sm3-avx-asm_64.S 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518
  1. /* SPDX-License-Identifier: GPL-2.0-or-later */
  2. /*
  3. * SM3 AVX accelerated transform.
  4. * specified in: https://datatracker.ietf.org/doc/html/draft-sca-cfrg-sm3-02
  5. *
  6. * Copyright (C) 2021 Jussi Kivilinna <[email protected]>
  7. * Copyright (C) 2021 Tianjia Zhang <[email protected]>
  8. */
  9. /* Based on SM3 AES/BMI2 accelerated work by libgcrypt at:
  10. * https://gnupg.org/software/libgcrypt/index.html
  11. */
  12. #include <linux/linkage.h>
  13. #include <linux/cfi_types.h>
  14. #include <asm/frame.h>
  15. /* Context structure */
  16. #define state_h0 0
  17. #define state_h1 4
  18. #define state_h2 8
  19. #define state_h3 12
  20. #define state_h4 16
  21. #define state_h5 20
  22. #define state_h6 24
  23. #define state_h7 28
  24. /* Constants */
  25. /* Round constant macros */
  26. #define K0 2043430169 /* 0x79cc4519 */
  27. #define K1 -208106958 /* 0xf3988a32 */
  28. #define K2 -416213915 /* 0xe7311465 */
  29. #define K3 -832427829 /* 0xce6228cb */
  30. #define K4 -1664855657 /* 0x9cc45197 */
  31. #define K5 965255983 /* 0x3988a32f */
  32. #define K6 1930511966 /* 0x7311465e */
  33. #define K7 -433943364 /* 0xe6228cbc */
  34. #define K8 -867886727 /* 0xcc451979 */
  35. #define K9 -1735773453 /* 0x988a32f3 */
  36. #define K10 823420391 /* 0x311465e7 */
  37. #define K11 1646840782 /* 0x6228cbce */
  38. #define K12 -1001285732 /* 0xc451979c */
  39. #define K13 -2002571463 /* 0x88a32f39 */
  40. #define K14 289824371 /* 0x11465e73 */
  41. #define K15 579648742 /* 0x228cbce6 */
  42. #define K16 -1651869049 /* 0x9d8a7a87 */
  43. #define K17 991229199 /* 0x3b14f50f */
  44. #define K18 1982458398 /* 0x7629ea1e */
  45. #define K19 -330050500 /* 0xec53d43c */
  46. #define K20 -660100999 /* 0xd8a7a879 */
  47. #define K21 -1320201997 /* 0xb14f50f3 */
  48. #define K22 1654563303 /* 0x629ea1e7 */
  49. #define K23 -985840690 /* 0xc53d43ce */
  50. #define K24 -1971681379 /* 0x8a7a879d */
  51. #define K25 351604539 /* 0x14f50f3b */
  52. #define K26 703209078 /* 0x29ea1e76 */
  53. #define K27 1406418156 /* 0x53d43cec */
  54. #define K28 -1482130984 /* 0xa7a879d8 */
  55. #define K29 1330705329 /* 0x4f50f3b1 */
  56. #define K30 -1633556638 /* 0x9ea1e762 */
  57. #define K31 1027854021 /* 0x3d43cec5 */
  58. #define K32 2055708042 /* 0x7a879d8a */
  59. #define K33 -183551212 /* 0xf50f3b14 */
  60. #define K34 -367102423 /* 0xea1e7629 */
  61. #define K35 -734204845 /* 0xd43cec53 */
  62. #define K36 -1468409689 /* 0xa879d8a7 */
  63. #define K37 1358147919 /* 0x50f3b14f */
  64. #define K38 -1578671458 /* 0xa1e7629e */
  65. #define K39 1137624381 /* 0x43cec53d */
