sha512-avx2-asm.S 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749
  1. ########################################################################
  2. # Implement fast SHA-512 with AVX2 instructions. (x86_64)
  3. #
  4. # Copyright (C) 2013 Intel Corporation.
  5. #
  6. # Authors:
  7. # James Guilford <[email protected]>
  8. # Kirk Yap <[email protected]>
  9. # David Cote <[email protected]>
  10. # Tim Chen <[email protected]>
  11. #
  12. # This software is available to you under a choice of one of two
  13. # licenses. You may choose to be licensed under the terms of the GNU
  14. # General Public License (GPL) Version 2, available from the file
  15. # COPYING in the main directory of this source tree, or the
  16. # OpenIB.org BSD license below:
  17. #
  18. # Redistribution and use in source and binary forms, with or
  19. # without modification, are permitted provided that the following
  20. # conditions are met:
  21. #
  22. # - Redistributions of source code must retain the above
  23. # copyright notice, this list of conditions and the following
  24. # disclaimer.
  25. #
  26. # - Redistributions in binary form must reproduce the above
  27. # copyright notice, this list of conditions and the following
  28. # disclaimer in the documentation and/or other materials
  29. # provided with the distribution.
  30. #
  31. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  32. # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  33. # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  34. # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  35. # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  36. # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  37. # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  38. # SOFTWARE.
  39. #
  40. ########################################################################
  41. #
  42. # This code is described in an Intel White-Paper:
  43. # "Fast SHA-512 Implementations on Intel Architecture Processors"
  44. #
  45. # To find it, surf to http://www.intel.com/p/en_US/embedded
  46. # and search for that title.
  47. #
  48. ########################################################################
  49. # This code schedules 1 blocks at a time, with 4 lanes per block
  50. ########################################################################
  51. #include <linux/linkage.h>
  52. #include <linux/cfi_types.h>
  53. .text
  54. # Virtual Registers
  55. Y_0 = %ymm4
  56. Y_1 = %ymm5
  57. Y_2 = %ymm6
  58. Y_3 = %ymm7
  59. YTMP0 = %ymm0
  60. YTMP1 = %ymm1
  61. YTMP2 = %ymm2
  62. YTMP3 = %ymm3
  63. YTMP4 = %ymm8
  64. XFER = YTMP0
  65. BYTE_FLIP_MASK = %ymm9
  66. # 1st arg is %rdi, which is saved to the stack and accessed later via %r12
  67. CTX1 = %rdi
  68. CTX2 = %r12
  69. # 2nd arg
  70. INP = %rsi
  71. # 3rd arg
  72. NUM_BLKS = %rdx
  73. c = %rcx
  74. d = %r8
  75. e = %rdx
  76. y3 = %rsi
  77. TBL = %rdi # clobbers CTX1
  78. a = %rax
  79. b = %rbx
  80. f = %r9
  81. g = %r10
  82. h = %r11
  83. old_h = %r11
  84. T1 = %r12 # clobbers CTX2
  85. y0 = %r13
  86. y1 = %r14
  87. y2 = %r15
  88. # Local variables (stack frame)
  89. XFER_SIZE = 4*8
  90. SRND_SIZE = 1*8
  91. INP_SIZE = 1*8
  92. INPEND_SIZE = 1*8
  93. CTX_SIZE = 1*8
  94. frame_XFER = 0
  95. frame_SRND = frame_XFER + XFER_SIZE
  96. frame_INP = frame_SRND + SRND_SIZE
  97. frame_INPEND = frame_INP + INP_SIZE
  98. frame_CTX = frame_INPEND + INPEND_SIZE
  99. frame_size = frame_CTX + CTX_SIZE
  100. ## assume buffers not aligned
  101. #define VMOVDQ vmovdqu
  102. # addm [mem], reg
