pci_dma.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright IBM Corp. 2012
  4. *
  5. * Author(s):
  6. * Jan Glauber <[email protected]>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/export.h>
  11. #include <linux/iommu-helper.h>
  12. #include <linux/dma-map-ops.h>
  13. #include <linux/vmalloc.h>
  14. #include <linux/pci.h>
  15. #include <asm/pci_dma.h>
  16. static struct kmem_cache *dma_region_table_cache;
  17. static struct kmem_cache *dma_page_table_cache;
  18. static int s390_iommu_strict;
  19. static u64 s390_iommu_aperture;
  20. static u32 s390_iommu_aperture_factor = 1;
  21. static int zpci_refresh_global(struct zpci_dev *zdev)
  22. {
  23. return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma,
  24. zdev->iommu_pages * PAGE_SIZE);
  25. }
  26. unsigned long *dma_alloc_cpu_table(void)
  27. {
  28. unsigned long *table, *entry;
  29. table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
  30. if (!table)
  31. return NULL;
  32. for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
  33. *entry = ZPCI_TABLE_INVALID;
  34. return table;
  35. }
  36. static void dma_free_cpu_table(void *table)
  37. {
  38. kmem_cache_free(dma_region_table_cache, table);
  39. }
  40. static unsigned long *dma_alloc_page_table(void)
  41. {
  42. unsigned long *table, *entry;
  43. table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
  44. if (!table)
  45. return NULL;
  46. for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
  47. *entry = ZPCI_PTE_INVALID;
  48. return table;
  49. }
  50. static void dma_free_page_table(void *table)
  51. {
  52. kmem_cache_free(dma_page_table_cache, table);
  53. }
  54. static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
  55. {
  56. unsigned long *sto;
  57. if (reg_entry_isvalid(*entry))
  58. sto = get_rt_sto(*entry);
  59. else {
  60. sto = dma_alloc_cpu_table();
  61. if (!sto)
  62. return NULL;
  63. set_rt_sto(entry, virt_to_phys(sto));
  64. validate_rt_entry(entry);
  65. entry_clr_protected(entry);
  66. }
  67. return sto;
  68. }
  69. static unsigned long *dma_get_page_table_origin(unsigned long *entry)
  70. {
  71. unsigned long *pto;
  72. if (reg_entry_isvalid(*entry))
  73. pto = get_st_pto(*entry);
  74. else {
  75. pto = dma_alloc_page_table();
  76. if (!pto)
  77. return NULL;
  78. set_st_pto(entry, virt_to_phys(pto));
  79. validate_st_entry(entry);
  80. entry_clr_protected(entry);
  81. }
  82. return pto;
  83. }
  84. unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
  85. {
  86. unsigned long *sto, *pto;
  87. unsigned int rtx, sx, px;
  88. rtx = calc_rtx(dma_addr);
  89. sto = dma_get_seg_table_origin(&rto[rtx]);
  90. if (!sto)
  91. return NULL;
  92. sx = calc_sx(dma_addr);
  93. pto = dma_get_page_table_origin(&sto[sx]);
  94. if (!pto)
  95. return NULL;
  96. px = calc_px(dma_addr);
  97. return &pto[px];
  98. }
  99. void dma_update_cpu_trans(unsigned long *entry, phys_addr_t page_addr, int flags)
  100. {
  101. if (flags & ZPCI_PTE_INVALID) {
  102. invalidate_pt_entry(entry);
  103. } else {
  104. set_pt_pfaa(entry, page_addr);
  105. validate_pt_entry(entry);
  106. }
  107. if (flags & ZPCI_TABLE_PROTECTED)
  108. entry_set_protected(entry);
  109. else
  110. entry_clr_protected(entry);
  111. }
  112. static int __dma_update_trans(struct zpci_dev *zdev, phys_addr_t pa,
  113. dma_addr_t dma_addr, size_t size, int flags)
  114. {
  115. unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  116. phys_addr_t page_addr = (pa & PAGE_MASK);
  117. unsigned long irq_flags;
  118. unsigned long *entry;
  119. int i, rc = 0;
  120. if (!nr_pages)
  121. return -EINVAL;
  122. spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