  66. #define K40 -2019718534 /* 0x879d8a7a */
  67. #define K41 255530229 /* 0x0f3b14f5 */
  68. #define K42 511060458 /* 0x1e7629ea */
  69. #define K43 1022120916 /* 0x3cec53d4 */
  70. #define K44 2044241832 /* 0x79d8a7a8 */
  71. #define K45 -206483632 /* 0xf3b14f50 */
  72. #define K46 -412967263 /* 0xe7629ea1 */
  73. #define K47 -825934525 /* 0xcec53d43 */
  74. #define K48 -1651869049 /* 0x9d8a7a87 */
  75. #define K49 991229199 /* 0x3b14f50f */
  76. #define K50 1982458398 /* 0x7629ea1e */
  77. #define K51 -330050500 /* 0xec53d43c */
  78. #define K52 -660100999 /* 0xd8a7a879 */
  79. #define K53 -1320201997 /* 0xb14f50f3 */
  80. #define K54 1654563303 /* 0x629ea1e7 */
  81. #define K55 -985840690 /* 0xc53d43ce */
  82. #define K56 -1971681379 /* 0x8a7a879d */
  83. #define K57 351604539 /* 0x14f50f3b */
  84. #define K58 703209078 /* 0x29ea1e76 */
  85. #define K59 1406418156 /* 0x53d43cec */
  86. #define K60 -1482130984 /* 0xa7a879d8 */
  87. #define K61 1330705329 /* 0x4f50f3b1 */
  88. #define K62 -1633556638 /* 0x9ea1e762 */
  89. #define K63 1027854021 /* 0x3d43cec5 */
  90. /* Register macros */
  91. #define RSTATE %rdi
  92. #define RDATA %rsi
  93. #define RNBLKS %rdx
  94. #define t0 %eax
  95. #define t1 %ebx
  96. #define t2 %ecx
  97. #define a %r8d
  98. #define b %r9d
  99. #define c %r10d
  100. #define d %r11d
  101. #define e %r12d
  102. #define f %r13d
  103. #define g %r14d
  104. #define h %r15d
  105. #define W0 %xmm0
  106. #define W1 %xmm1
  107. #define W2 %xmm2
  108. #define W3 %xmm3
  109. #define W4 %xmm4
  110. #define W5 %xmm5
  111. #define XTMP0 %xmm6
  112. #define XTMP1 %xmm7
  113. #define XTMP2 %xmm8
  114. #define XTMP3 %xmm9
  115. #define XTMP4 %xmm10
  116. #define XTMP5 %xmm11
  117. #define XTMP6 %xmm12
  118. #define BSWAP_REG %xmm15
  119. /* Stack structure */
  120. #define STACK_W_SIZE (32 * 2 * 3)
  121. #define STACK_REG_SAVE_SIZE (64)
  122. #define STACK_W (0)
  123. #define STACK_REG_SAVE (STACK_W + STACK_W_SIZE)
  124. #define STACK_SIZE (STACK_REG_SAVE + STACK_REG_SAVE_SIZE)
  125. /* Instruction helpers. */
  126. #define roll2(v, reg) \
  127. roll $(v), reg;
  128. #define roll3mov(v, src, dst) \
  129. movl src, dst; \
  130. roll $(v), dst;
  131. #define roll3(v, src, dst) \
  132. rorxl $(32-(v)), src, dst;
  133. #define addl2(a, out) \
  134. leal (a, out), out;
  135. /* Round function macros. */
  136. #define GG1(x, y, z, o, t) \
  137. movl x, o; \
  138. xorl y, o; \
  139. xorl z, o;
  140. #define FF1(x, y, z, o, t) GG1(x, y, z, o, t)
  141. #define GG2(x, y, z, o, t) \
  142. andnl z, x, o; \
  143. movl y, t; \
  144. andl x, t; \
  145. addl2(t, o);
  146. #define FF2(x, y, z, o, t) \