  103. # Add reg to mem using reg-mem add and store
  104. .macro addm p1 p2
  105. add \p1, \p2
  106. mov \p2, \p1
  107. .endm
  108. # COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask
  109. # Load ymm with mem and byte swap each dword
  110. .macro COPY_YMM_AND_BSWAP p1 p2 p3
  111. VMOVDQ \p2, \p1
  112. vpshufb \p3, \p1, \p1
  113. .endm
  114. # rotate_Ys
  115. # Rotate values of symbols Y0...Y3
  116. .macro rotate_Ys
  117. Y_ = Y_0
  118. Y_0 = Y_1
  119. Y_1 = Y_2
  120. Y_2 = Y_3
  121. Y_3 = Y_
  122. .endm
  123. # RotateState
  124. .macro RotateState
  125. # Rotate symbols a..h right
  126. old_h = h
  127. TMP_ = h
  128. h = g
  129. g = f
  130. f = e
  131. e = d
  132. d = c
  133. c = b
  134. b = a
  135. a = TMP_
  136. .endm
  137. # macro MY_VPALIGNR YDST, YSRC1, YSRC2, RVAL
  138. # YDST = {YSRC1, YSRC2} >> RVAL*8
  139. .macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL
  140. vperm2f128 $0x3, \YSRC2, \YSRC1, \YDST # YDST = {YS1_LO, YS2_HI}
  141. vpalignr $\RVAL, \YSRC2, \YDST, \YDST # YDST = {YDS1, YS2} >> RVAL*8
  142. .endm
  143. .macro FOUR_ROUNDS_AND_SCHED
  144. ################################### RND N + 0 #########################################
  145. # Extract w[t-7]
  146. MY_VPALIGNR YTMP0, Y_3, Y_2, 8 # YTMP0 = W[-7]
  147. # Calculate w[t-16] + w[t-7]
  148. vpaddq Y_0, YTMP0, YTMP0 # YTMP0 = W[-7] + W[-16]
  149. # Extract w[t-15]
  150. MY_VPALIGNR YTMP1, Y_1, Y_0, 8 # YTMP1 = W[-15]
  151. # Calculate sigma0
  152. # Calculate w[t-15] ror 1
  153. vpsrlq $1, YTMP1, YTMP2
  154. vpsllq $(64-1), YTMP1, YTMP3
  155. vpor YTMP2, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1
  156. # Calculate w[t-15] shr 7
  157. vpsrlq $7, YTMP1, YTMP4 # YTMP4 = W[-15] >> 7
  158. mov a, y3 # y3 = a # MAJA
  159. rorx $41, e, y0 # y0 = e >> 41 # S1A
  160. rorx $18, e, y1 # y1 = e >> 18 # S1B
  161. add frame_XFER(%rsp),h # h = k + w + h # --
  162. or c, y3 # y3 = a|c # MAJA
  163. mov f, y2 # y2 = f # CH
  164. rorx $34, a, T1 # T1 = a >> 34 # S0B
  165. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  166. xor g, y2 # y2 = f^g # CH
  167. rorx $14, e, y1 # y1 = (e >> 14) # S1
  168. and e, y2 # y2 = (f^g)&e # CH
  169. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  170. rorx $39, a, y1 # y1 = a >> 39 # S0A
  171. add h, d # d = k + w + h + d # --
  172. and b, y3 # y3 = (a|c)&b # MAJA
  173. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  174. rorx $28, a, T1 # T1 = (a >> 28) # S0
  175. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  176. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  177. mov a, T1 # T1 = a # MAJB
  178. and c, T1 # T1 = a&c # MAJB
  179. add y0, y2 # y2 = S1 + CH # --
  180. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  181. add y1, h # h = k + w + h + S0 # --
  182. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  183. add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  184. add y3, h # h = t1 + S0 + MAJ # --
  185. RotateState
  186. ################################### RND N + 1 #########################################
  187. # Calculate w[t-15] ror 8
  188. vpsrlq $8, YTMP1, YTMP2
  189. vpsllq $(64-8), YTMP1, YTMP1
  190. vpor YTMP2, YTMP1, YTMP1 # YTMP1 = W[-15] ror 8
  191. # XOR the three components
  192. vpxor YTMP4, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 ^ W[-15] >> 7
  193. vpxor YTMP1, YTMP3, YTMP1 # YTMP1 = s0
  194. # Add three components, w[t-16], w[t-7] and sigma0
  195. vpaddq YTMP1, YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0
  196. # Move to appropriate lanes for calculating w[16] and w[17]
