 *rk, u8 *dst,
  120. * const u8 *src, int nblocks)
  121. */
  122. .align 8
  123. SYM_FUNC_START(sm4_aesni_avx_crypt4)
  124. /* input:
  125. * %rdi: round key array, CTX
  126. * %rsi: dst (1..4 blocks)
  127. * %rdx: src (1..4 blocks)
  128. * %rcx: num blocks (1..4)
  129. */
  130. FRAME_BEGIN
  131. vmovdqu 0*16(%rdx), RA0;
  132. vmovdqa RA0, RA1;
  133. vmovdqa RA0, RA2;
  134. vmovdqa RA0, RA3;
  135. cmpq $2, %rcx;
  136. jb .Lblk4_load_input_done;
  137. vmovdqu 1*16(%rdx), RA1;
  138. je .Lblk4_load_input_done;
  139. vmovdqu 2*16(%rdx), RA2;
  140. cmpq $3, %rcx;
  141. je .Lblk4_load_input_done;
  142. vmovdqu 3*16(%rdx), RA3;
  143. .Lblk4_load_input_done:
  144. vmovdqa .Lbswap32_mask rRIP, RTMP2;
  145. vpshufb RTMP2, RA0, RA0;
  146. vpshufb RTMP2, RA1, RA1;
  147. vpshufb RTMP2, RA2, RA2;
  148. vpshufb RTMP2, RA3, RA3;
  149. vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT;
  150. vmovdqa .Lpre_tf_lo_s rRIP, RTMP4;
  151. vmovdqa .Lpre_tf_hi_s rRIP, RB0;
  152. vmovdqa .Lpost_tf_lo_s rRIP, RB1;
  153. vmovdqa .Lpost_tf_hi_s rRIP, RB2;
  154. vmovdqa .Linv_shift_row rRIP, RB3;
  155. vmovdqa .Linv_shift_row_rol_8 rRIP, RTMP2;
  156. vmovdqa .Linv_shift_row_rol_16 rRIP, RTMP3;
  157. transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
  158. #define ROUND(round, s0, s1, s2, s3) \
  159. vbroadcastss (4*(round))(%rdi), RX0; \
  160. vpxor s1, RX0, RX0; \
  161. vpxor s2, RX0, RX0; \
  162. vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \
  163. \
  164. /* sbox, non-linear part */ \
  165. transform_pre(RX0, RTMP4, RB0, MASK_4BIT, RTMP0); \
  166. vaesenclast MASK_4BIT, RX0, RX0; \
  167. transform_post(RX0, RB1, RB2, MASK_4BIT, RTMP0); \
  168. \
  169. /* linear part */ \
  170. vpshufb RB3, RX0, RTMP0; \
  171. vpxor RTMP0, s0, s0; /* s0 ^ x */ \
  172. vpshufb RTMP2, RX0, RTMP1; \
  173. vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \
  174. vpshufb RTMP3, RX0, RTMP1; \
  175. vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \
  176. vpshufb .Linv_shift_row_rol_24 rRIP, RX0, RTMP1; \
  177. vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \
  178. vpslld $2, RTMP0, RTMP1; \
  179. vpsrld $30, RTMP0, RTMP0; \
  180. vpxor RTMP0, s0, s0; \
  181. /* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
  182. vpxor RTMP1, s0, s0;
  183. leaq (32*4)(%rdi), %rax;
  184. .align 16
  185. .Lroundloop_blk4:
  186. ROUND(0, RA0, RA1, RA2, RA3);
  187. ROUND(1, RA1, RA2, RA3, RA0);
  188. ROUND(2, RA2, RA3, RA0, RA1);
  189. ROUND(3, RA3, RA0, RA1, RA2);
  190. leaq (4*4)(%rdi), %rdi;
  191. cmpq %rax, %rdi;
  192. jne .Lroundloop_blk4;
  193. #undef ROUND
  194. vmovdqa .Lbswap128_mask rRIP, RTMP2;
  195. transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
  196. vpshufb RTMP2, RA0, RA0;