  147. movl y, o; \
  148. xorl x, o; \
  149. movl y, t; \
  150. andl x, t; \
  151. andl z, o; \
  152. xorl t, o;
  153. #define R(i, a, b, c, d, e, f, g, h, round, widx, wtype) \
  154. /* rol(a, 12) => t0 */ \
  155. roll3mov(12, a, t0); /* rorxl here would reduce perf by 6% on zen3 */ \
  156. /* rol (t0 + e + t), 7) => t1 */ \
  157. leal K##round(t0, e, 1), t1; \
  158. roll2(7, t1); \
  159. /* h + w1 => h */ \
  160. addl wtype##_W1_ADDR(round, widx), h; \
  161. /* h + t1 => h */ \
  162. addl2(t1, h); \
  163. /* t1 ^ t0 => t0 */ \
  164. xorl t1, t0; \
  165. /* w1w2 + d => d */ \
  166. addl wtype##_W1W2_ADDR(round, widx), d; \
  167. /* FF##i(a,b,c) => t1 */ \
  168. FF##i(a, b, c, t1, t2); \
  169. /* d + t1 => d */ \
  170. addl2(t1, d); \
  171. /* GG#i(e,f,g) => t2 */ \
  172. GG##i(e, f, g, t2, t1); \
  173. /* h + t2 => h */ \
  174. addl2(t2, h); \
  175. /* rol (f, 19) => f */ \
  176. roll2(19, f); \
  177. /* d + t0 => d */ \
  178. addl2(t0, d); \
  179. /* rol (b, 9) => b */ \
  180. roll2(9, b); \
  181. /* P0(h) => h */ \
  182. roll3(9, h, t2); \
  183. roll3(17, h, t1); \
  184. xorl t2, h; \
  185. xorl t1, h;
  186. #define R1(a, b, c, d, e, f, g, h, round, widx, wtype) \
  187. R(1, a, b, c, d, e, f, g, h, round, widx, wtype)
  188. #define R2(a, b, c, d, e, f, g, h, round, widx, wtype) \
  189. R(2, a, b, c, d, e, f, g, h, round, widx, wtype)
  190. /* Input expansion macros. */
  191. /* Byte-swapped input address. */
  192. #define IW_W_ADDR(round, widx, offs) \
  193. (STACK_W + ((round) / 4) * 64 + (offs) + ((widx) * 4))(%rsp)
  194. /* Expanded input address. */
  195. #define XW_W_ADDR(round, widx, offs) \
  196. (STACK_W + ((((round) / 3) - 4) % 2) * 64 + (offs) + ((widx) * 4))(%rsp)
  197. /* Rounds 1-12, byte-swapped input block addresses. */
  198. #define IW_W1_ADDR(round, widx) IW_W_ADDR(round, widx, 0)
  199. #define IW_W1W2_ADDR(round, widx) IW_W_ADDR(round, widx, 32)
  200. /* Rounds 1-12, expanded input block addresses. */
  201. #define XW_W1_ADDR(round, widx) XW_W_ADDR(round, widx, 0)
  202. #define XW_W1W2_ADDR(round, widx) XW_W_ADDR(round, widx, 32)
  203. /* Input block loading. */
  204. #define LOAD_W_XMM_1() \
  205. vmovdqu 0*16(RDATA), XTMP0; /* XTMP0: w3, w2, w1, w0 */ \
  206. vmovdqu 1*16(RDATA), XTMP1; /* XTMP1: w7, w6, w5, w4 */ \
  207. vmovdqu 2*16(RDATA), XTMP2; /* XTMP2: w11, w10, w9, w8 */ \
  208. vmovdqu 3*16(RDATA), XTMP3; /* XTMP3: w15, w14, w13, w12 */ \
  209. vpshufb BSWAP_REG, XTMP0, XTMP0; \
  210. vpshufb BSWAP_REG, XTMP1, XTMP1; \
  211. vpshufb BSWAP_REG, XTMP2, XTMP2; \
  212. vpshufb BSWAP_REG, XTMP3, XTMP3; \
  213. vpxor XTMP0, XTMP1, XTMP4; \
  214. vpxor XTMP1, XTMP2, XTMP5; \