  197. vperm2f128 $0x0, YTMP0, YTMP0, Y_0 # Y_0 = W[-16] + W[-7] + s0 {BABA}
  198. # Move to appropriate lanes for calculating w[18] and w[19]
  199. vpand MASK_YMM_LO(%rip), YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 {DC00}
  200. # Calculate w[16] and w[17] in both 128 bit lanes
  201. # Calculate sigma1 for w[16] and w[17] on both 128 bit lanes
  202. vperm2f128 $0x11, Y_3, Y_3, YTMP2 # YTMP2 = W[-2] {BABA}
  203. vpsrlq $6, YTMP2, YTMP4 # YTMP4 = W[-2] >> 6 {BABA}
  204. mov a, y3 # y3 = a # MAJA
  205. rorx $41, e, y0 # y0 = e >> 41 # S1A
  206. rorx $18, e, y1 # y1 = e >> 18 # S1B
  207. add 1*8+frame_XFER(%rsp), h # h = k + w + h # --
  208. or c, y3 # y3 = a|c # MAJA
  209. mov f, y2 # y2 = f # CH
  210. rorx $34, a, T1 # T1 = a >> 34 # S0B
  211. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  212. xor g, y2 # y2 = f^g # CH
  213. rorx $14, e, y1 # y1 = (e >> 14) # S1
  214. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  215. rorx $39, a, y1 # y1 = a >> 39 # S0A
  216. and e, y2 # y2 = (f^g)&e # CH
  217. add h, d # d = k + w + h + d # --
  218. and b, y3 # y3 = (a|c)&b # MAJA
  219. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  220. rorx $28, a, T1 # T1 = (a >> 28) # S0
  221. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  222. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  223. mov a, T1 # T1 = a # MAJB
  224. and c, T1 # T1 = a&c # MAJB
  225. add y0, y2 # y2 = S1 + CH # --
  226. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  227. add y1, h # h = k + w + h + S0 # --
  228. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  229. add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  230. add y3, h # h = t1 + S0 + MAJ # --
  231. RotateState
  232. ################################### RND N + 2 #########################################
  233. vpsrlq $19, YTMP2, YTMP3 # YTMP3 = W[-2] >> 19 {BABA}
  234. vpsllq $(64-19), YTMP2, YTMP1 # YTMP1 = W[-2] << 19 {BABA}
  235. vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {BABA}
  236. vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA}
  237. vpsrlq $61, YTMP2, YTMP3 # YTMP3 = W[-2] >> 61 {BABA}
  238. vpsllq $(64-61), YTMP2, YTMP1 # YTMP1 = W[-2] << 61 {BABA}
  239. vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {BABA}
  240. vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
  241. # (W[-2] ror 61) ^ (W[-2] >> 6) {BABA}
  242. # Add sigma1 to the other compunents to get w[16] and w[17]
  243. vpaddq YTMP4, Y_0, Y_0 # Y_0 = {W[1], W[0], W[1], W[0]}
  244. # Calculate sigma1 for w[18] and w[19] for upper 128 bit lane
  245. vpsrlq $6, Y_0, YTMP4 # YTMP4 = W[-2] >> 6 {DC--}
  246. mov a, y3 # y3 = a # MAJA
  247. rorx $41, e, y0 # y0 = e >> 41 # S1A
  248. add 2*8+frame_XFER(%rsp), h # h = k + w + h # --
  249. rorx $18, e, y1 # y1 = e >> 18 # S1B
  250. or c, y3 # y3 = a|c # MAJA
  251. mov f, y2 # y2 = f # CH
  252. xor g, y2 # y2 = f^g # CH
  253. rorx $34, a, T1 # T1 = a >> 34 # S0B
  254. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  255. and e, y2 # y2 = (f^g)&e # CH
  256. rorx $14, e, y1 # y1 = (e >> 14) # S1
  257. add h, d # d = k + w + h + d # --
  258. and b, y3 # y3 = (a|c)&b # MAJA
  259. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  260. rorx $39, a, y1 # y1 = a >> 39 # S0A
  261. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  262. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  263. rorx $28, a, T1 # T1 = (a >> 28) # S0
  264. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  265. mov a, T1 # T1 = a # MAJB
  266. and c, T1 # T1 = a&c # MAJB