  197. vpshufb RTMP2, RA1, RA1;
  198. vpshufb RTMP2, RA2, RA2;
  199. vpshufb RTMP2, RA3, RA3;
  200. vmovdqu RA0, 0*16(%rsi);
  201. cmpq $2, %rcx;
  202. jb .Lblk4_store_output_done;
  203. vmovdqu RA1, 1*16(%rsi);
  204. je .Lblk4_store_output_done;
  205. vmovdqu RA2, 2*16(%rsi);
  206. cmpq $3, %rcx;
  207. je .Lblk4_store_output_done;
  208. vmovdqu RA3, 3*16(%rsi);
  209. .Lblk4_store_output_done:
  210. vzeroall;
  211. FRAME_END
  212. RET;
  213. SYM_FUNC_END(sm4_aesni_avx_crypt4)
  214. .align 8
  215. SYM_FUNC_START_LOCAL(__sm4_crypt_blk8)
  216. /* input:
  217. * %rdi: round key array, CTX
  218. * RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: eight parallel
  219. * plaintext blocks
  220. * output:
  221. * RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: eight parallel
  222. * ciphertext blocks
  223. */
  224. FRAME_BEGIN
  225. vmovdqa .Lbswap32_mask rRIP, RTMP2;
  226. vpshufb RTMP2, RA0, RA0;
  227. vpshufb RTMP2, RA1, RA1;
  228. vpshufb RTMP2, RA2, RA2;
  229. vpshufb RTMP2, RA3, RA3;
  230. vpshufb RTMP2, RB0, RB0;
  231. vpshufb RTMP2, RB1, RB1;
  232. vpshufb RTMP2, RB2, RB2;
  233. vpshufb RTMP2, RB3, RB3;
  234. vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT;
  235. transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
  236. transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1);
  237. #define ROUND(round, s0, s1, s2, s3, r0, r1, r2, r3) \
  238. vbroadcastss (4*(round))(%rdi), RX0; \
  239. vmovdqa .Lpre_tf_lo_s rRIP, RTMP4; \
  240. vmovdqa .Lpre_tf_hi_s rRIP, RTMP1; \
  241. vmovdqa RX0, RX1; \
  242. vpxor s1, RX0, RX0; \
  243. vpxor s2, RX0, RX0; \
  244. vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \
  245. vmovdqa .Lpost_tf_lo_s rRIP, RTMP2; \
  246. vmovdqa .Lpost_tf_hi_s rRIP, RTMP3; \
  247. vpxor r1, RX1, RX1; \
  248. vpxor r2, RX1, RX1; \
  249. vpxor r3, RX1, RX1; /* r1 ^ r2 ^ r3 ^ rk */ \
  250. \
  251. /* sbox, non-linear part */ \
  252. transform_pre(RX0, RTMP4, RTMP1, MASK_4BIT, RTMP0); \
  253. transform_pre(RX1, RTMP4, RTMP1, MASK_4BIT, RTMP0); \
  254. vmovdqa .Linv_shift_row rRIP, RTMP4; \
  255. vaesenclast MASK_4BIT, RX0, RX0; \
  256. vaesenclast MASK_4BIT, RX1, RX1; \
  257. transform_post(RX0, RTMP2, RTMP3, MASK_4BIT, RTMP0); \
  258. transform_post(RX1, RTMP2, RTMP3, MASK_4BIT, RTMP0); \
  259. \
  260. /* linear part */ \
  261. vpshufb RTMP4, RX0, RTMP0; \
  262. vpxor RTMP0, s0, s0; /* s0 ^ x */ \
  263. vpshufb RTMP4, RX1, RTMP2; \
  264. vmovdqa .Linv_shift_row_rol_8 rRIP, RTMP4; \
  265. vpxor RTMP2, r0, r0; /* r0 ^ x */ \
  266. vpshufb RTMP4, RX0, RTMP1; \
  267. vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \
  268. vpshufb RTMP4, RX1, RTMP3; \
  269. vmovdqa .Linv_shift_row_rol_16 rRIP, RTMP4; \
  270. vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) */ \