  215. vpxor XTMP2, XTMP3, XTMP6; \
  216. leaq 64(RDATA), RDATA; \
  217. vmovdqa XTMP0, IW_W1_ADDR(0, 0); \
  218. vmovdqa XTMP4, IW_W1W2_ADDR(0, 0); \
  219. vmovdqa XTMP1, IW_W1_ADDR(4, 0); \
  220. vmovdqa XTMP5, IW_W1W2_ADDR(4, 0);
  221. #define LOAD_W_XMM_2() \
  222. vmovdqa XTMP2, IW_W1_ADDR(8, 0); \
  223. vmovdqa XTMP6, IW_W1W2_ADDR(8, 0);
  224. #define LOAD_W_XMM_3() \
  225. vpshufd $0b00000000, XTMP0, W0; /* W0: xx, w0, xx, xx */ \
  226. vpshufd $0b11111001, XTMP0, W1; /* W1: xx, w3, w2, w1 */ \
  227. vmovdqa XTMP1, W2; /* W2: xx, w6, w5, w4 */ \
  228. vpalignr $12, XTMP1, XTMP2, W3; /* W3: xx, w9, w8, w7 */ \
  229. vpalignr $8, XTMP2, XTMP3, W4; /* W4: xx, w12, w11, w10 */ \
  230. vpshufd $0b11111001, XTMP3, W5; /* W5: xx, w15, w14, w13 */
  231. /* Message scheduling. Note: 3 words per XMM register. */
  232. #define SCHED_W_0(round, w0, w1, w2, w3, w4, w5) \
  233. /* Load (w[i - 16]) => XTMP0 */ \
  234. vpshufd $0b10111111, w0, XTMP0; \
  235. vpalignr $12, XTMP0, w1, XTMP0; /* XTMP0: xx, w2, w1, w0 */ \
  236. /* Load (w[i - 13]) => XTMP1 */ \
  237. vpshufd $0b10111111, w1, XTMP1; \
  238. vpalignr $12, XTMP1, w2, XTMP1; \
  239. /* w[i - 9] == w3 */ \
  240. /* XMM3 ^ XTMP0 => XTMP0 */ \
  241. vpxor w3, XTMP0, XTMP0;
  242. #define SCHED_W_1(round, w0, w1, w2, w3, w4, w5) \
  243. /* w[i - 3] == w5 */ \
  244. /* rol(XMM5, 15) ^ XTMP0 => XTMP0 */ \
  245. vpslld $15, w5, XTMP2; \
  246. vpsrld $(32-15), w5, XTMP3; \
  247. vpxor XTMP2, XTMP3, XTMP3; \
  248. vpxor XTMP3, XTMP0, XTMP0; \
  249. /* rol(XTMP1, 7) => XTMP1 */ \
  250. vpslld $7, XTMP1, XTMP5; \
  251. vpsrld $(32-7), XTMP1, XTMP1; \
  252. vpxor XTMP5, XTMP1, XTMP1; \
  253. /* XMM4 ^ XTMP1 => XTMP1 */ \
  254. vpxor w4, XTMP1, XTMP1; \
  255. /* w[i - 6] == XMM4 */ \
  256. /* P1(XTMP0) ^ XTMP1 => XMM0 */ \
  257. vpslld $15, XTMP0, XTMP5; \
  258. vpsrld $(32-15), XTMP0, XTMP6; \
  259. vpslld $23, XTMP0, XTMP2; \
  260. vpsrld $(32-23), XTMP0, XTMP3; \
  261. vpxor XTMP0, XTMP1, XTMP1; \
  262. vpxor XTMP6, XTMP5, XTMP5; \
  263. vpxor XTMP3, XTMP2, XTMP2; \
  264. vpxor XTMP2, XTMP5, XTMP5; \
  265. vpxor XTMP5, XTMP1, w0;
  266. #define SCHED_W_2(round, w0, w1, w2, w3, w4, w5) \
  267. /* W1 in XMM12 */ \
  268. vpshufd $0b10111111, w4, XTMP4; \
  269. vpalignr $12, XTMP4, w5, XTMP4; \
  270. vmovdqa XTMP4, XW_W1_ADDR((round), 0); \
  271. /* W1 ^ W2 => XTMP1 */ \
  272. vpxor w0, XTMP4, XTMP1; \
  273. vmovdqa XTMP1, XW_W1W2_ADDR((round), 0);
  274. .section .rodata.cst16, "aM", @progbits, 16
  275. .align 16
  276. .Lbe32mask:
  277. .long 0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f
  278. .text
  279. /*
  280. * Transform nblocks*64 bytes (nblocks*16 32-bit words) at DATA.