  267. add y0, y2 # y2 = S1 + CH # --
  268. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  269. add y1, h # h = k + w + h + S0 # --
  270. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  271. add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  272. add y3, h # h = t1 + S0 + MAJ # --
  273. RotateState
  274. ################################### RND N + 3 #########################################
  275. vpsrlq $19, Y_0, YTMP3 # YTMP3 = W[-2] >> 19 {DC--}
  276. vpsllq $(64-19), Y_0, YTMP1 # YTMP1 = W[-2] << 19 {DC--}
  277. vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {DC--}
  278. vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--}
  279. vpsrlq $61, Y_0, YTMP3 # YTMP3 = W[-2] >> 61 {DC--}
  280. vpsllq $(64-61), Y_0, YTMP1 # YTMP1 = W[-2] << 61 {DC--}
  281. vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {DC--}
  282. vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
  283. # (W[-2] ror 61) ^ (W[-2] >> 6) {DC--}
  284. # Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19]
  285. # to newly calculated sigma1 to get w[18] and w[19]
  286. vpaddq YTMP4, YTMP0, YTMP2 # YTMP2 = {W[3], W[2], --, --}
  287. # Form w[19, w[18], w17], w[16]
  288. vpblendd $0xF0, YTMP2, Y_0, Y_0 # Y_0 = {W[3], W[2], W[1], W[0]}
  289. mov a, y3 # y3 = a # MAJA
  290. rorx $41, e, y0 # y0 = e >> 41 # S1A
  291. rorx $18, e, y1 # y1 = e >> 18 # S1B
  292. add 3*8+frame_XFER(%rsp), h # h = k + w + h # --
  293. or c, y3 # y3 = a|c # MAJA
  294. mov f, y2 # y2 = f # CH
  295. rorx $34, a, T1 # T1 = a >> 34 # S0B
  296. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  297. xor g, y2 # y2 = f^g # CH
  298. rorx $14, e, y1 # y1 = (e >> 14) # S1
  299. and e, y2 # y2 = (f^g)&e # CH
  300. add h, d # d = k + w + h + d # --
  301. and b, y3 # y3 = (a|c)&b # MAJA
  302. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  303. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  304. rorx $39, a, y1 # y1 = a >> 39 # S0A
  305. add y0, y2 # y2 = S1 + CH # --
  306. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  307. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  308. rorx $28, a, T1 # T1 = (a >> 28) # S0
  309. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  310. mov a, T1 # T1 = a # MAJB
  311. and c, T1 # T1 = a&c # MAJB
  312. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  313. add y1, h # h = k + w + h + S0 # --
  314. add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  315. add y3, h # h = t1 + S0 + MAJ # --
  316. RotateState
  317. rotate_Ys
  318. .endm
  319. .macro DO_4ROUNDS
  320. ################################### RND N + 0 #########################################
  321. mov f, y2 # y2 = f # CH
  322. rorx $41, e, y0 # y0 = e >> 41 # S1A
  323. rorx $18, e, y1 # y1 = e >> 18 # S1B
  324. xor g, y2 # y2 = f^g # CH
  325. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  326. rorx $14, e, y1 # y1 = (e >> 14) # S1
  327. and e, y2 # y2 = (f^g)&e # CH
  328. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  329. rorx $34, a, T1 # T1 = a >> 34 # S0B
  330. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  331. rorx $39, a, y1 # y1 = a >> 39 # S0A
  332. mov a, y3 # y3 = a # MAJA
  333. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  334. rorx $28, a, T1 # T1 = (a >> 28) # S0
  335. add frame_XFER(%rsp), h # h = k + w + h # --
  336. or c, y3 # y3 = a|c # MAJA
  337. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  338. mov a, T1 # T1 = a # MAJB
  339. and b, y3 # y3 = (a|c)&b # MAJA
  340. and c, T1 # T1 = a&c # MAJB
  341. add y0, y2 # y2 = S1 + CH # --