  271. vpshufb RTMP4, RX0, RTMP1; \
  272. vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \
  273. vpshufb RTMP4, RX1, RTMP3; \
  274. vmovdqa .Linv_shift_row_rol_24 rRIP, RTMP4; \
  275. vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) ^ rol(x,16) */ \
  276. vpshufb RTMP4, RX0, RTMP1; \
  277. vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \
  278. /* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
  279. vpslld $2, RTMP0, RTMP1; \
  280. vpsrld $30, RTMP0, RTMP0; \
  281. vpxor RTMP0, s0, s0; \
  282. vpxor RTMP1, s0, s0; \
  283. vpshufb RTMP4, RX1, RTMP3; \
  284. vpxor RTMP3, r0, r0; /* r0 ^ x ^ rol(x,24) */ \
  285. /* r0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
  286. vpslld $2, RTMP2, RTMP3; \
  287. vpsrld $30, RTMP2, RTMP2; \
  288. vpxor RTMP2, r0, r0; \
  289. vpxor RTMP3, r0, r0;
  290. leaq (32*4)(%rdi), %rax;
  291. .align 16
  292. .Lroundloop_blk8:
  293. ROUND(0, RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3);
  294. ROUND(1, RA1, RA2, RA3, RA0, RB1, RB2, RB3, RB0);
  295. ROUND(2, RA2, RA3, RA0, RA1, RB2, RB3, RB0, RB1);
  296. ROUND(3, RA3, RA0, RA1, RA2, RB3, RB0, RB1, RB2);
  297. leaq (4*4)(%rdi), %rdi;
  298. cmpq %rax, %rdi;
  299. jne .Lroundloop_blk8;
  300. #undef ROUND
  301. vmovdqa .Lbswap128_mask rRIP, RTMP2;
  302. transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
  303. transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1);
  304. vpshufb RTMP2, RA0, RA0;
  305. vpshufb RTMP2, RA1, RA1;
  306. vpshufb RTMP2, RA2, RA2;
  307. vpshufb RTMP2, RA3, RA3;
  308. vpshufb RTMP2, RB0, RB0;
  309. vpshufb RTMP2, RB1, RB1;
  310. vpshufb RTMP2, RB2, RB2;
  311. vpshufb RTMP2, RB3, RB3;
  312. FRAME_END
  313. RET;
  314. SYM_FUNC_END(__sm4_crypt_blk8)
  315. /*
  316. * void sm4_aesni_avx_crypt8(const u32 *rk, u8 *dst,
  317. * const u8 *src, int nblocks)
  318. */
  319. .align 8
  320. SYM_FUNC_START(sm4_aesni_avx_crypt8)
  321. /* input:
  322. * %rdi: round key array, CTX
  323. * %rsi: dst (1..8 blocks)
  324. * %rdx: src (1..8 blocks)
  325. * %rcx: num blocks (1..8)
  326. */
  327. cmpq $5, %rcx;
  328. jb sm4_aesni_avx_crypt4;
  329. FRAME_BEGIN
  330. vmovdqu (0 * 16)(%rdx), RA0;
  331. vmovdqu (1 * 16)(%rdx), RA1;
  332. vmovdqu (2 * 16)(%rdx), RA2;
  333. vmovdqu (3 * 16)(%rdx), RA3;
  334. vmovdqu (4 * 16)(%rdx), RB0;
  335. vmovdqa RB0, RB1;
  336. vmovdqa RB0, RB2;
  337. vmovdqa RB0, RB3;
  338. je .Lblk8_load_input_done;
  339. vmovdqu (5 * 16)(%rdx), RB1;
  340. cmpq $7, %rcx;
  341. jb .Lblk8_load_input_done;
  342. vmovdqu (6 * 16)(%rdx), RB2;
  343. je .Lblk8_load_input_done;
  344. vmovdqu (7 * 16)(%rdx), RB3;
  345. .Lblk8_load_input_done:
  346. call __sm4_crypt_blk8;
  347. cmpq $6, %rcx;
  348. vmovdqu RA0, (0 * 16)(%rsi);