  281. *
  282. * void sm3_transform_avx(struct sm3_state *state,
  283. * const u8 *data, int nblocks);
  284. */
  285. .align 16
  286. SYM_TYPED_FUNC_START(sm3_transform_avx)
  287. /* input:
  288. * %rdi: ctx, CTX
  289. * %rsi: data (64*nblks bytes)
  290. * %rdx: nblocks
  291. */
  292. vzeroupper;
  293. pushq %rbp;
  294. movq %rsp, %rbp;
  295. movq %rdx, RNBLKS;
  296. subq $STACK_SIZE, %rsp;
  297. andq $(~63), %rsp;
  298. movq %rbx, (STACK_REG_SAVE + 0 * 8)(%rsp);
  299. movq %r15, (STACK_REG_SAVE + 1 * 8)(%rsp);
  300. movq %r14, (STACK_REG_SAVE + 2 * 8)(%rsp);
  301. movq %r13, (STACK_REG_SAVE + 3 * 8)(%rsp);
  302. movq %r12, (STACK_REG_SAVE + 4 * 8)(%rsp);
  303. vmovdqa .Lbe32mask (%rip), BSWAP_REG;
  304. /* Get the values of the chaining variables. */
  305. movl state_h0(RSTATE), a;
  306. movl state_h1(RSTATE), b;
  307. movl state_h2(RSTATE), c;
  308. movl state_h3(RSTATE), d;
  309. movl state_h4(RSTATE), e;
  310. movl state_h5(RSTATE), f;
  311. movl state_h6(RSTATE), g;
  312. movl state_h7(RSTATE), h;
  313. .align 16
  314. .Loop:
  315. /* Load data part1. */
  316. LOAD_W_XMM_1();
  317. leaq -1(RNBLKS), RNBLKS;
  318. /* Transform 0-3 + Load data part2. */
  319. R1(a, b, c, d, e, f, g, h, 0, 0, IW); LOAD_W_XMM_2();
  320. R1(d, a, b, c, h, e, f, g, 1, 1, IW);
  321. R1(c, d, a, b, g, h, e, f, 2, 2, IW);
  322. R1(b, c, d, a, f, g, h, e, 3, 3, IW); LOAD_W_XMM_3();
  323. /* Transform 4-7 + Precalc 12-14. */
  324. R1(a, b, c, d, e, f, g, h, 4, 0, IW);
  325. R1(d, a, b, c, h, e, f, g, 5, 1, IW);
  326. R1(c, d, a, b, g, h, e, f, 6, 2, IW); SCHED_W_0(12, W0, W1, W2, W3, W4, W5);
  327. R1(b, c, d, a, f, g, h, e, 7, 3, IW); SCHED_W_1(12, W0, W1, W2, W3, W4, W5);
  328. /* Transform 8-11 + Precalc 12-17. */
  329. R1(a, b, c, d, e, f, g, h, 8, 0, IW); SCHED_W_2(12, W0, W1, W2, W3, W4, W5);
  330. R1(d, a, b, c, h, e, f, g, 9, 1, IW); SCHED_W_0(15, W1, W2, W3, W4, W5, W0);
  331. R1(c, d, a, b, g, h, e, f, 10, 2, IW); SCHED_W_1(15, W1, W2, W3, W4, W5, W0);
  332. R1(b, c, d, a, f, g, h, e, 11, 3, IW); SCHED_W_2(15, W1, W2, W3, W4, W5, W0);
  333. /* Transform 12-14 + Precalc 18-20 */
  334. R1(a, b, c, d, e, f, g, h, 12, 0, XW); SCHED_W_0(18, W2, W3, W4, W5, W0, W1);
  335. R1(d, a, b, c, h, e, f, g, 13, 1, XW); SCHED_W_1(18, W2, W3, W4, W5, W0, W1);
  336. R1(c, d, a, b, g, h, e, f, 14, 2, XW); SCHED_W_2(18, W2, W3, W4, W5, W0, W1);
  337. /* Transform 15-17 + Precalc 21-23 */
  338. R1(b, c, d, a, f, g, h, e, 15, 0, XW); SCHED_W_0(21, W3, W4, W5, W0, W1, W2);
  339. R2(a, b, c, d, e, f, g, h, 16, 1, XW); SCHED_W_1(21, W3, W4, W5, W0, W1, W2);
  340. R2(d, a, b, c, h, e, f, g, 17, 2, XW); SCHED_W_2(21, W3, W4, W5, W0, W1, W2);
  341. /* Transform 18-20 + Precalc 24-26 */