  342. add h, d # d = k + w + h + d # --
  343. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  344. add y1, h # h = k + w + h + S0 # --
  345. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  346. RotateState
  347. ################################### RND N + 1 #########################################
  348. add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  349. mov f, y2 # y2 = f # CH
  350. rorx $41, e, y0 # y0 = e >> 41 # S1A
  351. rorx $18, e, y1 # y1 = e >> 18 # S1B
  352. xor g, y2 # y2 = f^g # CH
  353. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  354. rorx $14, e, y1 # y1 = (e >> 14) # S1
  355. and e, y2 # y2 = (f^g)&e # CH
  356. add y3, old_h # h = t1 + S0 + MAJ # --
  357. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  358. rorx $34, a, T1 # T1 = a >> 34 # S0B
  359. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  360. rorx $39, a, y1 # y1 = a >> 39 # S0A
  361. mov a, y3 # y3 = a # MAJA
  362. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  363. rorx $28, a, T1 # T1 = (a >> 28) # S0
  364. add 8*1+frame_XFER(%rsp), h # h = k + w + h # --
  365. or c, y3 # y3 = a|c # MAJA
  366. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  367. mov a, T1 # T1 = a # MAJB
  368. and b, y3 # y3 = (a|c)&b # MAJA
  369. and c, T1 # T1 = a&c # MAJB
  370. add y0, y2 # y2 = S1 + CH # --
  371. add h, d # d = k + w + h + d # --
  372. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  373. add y1, h # h = k + w + h + S0 # --
  374. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  375. RotateState
  376. ################################### RND N + 2 #########################################
  377. add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  378. mov f, y2 # y2 = f # CH
  379. rorx $41, e, y0 # y0 = e >> 41 # S1A
  380. rorx $18, e, y1 # y1 = e >> 18 # S1B
  381. xor g, y2 # y2 = f^g # CH
  382. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  383. rorx $14, e, y1 # y1 = (e >> 14) # S1
  384. and e, y2 # y2 = (f^g)&e # CH
  385. add y3, old_h # h = t1 + S0 + MAJ # --
  386. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  387. rorx $34, a, T1 # T1 = a >> 34 # S0B
  388. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  389. rorx $39, a, y1 # y1 = a >> 39 # S0A
  390. mov a, y3 # y3 = a # MAJA
  391. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  392. rorx $28, a, T1 # T1 = (a >> 28) # S0
  393. add 8*2+frame_XFER(%rsp), h # h = k + w + h # --
  394. or c, y3 # y3 = a|c # MAJA
  395. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  396. mov a, T1 # T1 = a # MAJB
  397. and b, y3 # y3 = (a|c)&b # MAJA
  398. and c, T1 # T1 = a&c # MAJB
  399. add y0, y2 # y2 = S1 + CH # --
  400. add h, d # d = k + w + h + d # --
  401. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  402. add y1, h # h = k + w + h + S0 # --
  403. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  404. RotateState
  405. ################################### RND N + 3 #########################################
  406. add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  407. mov f, y2 # y2 = f # CH
  408. rorx $41, e, y0 # y0 = e >> 41 # S1A
  409. rorx $18, e, y1 # y1 = e >> 18 # S1B
  410. xor g, y2 # y2 = f^g # CH
  411. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  412. rorx $14, e, y1 # y1 = (e >> 14) # S1
  413. and e, y2 # y2 = (f^g)&e # CH
  414. add y3, old_h # h = t1 + S0 + MAJ # --
  415. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  416. rorx $34, a, T1 # T1 = a >> 34 # S0B
  417. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  418. rorx $39, a, y1 # y1 = a >> 39 # S0A