  349. vmovdqu RA1, (1 * 16)(%rsi);
  350. vmovdqu RA2, (2 * 16)(%rsi);
  351. vmovdqu RA3, (3 * 16)(%rsi);
  352. vmovdqu RB0, (4 * 16)(%rsi);
  353. jb .Lblk8_store_output_done;
  354. vmovdqu RB1, (5 * 16)(%rsi);
  355. je .Lblk8_store_output_done;
  356. vmovdqu RB2, (6 * 16)(%rsi);
  357. cmpq $7, %rcx;
  358. je .Lblk8_store_output_done;
  359. vmovdqu RB3, (7 * 16)(%rsi);
  360. .Lblk8_store_output_done:
  361. vzeroall;
  362. FRAME_END
  363. RET;
  364. SYM_FUNC_END(sm4_aesni_avx_crypt8)
  365. /*
  366. * void sm4_aesni_avx_ctr_enc_blk8(const u32 *rk, u8 *dst,
  367. * const u8 *src, u8 *iv)
  368. */
  369. .align 8
  370. SYM_TYPED_FUNC_START(sm4_aesni_avx_ctr_enc_blk8)
  371. /* input:
  372. * %rdi: round key array, CTX
  373. * %rsi: dst (8 blocks)
  374. * %rdx: src (8 blocks)
  375. * %rcx: iv (big endian, 128bit)
  376. */
  377. FRAME_BEGIN
  378. /* load IV and byteswap */
  379. vmovdqu (%rcx), RA0;
  380. vmovdqa .Lbswap128_mask rRIP, RBSWAP;
  381. vpshufb RBSWAP, RA0, RTMP0; /* be => le */
  382. vpcmpeqd RNOT, RNOT, RNOT;
  383. vpsrldq $8, RNOT, RNOT; /* low: -1, high: 0 */
  384. #define inc_le128(x, minus_one, tmp) \
  385. vpcmpeqq minus_one, x, tmp; \
  386. vpsubq minus_one, x, x; \
  387. vpslldq $8, tmp, tmp; \
  388. vpsubq tmp, x, x;
  389. /* construct IVs */
  390. inc_le128(RTMP0, RNOT, RTMP2); /* +1 */
  391. vpshufb RBSWAP, RTMP0, RA1;
  392. inc_le128(RTMP0, RNOT, RTMP2); /* +2 */
  393. vpshufb RBSWAP, RTMP0, RA2;
  394. inc_le128(RTMP0, RNOT, RTMP2); /* +3 */
  395. vpshufb RBSWAP, RTMP0, RA3;
  396. inc_le128(RTMP0, RNOT, RTMP2); /* +4 */
  397. vpshufb RBSWAP, RTMP0, RB0;
  398. inc_le128(RTMP0, RNOT, RTMP2); /* +5 */
  399. vpshufb RBSWAP, RTMP0, RB1;
  400. inc_le128(RTMP0, RNOT, RTMP2); /* +6 */
  401. vpshufb RBSWAP, RTMP0, RB2;
  402. inc_le128(RTMP0, RNOT, RTMP2); /* +7 */
  403. vpshufb RBSWAP, RTMP0, RB3;
  404. inc_le128(RTMP0, RNOT, RTMP2); /* +8 */
  405. vpshufb RBSWAP, RTMP0, RTMP1;
  406. /* store new IV */
  407. vmovdqu RTMP1, (%rcx);
  408. call __sm4_crypt_blk8;
  409. vpxor (0 * 16)(%rdx), RA0, RA0;
  410. vpxor (1 * 16)(%rdx), RA1, RA1;
  411. vpxor (2 * 16)(%rdx), RA2, RA2;
  412. vpxor (3 * 16)(%rdx), RA3, RA3;
  413. vpxor (4 * 16)(%rdx), RB0, RB0;
  414. vpxor (5 * 16)(%rdx), RB1, RB1;
  415. vpxor (6 * 16)(%rdx), RB2, RB2;
  416. vpxor (7 * 16)(%rdx), RB3, RB3;
  417. vmovdqu RA0, (0 * 16)(%rsi);
  418. vmovdqu RA1, (1 * 16)(%rsi);
  419. vmovdqu RA2, (2 * 16)(%rsi);
  420. vmovdqu RA3, (3 * 16)(%rsi);
  421. vmovdqu RB0, (4 * 16)(%rsi);
  422. vmovdqu RB1, (5 * 16)(%rsi);
  423. vmovdqu RB2, (6 * 16)(%rsi);
  424. vmovdqu RB3, (7 * 16)(%rsi);
  425. vzeroall;
  426. FRAME_END
  427. RET;
  428. SYM_FUNC_END(sm4_aesni_avx_ctr_enc_blk8)
  429. /*
  430. * void sm4_aesni_avx_cbc_dec_blk8(const u32 *rk, u8 *dst,
  431. * const u8 *src, u8 *iv)
  432. */
  433. .align 8
  434. SYM_TYPED_FUNC_START(sm4_aesni_avx_cbc_dec_blk8)
  435. /* input:
  436. * %rdi: round key array, CTX
  437. * %rsi: dst (8 blocks)
  438. * %rdx: src (8 blocks)
  439. * %rcx: iv
  440. */
  441. FRAME_BEGIN
  442. vmovdqu (0 * 16)(%rdx), RA0;
  443. vmovdqu (1 * 16)(%rdx), RA1;
  444. vmovdqu (2 * 16)(%rdx), RA2;
  445. vmovdqu (3 * 16)(%rdx), RA3;
  446. vmovdqu (4 * 16)(%rdx), RB0;
  447. vmovdqu (5 * 16)(%rdx), RB1;
  448. vmovdqu (6 * 16)(%rdx), RB2;
  449. vmovdqu (7 * 16)(%rdx), RB3;
  450. call __sm4_crypt_blk8;
  451. vmovdqu (7 * 16)(%rdx), RNOT;
  452. vpxor (%rcx), RA0, RA0;
  453. vpxor (0 * 16)(%rdx), RA1, RA1;
  454. vpxor (1 * 16)(%rdx), RA2, RA2;
  455. vpxor (2 * 16)(%rdx), RA3, RA3;
  456. vpxor (3 * 16)(%rdx), RB0, RB0;
  457. vpxor (4 * 16)(%rdx), RB1, RB1;
  458. vpxor (5 * 16)(%rdx), RB2, RB2;
  459. vpxor (6 * 16)(%rdx), RB3, RB3;
  460. vmovdqu RNOT, (%rcx); /* store new IV */
  461. vmovdqu RA0, (0 * 16)(%rsi);
  462. vmovdqu RA1, (1 * 16)(%rsi);
  463. vmovdqu RA2, (2 * 16)(%rsi);
  464. vmovdqu RA3, (3 * 16)(%rsi);
  465. vmovdqu RB0, (4 * 16)(%rsi);
  466. vmovdqu RB1, (5 * 16)(%rsi);
  467. vmovdqu RB2, (6 * 16)(%rsi);
  468. vmovdqu RB3, (7 * 16)(%rsi);
  469. vzeroall;
  470. FRAME_END
  471. RET;
  472. SYM_FUNC_END(sm4_aesni_avx_cbc_dec_blk8)
  473. /*
  474. * void sm4_aesni_avx_cfb_dec_blk8(const u32 *rk, u8 *dst,
  475. * const u8 *src, u8 *iv)
  476. */
  477. .align 8
  478. SYM_TYPED_FUNC_START(sm4_aesni_avx_cfb_dec_blk8)
  479. /* input:
  480. * %rdi: round key array, CTX
  481. * %rsi: dst (8 blocks)
  482. * %rdx: src (8 blocks)
  483. * %rcx: iv
  484. */
  485. FRAME_BEGIN
  486. /* Load input */
  487. vmovdqu (%rcx), RA0;
  488. vmovdqu 0 * 16(%rdx), RA1;
  489. vmovdqu 1 * 16(%rdx), RA2;
  490. vmovdqu 2 * 16(%rdx), RA3;
  491. vmovdqu 3 * 16(%rdx), RB0;
  492. vmovdqu 4 * 16(%rdx), RB1;
  493. vmovdqu 5 * 16(%rdx), RB2;
  494. vmovdqu 6 * 16(%rdx), RB3;
  495. /* Update IV */
  496. vmovdqu 7 * 16(%rdx), RNOT;
  497. vmovdqu RNOT, (%rcx);
  498. call __sm4_crypt_blk8;
  499. vpxor (0 * 16)(%rdx), RA0, RA0;
  500. vpxor (1 * 16)(%rdx), RA1, RA1;
  501. vpxor (2 * 16)(%rdx), RA2, RA2;
  502. vpxor (3 * 16)(%rdx), RA3, RA3;
  503. vpxor (4 * 16)(%rdx), RB0, RB0;
  504. vpxor (5 * 16)(%rdx), RB1, RB1;
  505. vpxor (6 * 16)(%rdx), RB2, RB2;
  506. vpxor (7 * 16)(%rdx), RB3, RB3;
  507. vmovdqu RA0, (0 * 16)(%rsi);
  508. vmovdqu RA1, (1 * 16)(%rsi);
  509. vmovdqu RA2, (2 * 16)(%rsi);
  510. vmovdqu RA3, (3 * 16)(%rsi);
  511. vmovdqu RB0, (4 * 16)(%rsi);
  512. vmovdqu RB1, (5 * 16)(%rsi);
  513. vmovdqu RB2, (6 * 16)(%rsi);
  514. vmovdqu RB3, (7 * 16)(%rsi);
  515. vzeroall;
  516. FRAME_END
  517. RET;
  518. SYM_FUNC_END(sm4_aesni_avx_cfb_dec_blk8)