  342. R2(c, d, a, b, g, h, e, f, 18, 0, XW); SCHED_W_0(24, W4, W5, W0, W1, W2, W3);
  343. R2(b, c, d, a, f, g, h, e, 19, 1, XW); SCHED_W_1(24, W4, W5, W0, W1, W2, W3);
  344. R2(a, b, c, d, e, f, g, h, 20, 2, XW); SCHED_W_2(24, W4, W5, W0, W1, W2, W3);
  345. /* Transform 21-23 + Precalc 27-29 */
  346. R2(d, a, b, c, h, e, f, g, 21, 0, XW); SCHED_W_0(27, W5, W0, W1, W2, W3, W4);
  347. R2(c, d, a, b, g, h, e, f, 22, 1, XW); SCHED_W_1(27, W5, W0, W1, W2, W3, W4);
  348. R2(b, c, d, a, f, g, h, e, 23, 2, XW); SCHED_W_2(27, W5, W0, W1, W2, W3, W4);
  349. /* Transform 24-26 + Precalc 30-32 */
  350. R2(a, b, c, d, e, f, g, h, 24, 0, XW); SCHED_W_0(30, W0, W1, W2, W3, W4, W5);
  351. R2(d, a, b, c, h, e, f, g, 25, 1, XW); SCHED_W_1(30, W0, W1, W2, W3, W4, W5);
  352. R2(c, d, a, b, g, h, e, f, 26, 2, XW); SCHED_W_2(30, W0, W1, W2, W3, W4, W5);
  353. /* Transform 27-29 + Precalc 33-35 */
  354. R2(b, c, d, a, f, g, h, e, 27, 0, XW); SCHED_W_0(33, W1, W2, W3, W4, W5, W0);
  355. R2(a, b, c, d, e, f, g, h, 28, 1, XW); SCHED_W_1(33, W1, W2, W3, W4, W5, W0);
  356. R2(d, a, b, c, h, e, f, g, 29, 2, XW); SCHED_W_2(33, W1, W2, W3, W4, W5, W0);
  357. /* Transform 30-32 + Precalc 36-38 */
  358. R2(c, d, a, b, g, h, e, f, 30, 0, XW); SCHED_W_0(36, W2, W3, W4, W5, W0, W1);
  359. R2(b, c, d, a, f, g, h, e, 31, 1, XW); SCHED_W_1(36, W2, W3, W4, W5, W0, W1);
  360. R2(a, b, c, d, e, f, g, h, 32, 2, XW); SCHED_W_2(36, W2, W3, W4, W5, W0, W1);
  361. /* Transform 33-35 + Precalc 39-41 */
  362. R2(d, a, b, c, h, e, f, g, 33, 0, XW); SCHED_W_0(39, W3, W4, W5, W0, W1, W2);
  363. R2(c, d, a, b, g, h, e, f, 34, 1, XW); SCHED_W_1(39, W3, W4, W5, W0, W1, W2);
  364. R2(b, c, d, a, f, g, h, e, 35, 2, XW); SCHED_W_2(39, W3, W4, W5, W0, W1, W2);
  365. /* Transform 36-38 + Precalc 42-44 */
  366. R2(a, b, c, d, e, f, g, h, 36, 0, XW); SCHED_W_0(42, W4, W5, W0, W1, W2, W3);
  367. R2(d, a, b, c, h, e, f, g, 37, 1, XW); SCHED_W_1(42, W4, W5, W0, W1, W2, W3);
  368. R2(c, d, a, b, g, h, e, f, 38, 2, XW); SCHED_W_2(42, W4, W5, W0, W1, W2, W3);
  369. /* Transform 39-41 + Precalc 45-47 */
  370. R2(b, c, d, a, f, g, h, e, 39, 0, XW); SCHED_W_0(45, W5, W0, W1, W2, W3, W4);
  371. R2(a, b, c, d, e, f, g, h, 40, 1, XW); SCHED_W_1(45, W5, W0, W1, W2, W3, W4);
  372. R2(d, a, b, c, h, e, f, g, 41, 2, XW); SCHED_W_2(45, W5, W0, W1, W2, W3, W4);
  373. /* Transform 42-44 + Precalc 48-50 */
  374. R2(c, d, a, b, g, h, e, f, 42, 0, XW); SCHED_W_0(48, W0, W1, W2, W3, W4, W5);
  375. R2(b, c, d, a, f, g, h, e, 43, 1, XW); SCHED_W_1(48, W0, W1, W2, W3, W4, W5);
  376. R2(a, b, c, d, e, f, g, h, 44, 2, XW); SCHED_W_2(48, W0, W1, W2, W3, W4, W5);
  377. /* Transform 45-47 + Precalc 51-53 */
  378. R2(d, a, b, c, h, e, f, g, 45, 0, XW); SCHED_W_0(51, W1, W2, W3, W4, W5, W0);
  379. R2(c, d, a, b, g, h, e, f, 46, 1, XW); SCHED_W_1(51, W1, W2, W3, W4, W5, W0);
  380. R2(b, c, d, a, f, g, h, e, 47, 2, XW); SCHED_W_2(51, W1, W2, W3, W4, W5, W0);
  381. /* Transform 48-50 + Precalc 54-56 */
  382. R2(a, b, c, d, e, f, g, h, 48, 0, XW); SCHED_W_0(54, W2, W3, W4, W5, W0, W1);
  383. R2(d, a, b, c, h, e, f, g, 49, 1, XW); SCHED_W_1(54, W2, W3, W4, W5, W0, W1);
  384. R2(c, d, a, b, g, h, e, f, 50, 2, XW); SCHED_W_2(54, W2, W3, W4, W5, W0, W1);
  385. /* Transform 51-53 + Precalc 57-59 */
  386. R2(b, c, d, a, f, g, h, e, 51, 0, XW); SCHED_W_0(57, W3, W4, W5, W0, W1, W2);
  387. R2(a, b, c, d, e, f, g, h, 52, 1, XW); SCHED_W_1(57, W3, W4, W5, W0, W1, W2);
  388. R2(d, a, b, c, h, e, f, g, 53, 2, XW); SCHED_W_2(57, W3, W4, W5, W0, W1, W2);
  389. /* Transform 54-56 + Precalc 60-62 */
  390. R2(c, d, a, b, g, h, e, f, 54, 0, XW); SCHED_W_0(60, W4, W5, W0, W1, W2, W3);
  391. R2(b, c, d, a, f, g, h, e, 55, 1, XW); SCHED_W_1(60, W4, W5, W0, W1, W2, W3);
  392. R2(a, b, c, d, e, f, g, h, 56, 2, XW); SCHED_W_2(60, W4, W5, W0, W1, W2, W3);
  393. /* Transform 57-59 + Precalc 63 */
  394. R2(d, a, b, c, h, e, f, g, 57, 0, XW); SCHED_W_0(63, W5, W0, W1, W2, W3, W4);
  395. R2(c, d, a, b, g, h, e, f, 58, 1, XW);
  396. R2(b, c, d, a, f, g, h, e, 59, 2, XW); SCHED_W_1(63, W5, W0, W1, W2, W3, W4);
  397. /* Transform 60-62 + Precalc 63 */
  398. R2(a, b, c, d, e, f, g, h, 60, 0, XW);
  399. R2(d, a, b, c, h, e, f, g, 61, 1, XW); SCHED_W_2(63, W5, W0, W1, W2, W3, W4);
  400. R2(c, d, a, b, g, h, e, f, 62, 2, XW);
  401. /* Transform 63 */
  402. R2(b, c, d, a, f, g, h, e, 63, 0, XW);
  403. /* Update the chaining variables. */
  404. xorl state_h0(RSTATE), a;
  405. xorl state_h1(RSTATE), b;
  406. xorl state_h2(RSTATE), c;
  407. xorl state_h3(RSTATE), d;
  408. movl a, state_h0(RSTATE);
  409. movl b, state_h1(RSTATE);
  410. movl c, state_h2(RSTATE);
  411. movl d, state_h3(RSTATE);
  412. xorl state_h4(RSTATE), e;
  413. xorl state_h5(RSTATE), f;
  414. xorl state_h6(RSTATE), g;
  415. xorl state_h7(RSTATE), h;
  416. movl e, state_h4(RSTATE);
  417. movl f, state_h5(RSTATE);
  418. movl g, state_h6(RSTATE);
  419. movl h, state_h7(RSTATE);
  420. cmpq $0, RNBLKS;
  421. jne .Loop;
  422. vzeroall;
  423. movq (STACK_REG_SAVE + 0 * 8)(%rsp), %rbx;
  424. movq (STACK_REG_SAVE + 1 * 8)(%rsp), %r15;
  425. movq (STACK_REG_SAVE + 2 * 8)(%rsp), %r14;
  426. movq (STACK_REG_SAVE + 3 * 8)(%rsp), %r13;
  427. movq (STACK_REG_SAVE + 4 * 8)(%rsp), %r12;
  428. vmovdqa %xmm0, IW_W1_ADDR(0, 0);
  429. vmovdqa %xmm0, IW_W1W2_ADDR(0, 0);
  430. vmovdqa %xmm0, IW_W1_ADDR(4, 0);
  431. vmovdqa %xmm0, IW_W1W2_ADDR(4, 0);
  432. vmovdqa %xmm0, IW_W1_ADDR(8, 0);
  433. vmovdqa %xmm0, IW_W1W2_ADDR(8, 0);
  434. movq %rbp, %rsp;
  435. popq %rbp;
  436. RET;
  437. SYM_FUNC_END(sm3_transform_avx)