  123. if (!zdev->dma_table) {
  124. rc = -EINVAL;
  125. goto out_unlock;
  126. }
  127. for (i = 0; i < nr_pages; i++) {
  128. entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
  129. if (!entry) {
  130. rc = -ENOMEM;
  131. goto undo_cpu_trans;
  132. }
  133. dma_update_cpu_trans(entry, page_addr, flags);
  134. page_addr += PAGE_SIZE;
  135. dma_addr += PAGE_SIZE;
  136. }
  137. undo_cpu_trans:
  138. if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) {
  139. flags = ZPCI_PTE_INVALID;
  140. while (i-- > 0) {
  141. page_addr -= PAGE_SIZE;
  142. dma_addr -= PAGE_SIZE;
  143. entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
  144. if (!entry)
  145. break;
  146. dma_update_cpu_trans(entry, page_addr, flags);
  147. }
  148. }
  149. out_unlock:
  150. spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
  151. return rc;
  152. }
  153. static int __dma_purge_tlb(struct zpci_dev *zdev, dma_addr_t dma_addr,
  154. size_t size, int flags)
  155. {
  156. unsigned long irqflags;
  157. int ret;
  158. /*
  159. * With zdev->tlb_refresh == 0, rpcit is not required to establish new
  160. * translations when previously invalid translation-table entries are
  161. * validated. With lazy unmap, rpcit is skipped for previously valid
  162. * entries, but a global rpcit is then required before any address can
  163. * be re-used, i.e. after each iommu bitmap wrap-around.
  164. */
  165. if ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID) {
  166. if (!zdev->tlb_refresh)
  167. return 0;
  168. } else {
  169. if (!s390_iommu_strict)
  170. return 0;
  171. }
  172. ret = zpci_refresh_trans((u64) zdev->fh << 32, dma_addr,
  173. PAGE_ALIGN(size));
  174. if (ret == -ENOMEM && !s390_iommu_strict) {
  175. /* enable the hypervisor to free some resources */
  176. if (zpci_refresh_global(zdev))
  177. goto out;
  178. spin_lock_irqsave(&zdev->iommu_bitmap_lock, irqflags);
  179. bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
  180. zdev->lazy_bitmap, zdev->iommu_pages);
  181. bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
  182. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, irqflags);
  183. ret = 0;
  184. }
  185. out:
  186. return ret;
  187. }
  188. static int dma_update_trans(struct zpci_dev *zdev, phys_addr_t pa,
  189. dma_addr_t dma_addr, size_t size, int flags)
  190. {
  191. int rc;
  192. rc = __dma_update_trans(zdev, pa, dma_addr, size, flags);
  193. if (rc)
  194. return rc;
  195. rc = __dma_purge_tlb(zdev, dma_addr, size, flags);
  196. if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))
  197. __dma_update_trans(zdev, pa, dma_addr, size, ZPCI_PTE_INVALID);
  198. return rc;
  199. }
  200. void dma_free_seg_table(unsigned long entry)
  201. {
  202. unsigned long *sto = get_rt_sto(entry);
  203. int sx;
  204. for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
  205. if (reg_entry_isvalid(sto[sx]))
  206. dma_free_page_table(get_st_pto(sto[sx]));
  207. dma_free_cpu_table(sto);
  208. }
  209. void dma_cleanup_tables(unsigned long *table)
  210. {
  211. int rtx;
  212. if (!table)
  213. return;
  214. for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
  215. if (reg_entry_isvalid(table[rtx]))
  216. dma_free_seg_table(table[rtx]);
  217. dma_free_cpu_table(table);
  218. }
  219. static unsigned long __dma_alloc_iommu(struct device *dev,
  220. unsigned long start, int size)
  221. {
  222. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  223. return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
  224. start, size, zdev->start_dma >> PAGE_SHIFT,
  225. dma_get_seg_boundary_nr_pages(dev, PAGE_SHIFT),
  226. 0);
  227. }
  228. static dma_addr_t dma_alloc_address(struct device *dev, int size)
  229. {
  230. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  231. unsigned long offset, flags;
  232. spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
  233. offset = __dma_alloc_iommu(dev, zdev->next_bit, size);
  234. if (offset == -1) {
  235. if (!s390_iommu_strict) {
  236. /* global flush before DMA addresses are reused */
  237. if (zpci_refresh_global(zdev))
  238. goto out_error;
  239. bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap,
  240. zdev->lazy_bitmap, zdev->iommu_pages);
  241. bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages);
  242. }
  243. /* wrap-around */
  244. offset = __dma_alloc_iommu(dev, 0, size);
  245. if (offset == -1)
  246. goto out_error;
  247. }
  248. zdev->next_bit = offset + size;
  249. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  250. return zdev->start_dma + offset * PAGE_SIZE;
  251. out_error:
  252. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  253. return DMA_MAPPING_ERROR;
  254. }
  255. static void dma_free_address(struct device *dev, dma_addr_t dma_addr, int size)
  256. {
  257. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  258. unsigned long flags, offset;
  259. offset = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
  260. spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
  261. if (!zdev->iommu_bitmap)
  262. goto out;
  263. if (s390_iommu_strict)
  264. bitmap_clear(zdev->iommu_bitmap, offset, size);
  265. else
  266. bitmap_set(zdev->lazy_bitmap, offset, size);
  267. out:
  268. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  269. }
  270. static inline void zpci_err_dma(unsigned long rc, unsigned long addr)
  271. {
  272. struct {
  273. unsigned long rc;
  274. unsigned long addr;
  275. } __packed data = {rc, addr};
  276. zpci_err_hex(&data, sizeof(data));
  277. }
  278. static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
  279. unsigned long offset, size_t size,
  280. enum dma_data_direction direction,
  281. unsigned long attrs)
  282. {
  283. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  284. unsigned long pa = page_to_phys(page) + offset;
  285. int flags = ZPCI_PTE_VALID;
  286. unsigned long nr_pages;
  287. dma_addr_t dma_addr;
  288. int ret;
  289. /* This rounds up number of pages based on size and offset */
  290. nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
  291. dma_addr = dma_alloc_address(dev, nr_pages);
  292. if (dma_addr == DMA_MAPPING_ERROR) {
  293. ret = -ENOSPC;
  294. goto out_err;
  295. }
  296. /* Use rounded up size */
  297. size = nr_pages * PAGE_SIZE;
  298. if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
  299. flags |= ZPCI_TABLE_PROTECTED;
  300. ret = dma_update_trans(zdev, pa, dma_addr, size, flags);
  301. if (ret)
  302. goto out_free;
  303. atomic64_add(nr_pages, &zdev->mapped_pages);
  304. return dma_addr + (offset & ~PAGE_MASK);
  305. out_free:
  306. dma_free_address(dev, dma_addr, nr_pages);
  307. out_err:
  308. zpci_err("map error:\n");
  309. zpci_err_dma(ret, pa);
  310. return DMA_MAPPING_ERROR;
  311. }
  312. static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
  313. size_t size, enum dma_data_direction direction,
  314. unsigned long attrs)
  315. {
  316. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  317. int npages, ret;
  318. npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  319. dma_addr = dma_addr & PAGE_MASK;
  320. ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
  321. ZPCI_PTE_INVALID);
  322. if (ret) {
  323. zpci_err("unmap error:\n");
  324. zpci_err_dma(ret, dma_addr);
  325. return;
  326. }
  327. atomic64_add(npages, &zdev->unmapped_pages);
  328. dma_free_address(dev, dma_addr, npages);
  329. }
  330. static void *s390_dma_alloc(struct device *dev, size_t size,
  331. dma_addr_t *dma_handle, gfp_t flag,
  332. unsigned long attrs)
  333. {
  334. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  335. struct page *page;
  336. phys_addr_t pa;
  337. dma_addr_t map;
  338. size = PAGE_ALIGN(size);
  339. page = alloc_pages(flag | __GFP_ZERO, get_order(size));
  340. if (!page)
  341. return NULL;
  342. pa = page_to_phys(page);
  343. map = s390_dma_map_pages(dev, page, 0, size, DMA_BIDIRECTIONAL, 0);
  344. if (dma_mapping_error(dev, map)) {
  345. __free_pages(page, get_order(size));
  346. return NULL;
  347. }
  348. atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages);
  349. if (dma_handle)
  350. *dma_handle = map;
  351. return phys_to_virt(pa);
  352. }
  353. static void s390_dma_free(struct device *dev, size_t size,
  354. void *vaddr, dma_addr_t dma_handle,
  355. unsigned long attrs)
  356. {
  357. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  358. size = PAGE_ALIGN(size);
  359. atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages);
  360. s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, 0);
  361. free_pages((unsigned long)vaddr, get_order(size));
  362. }
  363. /* Map a segment into a contiguous dma address area */
  364. static int __s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
  365. size_t size, dma_addr_t *handle,
  366. enum dma_data_direction dir)
  367. {
  368. unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  369. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  370. dma_addr_t dma_addr_base, dma_addr;
  371. int flags = ZPCI_PTE_VALID;
  372. struct scatterlist *s;
  373. phys_addr_t pa = 0;
  374. int ret;
  375. dma_addr_base = dma_alloc_address(dev, nr_pages);
  376. if (dma_addr_base == DMA_MAPPING_ERROR)
  377. return -ENOMEM;
  378. dma_addr = dma_addr_base;
  379. if (dir == DMA_NONE || dir == DMA_TO_DEVICE)
  380. flags |= ZPCI_TABLE_PROTECTED;
  381. for (s = sg; dma_addr < dma_addr_base + size; s = sg_next(s)) {
  382. pa = page_to_phys(sg_page(s));
  383. ret = __dma_update_trans(zdev, pa, dma_addr,
  384. s->offset + s->length, flags);
  385. if (ret)
  386. goto unmap;
  387. dma_addr += s->offset + s->length;
  388. }
  389. ret = __dma_purge_tlb(zdev, dma_addr_base, size, flags);
  390. if (ret)
  391. goto unmap;
  392. *handle = dma_addr_base;
  393. atomic64_add(nr_pages, &zdev->mapped_pages);
  394. return ret;
  395. unmap:
  396. dma_update_trans(zdev, 0, dma_addr_base, dma_addr - dma_addr_base,
  397. ZPCI_PTE_INVALID);
  398. dma_free_address(dev, dma_addr_base, nr_pages);
  399. zpci_err("map error:\n");
  400. zpci_err_dma(ret, pa);
  401. return ret;
  402. }
  403. static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
  404. int nr_elements, enum dma_data_direction dir,
  405. unsigned long attrs)
  406. {
  407. struct scatterlist *s = sg, *start = sg, *dma = sg;
  408. unsigned int max = dma_get_max_seg_size(dev);
  409. unsigned int size = s->offset + s->length;
  410. unsigned int offset = s->offset;
  411. int count = 0, i, ret;
  412. for (i = 1; i < nr_elements; i++) {
  413. s = sg_next(s);
  414. s->dma_length = 0;
  415. if (s->offset || (size & ~PAGE_MASK) ||
  416. size + s->length > max) {
  417. ret = __s390_dma_map_sg(dev, start, size,
  418. &dma->dma_address, dir);
  419. if (ret)
  420. goto unmap;
  421. dma->dma_address += offset;
  422. dma->dma_length = size - offset;
  423. size = offset = s->offset;
  424. start = s;
  425. dma = sg_next(dma);
  426. count++;
  427. }
  428. size += s->length;
  429. }
  430. ret = __s390_dma_map_sg(dev, start, size, &dma->dma_address, dir);
  431. if (ret)
  432. goto unmap;
  433. dma->dma_address += offset;
  434. dma->dma_length = size - offset;
  435. return count + 1;
  436. unmap:
  437. for_each_sg(sg, s, count, i)
  438. s390_dma_unmap_pages(dev, sg_dma_address(s), sg_dma_len(s),
  439. dir, attrs);
  440. return ret;
  441. }
  442. static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  443. int nr_elements, enum dma_data_direction dir,
  444. unsigned long attrs)
  445. {
  446. struct scatterlist *s;
  447. int i;
  448. for_each_sg(sg, s, nr_elements, i) {
  449. if (s->dma_length)
  450. s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
  451. dir, attrs);
  452. s->dma_address = 0;
  453. s->dma_length = 0;
  454. }
  455. }
  456. static unsigned long *bitmap_vzalloc(size_t bits, gfp_t flags)
  457. {
  458. size_t n = BITS_TO_LONGS(bits);
  459. size_t bytes;
  460. if (unlikely(check_mul_overflow(n, sizeof(unsigned long), &bytes)))
  461. return NULL;
  462. return vzalloc(bytes);
  463. }
  464. int zpci_dma_init_device(struct zpci_dev *zdev)
  465. {
  466. int rc;
  467. /*
  468. * At this point, if the device is part of an IOMMU domain, this would
  469. * be a strong hint towards a bug in the IOMMU API (common) code and/or
  470. * simultaneous access via IOMMU and DMA API. So let's issue a warning.
  471. */
  472. WARN_ON(zdev->s390_domain);
  473. spin_lock_init(&zdev->iommu_bitmap_lock);
  474. spin_lock_init(&zdev->dma_table_lock);
  475. zdev->dma_table = dma_alloc_cpu_table();
  476. if (!zdev->dma_table) {
  477. rc = -ENOMEM;
  478. goto out;
  479. }
  480. /*
  481. * Restrict the iommu bitmap size to the minimum of the following:
  482. * - s390_iommu_aperture which defaults to high_memory
  483. * - 3-level pagetable address limit minus start_dma offset
  484. * - DMA address range allowed by the hardware (clp query pci fn)
  485. *
  486. * Also set zdev->end_dma to the actual end address of the usable
  487. * range, instead of the theoretical maximum as reported by hardware.
  488. *
  489. * This limits the number of concurrently usable DMA mappings since
  490. * for each DMA mapped memory address we need a DMA address including
  491. * extra DMA addresses for multiple mappings of the same memory address.
  492. */
  493. zdev->start_dma = PAGE_ALIGN(zdev->start_dma);
  494. zdev->iommu_size = min3(s390_iommu_aperture,
  495. ZPCI_TABLE_SIZE_RT - zdev->start_dma,
  496. zdev->end_dma - zdev->start_dma + 1);
  497. zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1;
  498. zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
  499. zdev->iommu_bitmap = bitmap_vzalloc(zdev->iommu_pages, GFP_KERNEL);
  500. if (!zdev->iommu_bitmap) {
  501. rc = -ENOMEM;
  502. goto free_dma_table;
  503. }
  504. if (!s390_iommu_strict) {
  505. zdev->lazy_bitmap = bitmap_vzalloc(zdev->iommu_pages, GFP_KERNEL);
  506. if (!zdev->lazy_bitmap) {
  507. rc = -ENOMEM;
  508. goto free_bitmap;
  509. }
  510. }
  511. if (zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
  512. virt_to_phys(zdev->dma_table))) {
  513. rc = -EIO;
  514. goto free_bitmap;
  515. }
  516. return 0;
  517. free_bitmap:
  518. vfree(zdev->iommu_bitmap);
  519. zdev->iommu_bitmap = NULL;
  520. vfree(zdev->lazy_bitmap);
  521. zdev->lazy_bitmap = NULL;
  522. free_dma_table:
  523. dma_free_cpu_table(zdev->dma_table);
  524. zdev->dma_table = NULL;
  525. out:
  526. return rc;
  527. }
  528. int zpci_dma_exit_device(struct zpci_dev *zdev)
  529. {
  530. int cc = 0;
  531. /*
  532. * At this point, if the device is part of an IOMMU domain, this would
  533. * be a strong hint towards a bug in the IOMMU API (common) code and/or
  534. * simultaneous access via IOMMU and DMA API. So let's issue a warning.
  535. */
  536. WARN_ON(zdev->s390_domain);
  537. if (zdev_enabled(zdev))
  538. cc = zpci_unregister_ioat(zdev, 0);
  539. /*
  540. * cc == 3 indicates the function is gone already. This can happen
  541. * if the function was deconfigured/disabled suddenly and we have not
  542. * received a new handle yet.
  543. */
  544. if (cc && cc != 3)
  545. return -EIO;
  546. dma_cleanup_tables(zdev->dma_table);
  547. zdev->dma_table = NULL;
  548. vfree(zdev->iommu_bitmap);
  549. zdev->iommu_bitmap = NULL;
  550. vfree(zdev->lazy_bitmap);
  551. zdev->lazy_bitmap = NULL;
  552. zdev->next_bit = 0;
  553. return 0;
  554. }
  555. static int __init dma_alloc_cpu_table_caches(void)
  556. {
  557. dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
  558. ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
  559. 0, NULL);
  560. if (!dma_region_table_cache)
  561. return -ENOMEM;
  562. dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
  563. ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
  564. 0, NULL);
  565. if (!dma_page_table_cache) {
  566. kmem_cache_destroy(dma_region_table_cache);
  567. return -ENOMEM;
  568. }
  569. return 0;
  570. }
  571. int __init zpci_dma_init(void)
  572. {
  573. s390_iommu_aperture = (u64)virt_to_phys(high_memory);
  574. if (!s390_iommu_aperture_factor)
  575. s390_iommu_aperture = ULONG_MAX;
  576. else
  577. s390_iommu_aperture *= s390_iommu_aperture_factor;
  578. return dma_alloc_cpu_table_caches();
  579. }
  580. void zpci_dma_exit(void)
  581. {
  582. kmem_cache_destroy(dma_page_table_cache);
  583. kmem_cache_destroy(dma_region_table_cache);
  584. }
  585. const struct dma_map_ops s390_pci_dma_ops = {
  586. .alloc = s390_dma_alloc,
  587. .free = s390_dma_free,
  588. .map_sg = s390_dma_map_sg,
  589. .unmap_sg = s390_dma_unmap_sg,
  590. .map_page = s390_dma_map_pages,
  591. .unmap_page = s390_dma_unmap_pages,
  592. .mmap = dma_common_mmap,
  593. .get_sgtable = dma_common_get_sgtable,
  594. .alloc_pages = dma_common_alloc_pages,
  595. .free_pages = dma_common_free_pages,
  596. /* dma_supported is unconditionally true without a callback */
  597. };
  598. EXPORT_SYMBOL_GPL(s390_pci_dma_ops);
  599. static int __init s390_iommu_setup(char *str)
  600. {
  601. if (!strcmp(str, "strict"))
  602. s390_iommu_strict = 1;
  603. return 1;
  604. }
  605. __setup("s390_iommu=", s390_iommu_setup);
  606. static int __init s390_iommu_aperture_setup(char *str)
  607. {
  608. if (kstrtou32(str, 10, &s390_iommu_aperture_factor))
  609. s390_iommu_aperture_factor = 1;
  610. return 1;
  611. }
  612. __setup("s390_iommu_aperture=", s390_iommu_aperture_setup);