  419. mov a, y3 # y3 = a # MAJA
  420. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  421. rorx $28, a, T1 # T1 = (a >> 28) # S0
  422. add 8*3+frame_XFER(%rsp), h # h = k + w + h # --
  423. or c, y3 # y3 = a|c # MAJA
  424. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  425. mov a, T1 # T1 = a # MAJB
  426. and b, y3 # y3 = (a|c)&b # MAJA
  427. and c, T1 # T1 = a&c # MAJB
  428. add y0, y2 # y2 = S1 + CH # --
  429. add h, d # d = k + w + h + d # --
  430. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  431. add y1, h # h = k + w + h + S0 # --
  432. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  433. add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  434. add y3, h # h = t1 + S0 + MAJ # --
  435. RotateState
  436. .endm
  437. ########################################################################
  438. # void sha512_transform_rorx(sha512_state *state, const u8 *data, int blocks)
  439. # Purpose: Updates the SHA512 digest stored at "state" with the message
  440. # stored in "data".
  441. # The size of the message pointed to by "data" must be an integer multiple
  442. # of SHA512 message blocks.
  443. # "blocks" is the message length in SHA512 blocks
  444. ########################################################################
  445. SYM_TYPED_FUNC_START(sha512_transform_rorx)
  446. # Save GPRs
  447. push %rbx
  448. push %r12
  449. push %r13
  450. push %r14
  451. push %r15
  452. # Allocate Stack Space
  453. push %rbp
  454. mov %rsp, %rbp
  455. sub $frame_size, %rsp
  456. and $~(0x20 - 1), %rsp
  457. shl $7, NUM_BLKS # convert to bytes
  458. jz done_hash
  459. add INP, NUM_BLKS # pointer to end of data
  460. mov NUM_BLKS, frame_INPEND(%rsp)
  461. ## load initial digest
  462. mov 8*0(CTX1), a
  463. mov 8*1(CTX1), b
  464. mov 8*2(CTX1), c
  465. mov 8*3(CTX1), d
  466. mov 8*4(CTX1), e
  467. mov 8*5(CTX1), f
  468. mov 8*6(CTX1), g
  469. mov 8*7(CTX1), h
  470. # save %rdi (CTX) before it gets clobbered
  471. mov %rdi, frame_CTX(%rsp)
  472. vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
  473. loop0:
  474. lea K512(%rip), TBL
  475. ## byte swap first 16 dwords
  476. COPY_YMM_AND_BSWAP Y_0, (INP), BYTE_FLIP_MASK
  477. COPY_YMM_AND_BSWAP Y_1, 1*32(INP), BYTE_FLIP_MASK
  478. COPY_YMM_AND_BSWAP Y_2, 2*32(INP), BYTE_FLIP_MASK
  479. COPY_YMM_AND_BSWAP Y_3, 3*32(INP), BYTE_FLIP_MASK
  480. mov INP, frame_INP(%rsp)
  481. ## schedule 64 input dwords, by doing 12 rounds of 4 each
  482. movq $4, frame_SRND(%rsp)
  483. .align 16
  484. loop1:
  485. vpaddq (TBL), Y_0, XFER
  486. vmovdqa XFER, frame_XFER(%rsp)
  487. FOUR_ROUNDS_AND_SCHED
  488. vpaddq 1*32(TBL), Y_0, XFER
  489. vmovdqa XFER, frame_XFER(%rsp)
  490. FOUR_ROUNDS_AND_SCHED
  491. vpaddq 2*32(TBL), Y_0, XFER
  492. vmovdqa XFER, frame_XFER(%rsp)
  493. FOUR_ROUNDS_AND_SCHED
  494. vpaddq 3*32(TBL), Y_0, XFER
  495. vmovdqa XFER, frame_XFER(%rsp)
  496. add $(4*32), TBL
  497. FOUR_ROUNDS_AND_SCHED
  498. subq $1, frame_SRND(%rsp)
  499. jne loop1
  500. movq $2, frame_SRND(%rsp)
  501. loop2:
  502. vpaddq (TBL), Y_0, XFER
  503. vmovdqa XFER, frame_XFER(%rsp)
  504. DO_4ROUNDS
  505. vpaddq 1*32(TBL), Y_1, XFER
  506. vmovdqa XFER, frame_XFER(%rsp)
  507. add $(2*32), TBL
  508. DO_4ROUNDS
  509. vmovdqa Y_2, Y_0
  510. vmovdqa Y_3, Y_1
  511. subq $1, frame_SRND(%rsp)
  512. jne loop2
  513. mov frame_CTX(%rsp), CTX2
  514. addm 8*0(CTX2), a
  515. addm 8*1(CTX2), b
  516. addm 8*2(CTX2), c
  517. addm 8*3(CTX2), d
  518. addm 8*4(CTX2), e
  519. addm 8*5(CTX2), f
  520. addm 8*6(CTX2), g
  521. addm 8*7(CTX2), h
  522. mov frame_INP(%rsp), INP
  523. add $128, INP
  524. cmp frame_INPEND(%rsp), INP
  525. jne loop0
  526. done_hash:
  527. # Restore Stack Pointer
  528. mov %rbp, %rsp
  529. pop %rbp
  530. # Restore GPRs
  531. pop %r15
  532. pop %r14
  533. pop %r13
  534. pop %r12
  535. pop %rbx
  536. RET
  537. SYM_FUNC_END(sha512_transform_rorx)
  538. ########################################################################
  539. ### Binary Data
  540. # Mergeable 640-byte rodata section. This allows linker to merge the table
  541. # with other, exactly the same 640-byte fragment of another rodata section
  542. # (if such section exists).
  543. .section .rodata.cst640.K512, "aM", @progbits, 640
  544. .align 64
  545. # K[t] used in SHA512 hashing
  546. K512:
  547. .quad 0x428a2f98d728ae22,0x7137449123ef65cd
  548. .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
  549. .quad 0x3956c25bf348b538,0x59f111f1b605d019
  550. .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
  551. .quad 0xd807aa98a3030242,0x12835b0145706fbe
  552. .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
  553. .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
  554. .quad 0x9bdc06a725c71235,0xc19bf174cf692694
  555. .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
  556. .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
  557. .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
  558. .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
  559. .quad 0x983e5152ee66dfab,0xa831c66d2db43210
  560. .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
  561. .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
  562. .quad 0x06ca6351e003826f,0x142929670a0e6e70
  563. .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
  564. .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
  565. .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
  566. .quad 0x81c2c92e47edaee6,0x92722c851482353b
  567. .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
  568. .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
  569. .quad 0xd192e819d6ef5218,0xd69906245565a910
  570. .quad 0xf40e35855771202a,0x106aa07032bbd1b8
  571. .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
  572. .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
  573. .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
  574. .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
  575. .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
  576. .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
  577. .quad 0x90befffa23631e28,0xa4506cebde82bde9
  578. .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
  579. .quad 0xca273eceea26619c,0xd186b8c721c0c207
  580. .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
  581. .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
  582. .quad 0x113f9804bef90dae,0x1b710b35131c471b
  583. .quad 0x28db77f523047d84,0x32caab7b40c72493
  584. .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
  585. .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
  586. .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
  587. .section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32
  588. .align 32
  589. # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
  590. PSHUFFLE_BYTE_FLIP_MASK:
  591. .octa 0x08090a0b0c0d0e0f0001020304050607
  592. .octa 0x18191a1b1c1d1e1f1011121314151617
  593. .section .rodata.cst32.MASK_YMM_LO, "aM", @progbits, 32
  594. .align 32
  595. MASK_YMM_LO:
  596. .octa 0x00000000000000000000000000000000
  597. .octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF