pgtable.h 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. /*
  3. * S390 version
  4. * Copyright IBM Corp. 1999, 2000
  5. * Author(s): Hartmut Penner ([email protected])
  6. * Ulrich Weigand ([email protected])
  7. * Martin Schwidefsky ([email protected])
  8. *
  9. * Derived from "include/asm-i386/pgtable.h"
  10. */
  11. #ifndef _ASM_S390_PGTABLE_H
  12. #define _ASM_S390_PGTABLE_H
  13. #include <linux/sched.h>
  14. #include <linux/mm_types.h>
  15. #include <linux/page-flags.h>
  16. #include <linux/radix-tree.h>
  17. #include <linux/atomic.h>
  18. #include <asm/sections.h>
  19. #include <asm/bug.h>
  20. #include <asm/page.h>
  21. #include <asm/uv.h>
  22. extern pgd_t swapper_pg_dir[];
  23. extern void paging_init(void);
  24. extern unsigned long s390_invalid_asce;
  25. enum {
  26. PG_DIRECT_MAP_4K = 0,
  27. PG_DIRECT_MAP_1M,
  28. PG_DIRECT_MAP_2G,
  29. PG_DIRECT_MAP_MAX
  30. };
  31. extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  32. static inline void update_page_count(int level, long count)
  33. {
  34. if (IS_ENABLED(CONFIG_PROC_FS))
  35. atomic_long_add(count, &direct_pages_count[level]);
  36. }
  37. struct seq_file;
  38. void arch_report_meminfo(struct seq_file *m);
  39. /*
  40. * The S390 doesn't have any external MMU info: the kernel page
  41. * tables contain all the necessary information.
  42. */
  43. #define update_mmu_cache(vma, address, ptep) do { } while (0)
  44. #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  45. /*
  46. * ZERO_PAGE is a global shared page that is always zero; used
  47. * for zero-mapped memory areas etc..
  48. */
  49. extern unsigned long empty_zero_page;
  50. extern unsigned long zero_page_mask;
  51. #define ZERO_PAGE(vaddr) \
  52. (virt_to_page((void *)(empty_zero_page + \
  53. (((unsigned long)(vaddr)) &zero_page_mask))))
  54. #define __HAVE_COLOR_ZERO_PAGE
  55. /* TODO: s390 cannot support io_remap_pfn_range... */
  56. #define pte_ERROR(e) \
  57. pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
  58. #define pmd_ERROR(e) \
  59. pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
  60. #define pud_ERROR(e) \
  61. pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
  62. #define p4d_ERROR(e) \
  63. pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
  64. #define pgd_ERROR(e) \
  65. pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
  66. /*
  67. * The vmalloc and module area will always be on the topmost area of the
  68. * kernel mapping. 512GB are reserved for vmalloc by default.
  69. * At the top of the vmalloc area a 2GB area is reserved where modules
  70. * will reside. That makes sure that inter module branches always
  71. * happen without trampolines and in addition the placement within a
  72. * 2GB frame is branch prediction unit friendly.
  73. */
  74. extern unsigned long __bootdata_preserved(VMALLOC_START);
  75. extern unsigned long __bootdata_preserved(VMALLOC_END);
  76. #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
  77. extern struct page *__bootdata_preserved(vmemmap);
  78. extern unsigned long __bootdata_preserved(vmemmap_size);
  79. #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  80. extern unsigned long __bootdata_preserved(MODULES_VADDR);
  81. extern unsigned long __bootdata_preserved(MODULES_END);
  82. #define MODULES_VADDR MODULES_VADDR
  83. #define MODULES_END MODULES_END
  84. #define MODULES_LEN (1UL << 31)
  85. static inline int is_module_addr(void *addr)
  86. {
  87. BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
  88. if (addr < (void *)MODULES_VADDR)
  89. return 0;
  90. if (addr > (void *)MODULES_END)
  91. return 0;
  92. return 1;
  93. }
  94. /*
  95. * A 64 bit pagetable entry of S390 has following format:
  96. * | PFRA |0IPC| OS |
  97. * 0000000000111111111122222222223333333333444444444455555555556666
  98. * 0123456789012345678901234567890123456789012345678901234567890123
  99. *
  100. * I Page-Invalid Bit: Page is not available for address-translation
  101. * P Page-Protection Bit: Store access not possible for page
  102. * C Change-bit override: HW is not required to set change bit
  103. *
  104. * A 64 bit segmenttable entry of S390 has following format:
  105. * | P-table origin | TT
  106. * 0000000000111111111122222222223333333333444444444455555555556666
  107. * 0123456789012345678901234567890123456789012345678901234567890123
  108. *
  109. * I Segment-Invalid Bit: Segment is not available for address-translation
  110. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  111. * P Page-Protection Bit: Store access not possible for page
  112. * TT Type 00
  113. *
  114. * A 64 bit region table entry of S390 has following format:
  115. * | S-table origin | TF TTTL
  116. * 0000000000111111111122222222223333333333444444444455555555556666
  117. * 0123456789012345678901234567890123456789012345678901234567890123
  118. *
  119. * I Segment-Invalid Bit: Segment is not available for address-translation
  120. * TT Type 01
  121. * TF
  122. * TL Table length
  123. *
  124. * The 64 bit regiontable origin of S390 has following format:
  125. * | region table origon | DTTL
  126. * 0000000000111111111122222222223333333333444444444455555555556666
  127. * 0123456789012345678901234567890123456789012345678901234567890123
  128. *
  129. * X Space-Switch event:
  130. * G Segment-Invalid Bit:
  131. * P Private-Space Bit:
  132. * S Storage-Alteration:
  133. * R Real space
  134. * TL Table-Length:
  135. *
  136. * A storage key has the following format:
  137. * | ACC |F|R|C|0|
  138. * 0 3 4 5 6 7
  139. * ACC: access key
  140. * F : fetch protection bit
  141. * R : referenced bit
  142. * C : changed bit
  143. */
  144. /* Hardware bits in the page table entry */
  145. #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
  146. #define _PAGE_PROTECT 0x200 /* HW read-only bit */
  147. #define _PAGE_INVALID 0x400 /* HW invalid bit */
  148. #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
  149. /* Software bits in the page table entry */
  150. #define _PAGE_PRESENT 0x001 /* SW pte present bit */
  151. #define _PAGE_YOUNG 0x004 /* SW pte young bit */
  152. #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
  153. #define _PAGE_READ 0x010 /* SW pte read bit */
  154. #define _PAGE_WRITE 0x020 /* SW pte write bit */
  155. #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
  156. #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
  157. #ifdef CONFIG_MEM_SOFT_DIRTY
  158. #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
  159. #else
  160. #define _PAGE_SOFT_DIRTY 0x000
  161. #endif
  162. #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
  163. /* Set of bits not changed in pte_modify */
  164. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
  165. _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
  166. /*
  167. * handle_pte_fault uses pte_present and pte_none to find out the pte type
  168. * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
  169. * distinguish present from not-present ptes. It is changed only with the page
  170. * table lock held.
  171. *
  172. * The following table gives the different possible bit combinations for
  173. * the pte hardware and software bits in the last 12 bits of a pte
  174. * (. unassigned bit, x don't care, t swap type):
  175. *
  176. * 842100000000
  177. * 000084210000
  178. * 000000008421
  179. * .IR.uswrdy.p
  180. * empty .10.00000000
  181. * swap .11..ttttt.0
  182. * prot-none, clean, old .11.xx0000.1
  183. * prot-none, clean, young .11.xx0001.1
  184. * prot-none, dirty, old .11.xx0010.1
  185. * prot-none, dirty, young .11.xx0011.1
  186. * read-only, clean, old .11.xx0100.1
  187. * read-only, clean, young .01.xx0101.1
  188. * read-only, dirty, old .11.xx0110.1
  189. * read-only, dirty, young .01.xx0111.1
  190. * read-write, clean, old .11.xx1100.1
  191. * read-write, clean, young .01.xx1101.1
  192. * read-write, dirty, old .10.xx1110.1
  193. * read-write, dirty, young .00.xx1111.1
  194. * HW-bits: R read-only, I invalid
  195. * SW-bits: p present, y young, d dirty, r read, w write, s special,
  196. * u unused, l large
  197. *
  198. * pte_none is true for the bit pattern .10.00000000, pte == 0x400
  199. * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
  200. * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
  201. */
  202. /* Bits in the segment/region table address-space-control-element */
  203. #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
  204. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  205. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  206. #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
  207. #define _ASCE_REAL_SPACE 0x20 /* real space control */
  208. #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
  209. #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
  210. #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
  211. #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
  212. #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
  213. #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
  214. /* Bits in the region table entry */
  215. #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
  216. #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
  217. #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
  218. #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
  219. #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
  220. #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
  221. #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
  222. #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
  223. #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
  224. #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
  225. #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
  226. #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
  227. #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
  228. #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
  229. #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
  230. #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
  231. #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
  232. #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
  233. #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
  234. #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
  235. #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
  236. #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
  237. #ifdef CONFIG_MEM_SOFT_DIRTY
  238. #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
  239. #else
  240. #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
  241. #endif
  242. #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
  243. /* Bits in the segment table entry */
  244. #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
  245. #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
  246. #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
  247. #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
  248. #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
  249. #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
  250. #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
  251. #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
  252. #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
  253. #define _SEGMENT_ENTRY (0)
  254. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
  255. #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
  256. #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
  257. #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
  258. #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
  259. #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
  260. #ifdef CONFIG_MEM_SOFT_DIRTY
  261. #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
  262. #else
  263. #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
  264. #endif
  265. #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
  266. #define _PAGE_ENTRIES 256 /* number of page table entries */
  267. #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
  268. #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
  269. #define _REGION1_SHIFT 53
  270. #define _REGION2_SHIFT 42
  271. #define _REGION3_SHIFT 31
  272. #define _SEGMENT_SHIFT 20
  273. #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
  274. #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
  275. #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
  276. #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
  277. #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
  278. #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
  279. #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
  280. #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
  281. #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
  282. #define _REGION1_MASK (~(_REGION1_SIZE - 1))
  283. #define _REGION2_MASK (~(_REGION2_SIZE - 1))
  284. #define _REGION3_MASK (~(_REGION3_SIZE - 1))
  285. #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
  286. #define PMD_SHIFT _SEGMENT_SHIFT
  287. #define PUD_SHIFT _REGION3_SHIFT
  288. #define P4D_SHIFT _REGION2_SHIFT
  289. #define PGDIR_SHIFT _REGION1_SHIFT
  290. #define PMD_SIZE _SEGMENT_SIZE
  291. #define PUD_SIZE _REGION3_SIZE
  292. #define P4D_SIZE _REGION2_SIZE
  293. #define PGDIR_SIZE _REGION1_SIZE
  294. #define PMD_MASK _SEGMENT_MASK
  295. #define PUD_MASK _REGION3_MASK
  296. #define P4D_MASK _REGION2_MASK
  297. #define PGDIR_MASK _REGION1_MASK
  298. #define PTRS_PER_PTE _PAGE_ENTRIES
  299. #define PTRS_PER_PMD _CRST_ENTRIES
  300. #define PTRS_PER_PUD _CRST_ENTRIES
  301. #define PTRS_PER_P4D _CRST_ENTRIES
  302. #define PTRS_PER_PGD _CRST_ENTRIES
  303. /*
  304. * Segment table and region3 table entry encoding
  305. * (R = read-only, I = invalid, y = young bit):
  306. * dy..R...I...wr
  307. * prot-none, clean, old 00..1...1...00
  308. * prot-none, clean, young 01..1...1...00
  309. * prot-none, dirty, old 10..1...1...00
  310. * prot-none, dirty, young 11..1...1...00
  311. * read-only, clean, old 00..1...1...01
  312. * read-only, clean, young 01..1...0...01
  313. * read-only, dirty, old 10..1...1...01
  314. * read-only, dirty, young 11..1...0...01
  315. * read-write, clean, old 00..1...1...11
  316. * read-write, clean, young 01..1...0...11
  317. * read-write, dirty, old 10..0...1...11
  318. * read-write, dirty, young 11..0...0...11
  319. * The segment table origin is used to distinguish empty (origin==0) from
  320. * read-write, old segment table entries (origin!=0)
  321. * HW-bits: R read-only, I invalid
  322. * SW-bits: y young, d dirty, r read, w write
  323. */
  324. /* Page status table bits for virtualization */
  325. #define PGSTE_ACC_BITS 0xf000000000000000UL
  326. #define PGSTE_FP_BIT 0x0800000000000000UL
  327. #define PGSTE_PCL_BIT 0x0080000000000000UL
  328. #define PGSTE_HR_BIT 0x0040000000000000UL
  329. #define PGSTE_HC_BIT 0x0020000000000000UL
  330. #define PGSTE_GR_BIT 0x0004000000000000UL
  331. #define PGSTE_GC_BIT 0x0002000000000000UL
  332. #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
  333. #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
  334. #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
  335. /* Guest Page State used for virtualization */
  336. #define _PGSTE_GPS_ZERO 0x0000000080000000UL
  337. #define _PGSTE_GPS_NODAT 0x0000000040000000UL
  338. #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
  339. #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
  340. #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
  341. #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
  342. #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
  343. /*
  344. * A user page table pointer has the space-switch-event bit, the
  345. * private-space-control bit and the storage-alteration-event-control
  346. * bit set. A kernel page table pointer doesn't need them.
  347. */
  348. #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
  349. _ASCE_ALT_EVENT)
  350. /*
  351. * Page protection definitions.
  352. */
  353. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
  354. #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
  355. _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
  356. #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
  357. _PAGE_INVALID | _PAGE_PROTECT)
  358. #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  359. _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
  360. #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  361. _PAGE_INVALID | _PAGE_PROTECT)
  362. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  363. _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
  364. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  365. _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
  366. #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
  367. _PAGE_PROTECT | _PAGE_NOEXEC)
  368. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  369. _PAGE_YOUNG | _PAGE_DIRTY)
  370. /*
  371. * On s390 the page table entry has an invalid bit and a read-only bit.
  372. * Read permission implies execute permission and write permission
  373. * implies read permission.
  374. */
  375. /*xwr*/
  376. /*
  377. * Segment entry (large page) protection definitions.
  378. */
  379. #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
  380. _SEGMENT_ENTRY_PROTECT)
  381. #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
  382. _SEGMENT_ENTRY_READ | \
  383. _SEGMENT_ENTRY_NOEXEC)
  384. #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
  385. _SEGMENT_ENTRY_READ)
  386. #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
  387. _SEGMENT_ENTRY_WRITE | \
  388. _SEGMENT_ENTRY_NOEXEC)
  389. #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
  390. _SEGMENT_ENTRY_WRITE)
  391. #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
  392. _SEGMENT_ENTRY_LARGE | \
  393. _SEGMENT_ENTRY_READ | \
  394. _SEGMENT_ENTRY_WRITE | \
  395. _SEGMENT_ENTRY_YOUNG | \
  396. _SEGMENT_ENTRY_DIRTY | \
  397. _SEGMENT_ENTRY_NOEXEC)
  398. #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
  399. _SEGMENT_ENTRY_LARGE | \
  400. _SEGMENT_ENTRY_READ | \
  401. _SEGMENT_ENTRY_YOUNG | \
  402. _SEGMENT_ENTRY_PROTECT | \
  403. _SEGMENT_ENTRY_NOEXEC)
  404. #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
  405. _SEGMENT_ENTRY_LARGE | \
  406. _SEGMENT_ENTRY_READ | \
  407. _SEGMENT_ENTRY_WRITE | \
  408. _SEGMENT_ENTRY_YOUNG | \
  409. _SEGMENT_ENTRY_DIRTY)
  410. /*
  411. * Region3 entry (large page) protection definitions.
  412. */
  413. #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
  414. _REGION3_ENTRY_LARGE | \
  415. _REGION3_ENTRY_READ | \
  416. _REGION3_ENTRY_WRITE | \
  417. _REGION3_ENTRY_YOUNG | \
  418. _REGION3_ENTRY_DIRTY | \
  419. _REGION_ENTRY_NOEXEC)
  420. #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
  421. _REGION3_ENTRY_LARGE | \
  422. _REGION3_ENTRY_READ | \
  423. _REGION3_ENTRY_YOUNG | \
  424. _REGION_ENTRY_PROTECT | \
  425. _REGION_ENTRY_NOEXEC)
  426. static inline bool mm_p4d_folded(struct mm_struct *mm)
  427. {
  428. return mm->context.asce_limit <= _REGION1_SIZE;
  429. }
  430. #define mm_p4d_folded(mm) mm_p4d_folded(mm)
  431. static inline bool mm_pud_folded(struct mm_struct *mm)
  432. {
  433. return mm->context.asce_limit <= _REGION2_SIZE;
  434. }
  435. #define mm_pud_folded(mm) mm_pud_folded(mm)
  436. static inline bool mm_pmd_folded(struct mm_struct *mm)
  437. {
  438. return mm->context.asce_limit <= _REGION3_SIZE;
  439. }
  440. #define mm_pmd_folded(mm) mm_pmd_folded(mm)
  441. static inline int mm_has_pgste(struct mm_struct *mm)
  442. {
  443. #ifdef CONFIG_PGSTE
  444. if (unlikely(mm->context.has_pgste))
  445. return 1;
  446. #endif
  447. return 0;
  448. }
  449. static inline int mm_is_protected(struct mm_struct *mm)
  450. {
  451. #ifdef CONFIG_PGSTE
  452. if (unlikely(atomic_read(&mm->context.protected_count)))
  453. return 1;
  454. #endif
  455. return 0;
  456. }
  457. static inline int mm_alloc_pgste(struct mm_struct *mm)
  458. {
  459. #ifdef CONFIG_PGSTE
  460. if (unlikely(mm->context.alloc_pgste))
  461. return 1;
  462. #endif
  463. return 0;
  464. }
  465. static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
  466. {
  467. return __pte(pte_val(pte) & ~pgprot_val(prot));
  468. }
  469. static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
  470. {
  471. return __pte(pte_val(pte) | pgprot_val(prot));
  472. }
  473. static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
  474. {
  475. return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
  476. }
  477. static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
  478. {
  479. return __pmd(pmd_val(pmd) | pgprot_val(prot));
  480. }
  481. static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
  482. {
  483. return __pud(pud_val(pud) & ~pgprot_val(prot));
  484. }
  485. static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
  486. {
  487. return __pud(pud_val(pud) | pgprot_val(prot));
  488. }
  489. /*
  490. * In the case that a guest uses storage keys
  491. * faults should no longer be backed by zero pages
  492. */
  493. #define mm_forbids_zeropage mm_has_pgste
  494. static inline int mm_uses_skeys(struct mm_struct *mm)
  495. {
  496. #ifdef CONFIG_PGSTE
  497. if (mm->context.uses_skeys)
  498. return 1;
  499. #endif
  500. return 0;
  501. }
  502. static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
  503. {
  504. union register_pair r1 = { .even = old, .odd = new, };
  505. unsigned long address = (unsigned long)ptr | 1;
  506. asm volatile(
  507. " csp %[r1],%[address]"
  508. : [r1] "+&d" (r1.pair), "+m" (*ptr)
  509. : [address] "d" (address)
  510. : "cc");
  511. }
  512. static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
  513. {
  514. union register_pair r1 = { .even = old, .odd = new, };
  515. unsigned long address = (unsigned long)ptr | 1;
  516. asm volatile(
  517. " cspg %[r1],%[address]"
  518. : [r1] "+&d" (r1.pair), "+m" (*ptr)
  519. : [address] "d" (address)
  520. : "cc");
  521. }
  522. #define CRDTE_DTT_PAGE 0x00UL
  523. #define CRDTE_DTT_SEGMENT 0x10UL
  524. #define CRDTE_DTT_REGION3 0x14UL
  525. #define CRDTE_DTT_REGION2 0x18UL
  526. #define CRDTE_DTT_REGION1 0x1cUL
  527. static inline void crdte(unsigned long old, unsigned long new,
  528. unsigned long *table, unsigned long dtt,
  529. unsigned long address, unsigned long asce)
  530. {
  531. union register_pair r1 = { .even = old, .odd = new, };
  532. union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
  533. asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
  534. : [r1] "+&d" (r1.pair)
  535. : [r2] "d" (r2.pair), [asce] "a" (asce)
  536. : "memory", "cc");
  537. }
  538. /*
  539. * pgd/p4d/pud/pmd/pte query functions
  540. */
  541. static inline int pgd_folded(pgd_t pgd)
  542. {
  543. return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
  544. }
  545. static inline int pgd_present(pgd_t pgd)
  546. {
  547. if (pgd_folded(pgd))
  548. return 1;
  549. return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
  550. }
  551. static inline int pgd_none(pgd_t pgd)
  552. {
  553. if (pgd_folded(pgd))
  554. return 0;
  555. return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
  556. }
  557. static inline int pgd_bad(pgd_t pgd)
  558. {
  559. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
  560. return 0;
  561. return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
  562. }
  563. static inline unsigned long pgd_pfn(pgd_t pgd)
  564. {
  565. unsigned long origin_mask;
  566. origin_mask = _REGION_ENTRY_ORIGIN;
  567. return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
  568. }
  569. static inline int p4d_folded(p4d_t p4d)
  570. {
  571. return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
  572. }
  573. static inline int p4d_present(p4d_t p4d)
  574. {
  575. if (p4d_folded(p4d))
  576. return 1;
  577. return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
  578. }
  579. static inline int p4d_none(p4d_t p4d)
  580. {
  581. if (p4d_folded(p4d))
  582. return 0;
  583. return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
  584. }
  585. static inline unsigned long p4d_pfn(p4d_t p4d)
  586. {
  587. unsigned long origin_mask;
  588. origin_mask = _REGION_ENTRY_ORIGIN;
  589. return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
  590. }
  591. static inline int pud_folded(pud_t pud)
  592. {
  593. return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
  594. }
  595. static inline int pud_present(pud_t pud)
  596. {
  597. if (pud_folded(pud))
  598. return 1;
  599. return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
  600. }
  601. static inline int pud_none(pud_t pud)
  602. {
  603. if (pud_folded(pud))
  604. return 0;
  605. return pud_val(pud) == _REGION3_ENTRY_EMPTY;
  606. }
  607. #define pud_leaf pud_large
  608. static inline int pud_large(pud_t pud)
  609. {
  610. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
  611. return 0;
  612. return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
  613. }
  614. #define pmd_leaf pmd_large
  615. static inline int pmd_large(pmd_t pmd)
  616. {
  617. return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
  618. }
  619. static inline int pmd_bad(pmd_t pmd)
  620. {
  621. if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
  622. return 1;
  623. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
  624. }
  625. static inline int pud_bad(pud_t pud)
  626. {
  627. unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
  628. if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
  629. return 1;
  630. if (type < _REGION_ENTRY_TYPE_R3)
  631. return 0;
  632. return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
  633. }
  634. static inline int p4d_bad(p4d_t p4d)
  635. {
  636. unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
  637. if (type > _REGION_ENTRY_TYPE_R2)
  638. return 1;
  639. if (type < _REGION_ENTRY_TYPE_R2)
  640. return 0;
  641. return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
  642. }
  643. static inline int pmd_present(pmd_t pmd)
  644. {
  645. return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
  646. }
  647. static inline int pmd_none(pmd_t pmd)
  648. {
  649. return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
  650. }
  651. #define pmd_write pmd_write
  652. static inline int pmd_write(pmd_t pmd)
  653. {
  654. return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
  655. }
  656. #define pud_write pud_write
  657. static inline int pud_write(pud_t pud)
  658. {
  659. return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
  660. }
  661. static inline int pmd_dirty(pmd_t pmd)
  662. {
  663. return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
  664. }
  665. #define pmd_young pmd_young
  666. static inline int pmd_young(pmd_t pmd)
  667. {
  668. return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
  669. }
  670. static inline int pte_present(pte_t pte)
  671. {
  672. /* Bit pattern: (pte & 0x001) == 0x001 */
  673. return (pte_val(pte) & _PAGE_PRESENT) != 0;
  674. }
  675. static inline int pte_none(pte_t pte)
  676. {
  677. /* Bit pattern: pte == 0x400 */
  678. return pte_val(pte) == _PAGE_INVALID;
  679. }
  680. static inline int pte_swap(pte_t pte)
  681. {
  682. /* Bit pattern: (pte & 0x201) == 0x200 */
  683. return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
  684. == _PAGE_PROTECT;
  685. }
  686. static inline int pte_special(pte_t pte)
  687. {
  688. return (pte_val(pte) & _PAGE_SPECIAL);
  689. }
  690. #define __HAVE_ARCH_PTE_SAME
  691. static inline int pte_same(pte_t a, pte_t b)
  692. {
  693. return pte_val(a) == pte_val(b);
  694. }
  695. #ifdef CONFIG_NUMA_BALANCING
  696. static inline int pte_protnone(pte_t pte)
  697. {
  698. return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
  699. }
  700. static inline int pmd_protnone(pmd_t pmd)
  701. {
  702. /* pmd_large(pmd) implies pmd_present(pmd) */
  703. return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
  704. }
  705. #endif
  706. #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
  707. static inline int pte_swp_exclusive(pte_t pte)
  708. {
  709. return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
  710. }
  711. static inline pte_t pte_swp_mkexclusive(pte_t pte)
  712. {
  713. return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
  714. }
  715. static inline pte_t pte_swp_clear_exclusive(pte_t pte)
  716. {
  717. return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
  718. }
  719. static inline int pte_soft_dirty(pte_t pte)
  720. {
  721. return pte_val(pte) & _PAGE_SOFT_DIRTY;
  722. }
  723. #define pte_swp_soft_dirty pte_soft_dirty
  724. static inline pte_t pte_mksoft_dirty(pte_t pte)
  725. {
  726. return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
  727. }
  728. #define pte_swp_mksoft_dirty pte_mksoft_dirty
  729. static inline pte_t pte_clear_soft_dirty(pte_t pte)
  730. {
  731. return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
  732. }
  733. #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
  734. static inline int pmd_soft_dirty(pmd_t pmd)
  735. {
  736. return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
  737. }
  738. static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
  739. {
  740. return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
  741. }
  742. static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
  743. {
  744. return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
  745. }
  746. /*
  747. * query functions pte_write/pte_dirty/pte_young only work if
  748. * pte_present() is true. Undefined behaviour if not..
  749. */
  750. static inline int pte_write(pte_t pte)
  751. {
  752. return (pte_val(pte) & _PAGE_WRITE) != 0;
  753. }
  754. static inline int pte_dirty(pte_t pte)
  755. {
  756. return (pte_val(pte) & _PAGE_DIRTY) != 0;
  757. }
  758. static inline int pte_young(pte_t pte)
  759. {
  760. return (pte_val(pte) & _PAGE_YOUNG) != 0;
  761. }
  762. #define __HAVE_ARCH_PTE_UNUSED
  763. static inline int pte_unused(pte_t pte)
  764. {
  765. return pte_val(pte) & _PAGE_UNUSED;
  766. }
  767. /*
  768. * Extract the pgprot value from the given pte while at the same time making it
  769. * usable for kernel address space mappings where fault driven dirty and
  770. * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
  771. * must not be set.
  772. */
  773. static inline pgprot_t pte_pgprot(pte_t pte)
  774. {
  775. unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
  776. if (pte_write(pte))
  777. pte_flags |= pgprot_val(PAGE_KERNEL);
  778. else
  779. pte_flags |= pgprot_val(PAGE_KERNEL_RO);
  780. pte_flags |= pte_val(pte) & mio_wb_bit_mask;
  781. return __pgprot(pte_flags);
  782. }
  783. /*
  784. * pgd/pmd/pte modification functions
  785. */
  786. static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
  787. {
  788. WRITE_ONCE(*pgdp, pgd);
  789. }
  790. static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
  791. {
  792. WRITE_ONCE(*p4dp, p4d);
  793. }
  794. static inline void set_pud(pud_t *pudp, pud_t pud)
  795. {
  796. WRITE_ONCE(*pudp, pud);
  797. }
  798. static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
  799. {
  800. WRITE_ONCE(*pmdp, pmd);
  801. }
  802. static inline void set_pte(pte_t *ptep, pte_t pte)
  803. {
  804. WRITE_ONCE(*ptep, pte);
  805. }
  806. static inline void pgd_clear(pgd_t *pgd)
  807. {
  808. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
  809. set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
  810. }
  811. static inline void p4d_clear(p4d_t *p4d)
  812. {
  813. if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  814. set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
  815. }
  816. static inline void pud_clear(pud_t *pud)
  817. {
  818. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  819. set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
  820. }
  821. static inline void pmd_clear(pmd_t *pmdp)
  822. {
  823. set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
  824. }
  825. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  826. {
  827. set_pte(ptep, __pte(_PAGE_INVALID));
  828. }
  829. /*
  830. * The following pte modification functions only work if
  831. * pte_present() is true. Undefined behaviour if not..
  832. */
  833. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  834. {
  835. pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
  836. pte = set_pte_bit(pte, newprot);
  837. /*
  838. * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
  839. * has the invalid bit set, clear it again for readable, young pages
  840. */
  841. if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
  842. pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
  843. /*
  844. * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
  845. * protection bit set, clear it again for writable, dirty pages
  846. */
  847. if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
  848. pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
  849. return pte;
  850. }
  851. static inline pte_t pte_wrprotect(pte_t pte)
  852. {
  853. pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
  854. return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
  855. }
  856. static inline pte_t pte_mkwrite(pte_t pte)
  857. {
  858. pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
  859. if (pte_val(pte) & _PAGE_DIRTY)
  860. pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
  861. return pte;
  862. }
  863. static inline pte_t pte_mkclean(pte_t pte)
  864. {
  865. pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
  866. return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
  867. }
  868. static inline pte_t pte_mkdirty(pte_t pte)
  869. {
  870. pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
  871. if (pte_val(pte) & _PAGE_WRITE)
  872. pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
  873. return pte;
  874. }
  875. static inline pte_t pte_mkold(pte_t pte)
  876. {
  877. pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
  878. return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
  879. }
  880. static inline pte_t pte_mkyoung(pte_t pte)
  881. {
  882. pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
  883. if (pte_val(pte) & _PAGE_READ)
  884. pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
  885. return pte;
  886. }
  887. static inline pte_t pte_mkspecial(pte_t pte)
  888. {
  889. return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
  890. }
  891. #ifdef CONFIG_HUGETLB_PAGE
  892. static inline pte_t pte_mkhuge(pte_t pte)
  893. {
  894. return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
  895. }
  896. #endif
  897. #define IPTE_GLOBAL 0
  898. #define IPTE_LOCAL 1
  899. #define IPTE_NODAT 0x400
  900. #define IPTE_GUEST_ASCE 0x800
  901. static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
  902. unsigned long opt, unsigned long asce,
  903. int local)
  904. {
  905. unsigned long pto = __pa(ptep);
  906. if (__builtin_constant_p(opt) && opt == 0) {
  907. /* Invalidation + TLB flush for the pte */
  908. asm volatile(
  909. " ipte %[r1],%[r2],0,%[m4]"
  910. : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
  911. [m4] "i" (local));
  912. return;
  913. }
  914. /* Invalidate ptes with options + TLB flush of the ptes */
  915. opt = opt | (asce & _ASCE_ORIGIN);
  916. asm volatile(
  917. " ipte %[r1],%[r2],%[r3],%[m4]"
  918. : [r2] "+a" (address), [r3] "+a" (opt)
  919. : [r1] "a" (pto), [m4] "i" (local) : "memory");
  920. }
  921. static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
  922. pte_t *ptep, int local)
  923. {
  924. unsigned long pto = __pa(ptep);
  925. /* Invalidate a range of ptes + TLB flush of the ptes */
  926. do {
  927. asm volatile(
  928. " ipte %[r1],%[r2],%[r3],%[m4]"
  929. : [r2] "+a" (address), [r3] "+a" (nr)
  930. : [r1] "a" (pto), [m4] "i" (local) : "memory");
  931. } while (nr != 255);
  932. }
  933. /*
  934. * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
  935. * both clear the TLB for the unmapped pte. The reason is that
  936. * ptep_get_and_clear is used in common code (e.g. change_pte_range)
  937. * to modify an active pte. The sequence is
  938. * 1) ptep_get_and_clear
  939. * 2) set_pte_at
  940. * 3) flush_tlb_range
  941. * On s390 the tlb needs to get flushed with the modification of the pte
  942. * if the pte is active. The only way how this can be implemented is to
  943. * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
  944. * is a nop.
  945. */
  946. pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
  947. pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
  948. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  949. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  950. unsigned long addr, pte_t *ptep)
  951. {
  952. pte_t pte = *ptep;
  953. pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
  954. return pte_young(pte);
  955. }
  956. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  957. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  958. unsigned long address, pte_t *ptep)
  959. {
  960. return ptep_test_and_clear_young(vma, address, ptep);
  961. }
  962. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  963. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  964. unsigned long addr, pte_t *ptep)
  965. {
  966. pte_t res;
  967. res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
  968. /* At this point the reference through the mapping is still present */
  969. if (mm_is_protected(mm) && pte_present(res))
  970. uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
  971. return res;
  972. }
  973. #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  974. pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
  975. void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
  976. pte_t *, pte_t, pte_t);
  977. #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
  978. static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
  979. unsigned long addr, pte_t *ptep)
  980. {
  981. pte_t res;
  982. res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
  983. /* At this point the reference through the mapping is still present */
  984. if (mm_is_protected(vma->vm_mm) && pte_present(res))
  985. uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
  986. return res;
  987. }
  988. /*
  989. * The batched pte unmap code uses ptep_get_and_clear_full to clear the
  990. * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
  991. * tlbs of an mm if it can guarantee that the ptes of the mm_struct
  992. * cannot be accessed while the batched unmap is running. In this case
  993. * full==1 and a simple pte_clear is enough. See tlb.h.
  994. */
  995. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  996. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  997. unsigned long addr,
  998. pte_t *ptep, int full)
  999. {
  1000. pte_t res;
  1001. if (full) {
  1002. res = *ptep;
  1003. set_pte(ptep, __pte(_PAGE_INVALID));
  1004. } else {
  1005. res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
  1006. }
  1007. /* Nothing to do */
  1008. if (!mm_is_protected(mm) || !pte_present(res))
  1009. return res;
  1010. /*
  1011. * At this point the reference through the mapping is still present.
  1012. * The notifier should have destroyed all protected vCPUs at this
  1013. * point, so the destroy should be successful.
  1014. */
  1015. if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
  1016. return res;
  1017. /*
  1018. * If something went wrong and the page could not be destroyed, or
  1019. * if this is not a mm teardown, the slower export is used as
  1020. * fallback instead.
  1021. */
  1022. uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
  1023. return res;
  1024. }
  1025. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  1026. static inline void ptep_set_wrprotect(struct mm_struct *mm,
  1027. unsigned long addr, pte_t *ptep)
  1028. {
  1029. pte_t pte = *ptep;
  1030. if (pte_write(pte))
  1031. ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
  1032. }
  1033. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  1034. static inline int ptep_set_access_flags(struct vm_area_struct *vma,
  1035. unsigned long addr, pte_t *ptep,
  1036. pte_t entry, int dirty)
  1037. {
  1038. if (pte_same(*ptep, entry))
  1039. return 0;
  1040. ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
  1041. return 1;
  1042. }
  1043. /*
  1044. * Additional functions to handle KVM guest page tables
  1045. */
  1046. void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
  1047. pte_t *ptep, pte_t entry);
  1048. void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  1049. void ptep_notify(struct mm_struct *mm, unsigned long addr,
  1050. pte_t *ptep, unsigned long bits);
  1051. int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
  1052. pte_t *ptep, int prot, unsigned long bit);
  1053. void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
  1054. pte_t *ptep , int reset);
  1055. void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  1056. int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
  1057. pte_t *sptep, pte_t *tptep, pte_t pte);
  1058. void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
  1059. bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
  1060. pte_t *ptep);
  1061. int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  1062. unsigned char key, bool nq);
  1063. int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  1064. unsigned char key, unsigned char *oldkey,
  1065. bool nq, bool mr, bool mc);
  1066. int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
  1067. int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  1068. unsigned char *key);
  1069. int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
  1070. unsigned long bits, unsigned long value);
  1071. int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
  1072. int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
  1073. unsigned long *oldpte, unsigned long *oldpgste);
  1074. void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
  1075. void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
  1076. void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
  1077. void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
  1078. #define pgprot_writecombine pgprot_writecombine
  1079. pgprot_t pgprot_writecombine(pgprot_t prot);
  1080. #define pgprot_writethrough pgprot_writethrough
  1081. pgprot_t pgprot_writethrough(pgprot_t prot);
  1082. /*
  1083. * Certain architectures need to do special things when PTEs
  1084. * within a page table are directly modified. Thus, the following
  1085. * hook is made available.
  1086. */
  1087. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  1088. pte_t *ptep, pte_t entry)
  1089. {
  1090. if (pte_present(entry))
  1091. entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
  1092. if (mm_has_pgste(mm))
  1093. ptep_set_pte_at(mm, addr, ptep, entry);
  1094. else
  1095. set_pte(ptep, entry);
  1096. }
  1097. /*
  1098. * Conversion functions: convert a page and protection to a page entry,
  1099. * and a page entry and page directory to the page they refer to.
  1100. */
  1101. static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
  1102. {
  1103. pte_t __pte;
  1104. __pte = __pte(physpage | pgprot_val(pgprot));
  1105. if (!MACHINE_HAS_NX)
  1106. __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
  1107. return pte_mkyoung(__pte);
  1108. }
  1109. static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
  1110. {
  1111. unsigned long physpage = page_to_phys(page);
  1112. pte_t __pte = mk_pte_phys(physpage, pgprot);
  1113. if (pte_write(__pte) && PageDirty(page))
  1114. __pte = pte_mkdirty(__pte);
  1115. return __pte;
  1116. }
  1117. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  1118. #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
  1119. #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
  1120. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  1121. #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
  1122. #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
  1123. static inline unsigned long pmd_deref(pmd_t pmd)
  1124. {
  1125. unsigned long origin_mask;
  1126. origin_mask = _SEGMENT_ENTRY_ORIGIN;
  1127. if (pmd_large(pmd))
  1128. origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
  1129. return (unsigned long)__va(pmd_val(pmd) & origin_mask);
  1130. }
  1131. static inline unsigned long pmd_pfn(pmd_t pmd)
  1132. {
  1133. return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
  1134. }
  1135. static inline unsigned long pud_deref(pud_t pud)
  1136. {
  1137. unsigned long origin_mask;
  1138. origin_mask = _REGION_ENTRY_ORIGIN;
  1139. if (pud_large(pud))
  1140. origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
  1141. return (unsigned long)__va(pud_val(pud) & origin_mask);
  1142. }
  1143. static inline unsigned long pud_pfn(pud_t pud)
  1144. {
  1145. return __pa(pud_deref(pud)) >> PAGE_SHIFT;
  1146. }
  1147. /*
  1148. * The pgd_offset function *always* adds the index for the top-level
  1149. * region/segment table. This is done to get a sequence like the
  1150. * following to work:
  1151. * pgdp = pgd_offset(current->mm, addr);
  1152. * pgd = READ_ONCE(*pgdp);
  1153. * p4dp = p4d_offset(&pgd, addr);
  1154. * ...
  1155. * The subsequent p4d_offset, pud_offset and pmd_offset functions
  1156. * only add an index if they dereferenced the pointer.
  1157. */
  1158. static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
  1159. {
  1160. unsigned long rste;
  1161. unsigned int shift;
  1162. /* Get the first entry of the top level table */
  1163. rste = pgd_val(*pgd);
  1164. /* Pick up the shift from the table type of the first entry */
  1165. shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
  1166. return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
  1167. }
  1168. #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
  1169. static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
  1170. {
  1171. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
  1172. return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
  1173. return (p4d_t *) pgdp;
  1174. }
  1175. #define p4d_offset_lockless p4d_offset_lockless
  1176. static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
  1177. {
  1178. return p4d_offset_lockless(pgdp, *pgdp, address);
  1179. }
  1180. static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
  1181. {
  1182. if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
  1183. return (pud_t *) p4d_deref(p4d) + pud_index(address);
  1184. return (pud_t *) p4dp;
  1185. }
  1186. #define pud_offset_lockless pud_offset_lockless
  1187. static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
  1188. {
  1189. return pud_offset_lockless(p4dp, *p4dp, address);
  1190. }
  1191. #define pud_offset pud_offset
  1192. static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
  1193. {
  1194. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
  1195. return (pmd_t *) pud_deref(pud) + pmd_index(address);
  1196. return (pmd_t *) pudp;
  1197. }
  1198. #define pmd_offset_lockless pmd_offset_lockless
  1199. static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
  1200. {
  1201. return pmd_offset_lockless(pudp, *pudp, address);
  1202. }
  1203. #define pmd_offset pmd_offset
  1204. static inline unsigned long pmd_page_vaddr(pmd_t pmd)
  1205. {
  1206. return (unsigned long) pmd_deref(pmd);
  1207. }
  1208. static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
  1209. {
  1210. return end <= current->mm->context.asce_limit;
  1211. }
  1212. #define gup_fast_permitted gup_fast_permitted
  1213. #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
  1214. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  1215. #define pte_page(x) pfn_to_page(pte_pfn(x))
  1216. #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
  1217. #define pud_page(pud) pfn_to_page(pud_pfn(pud))
  1218. #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
  1219. #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
  1220. static inline pmd_t pmd_wrprotect(pmd_t pmd)
  1221. {
  1222. pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
  1223. return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
  1224. }
  1225. static inline pmd_t pmd_mkwrite(pmd_t pmd)
  1226. {
  1227. pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
  1228. if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
  1229. pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
  1230. return pmd;
  1231. }
  1232. static inline pmd_t pmd_mkclean(pmd_t pmd)
  1233. {
  1234. pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
  1235. return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
  1236. }
  1237. static inline pmd_t pmd_mkdirty(pmd_t pmd)
  1238. {
  1239. pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
  1240. if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
  1241. pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
  1242. return pmd;
  1243. }
  1244. static inline pud_t pud_wrprotect(pud_t pud)
  1245. {
  1246. pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
  1247. return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
  1248. }
  1249. static inline pud_t pud_mkwrite(pud_t pud)
  1250. {
  1251. pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
  1252. if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
  1253. pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
  1254. return pud;
  1255. }
  1256. static inline pud_t pud_mkclean(pud_t pud)
  1257. {
  1258. pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
  1259. return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
  1260. }
  1261. static inline pud_t pud_mkdirty(pud_t pud)
  1262. {
  1263. pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
  1264. if (pud_val(pud) & _REGION3_ENTRY_WRITE)
  1265. pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
  1266. return pud;
  1267. }
  1268. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
  1269. static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
  1270. {
  1271. /*
  1272. * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
  1273. * (see __Pxxx / __Sxxx). Convert to segment table entry format.
  1274. */
  1275. if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
  1276. return pgprot_val(SEGMENT_NONE);
  1277. if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
  1278. return pgprot_val(SEGMENT_RO);
  1279. if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
  1280. return pgprot_val(SEGMENT_RX);
  1281. if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
  1282. return pgprot_val(SEGMENT_RW);
  1283. return pgprot_val(SEGMENT_RWX);
  1284. }
  1285. static inline pmd_t pmd_mkyoung(pmd_t pmd)
  1286. {
  1287. pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
  1288. if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
  1289. pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
  1290. return pmd;
  1291. }
  1292. static inline pmd_t pmd_mkold(pmd_t pmd)
  1293. {
  1294. pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
  1295. return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
  1296. }
  1297. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  1298. {
  1299. unsigned long mask;
  1300. mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
  1301. mask |= _SEGMENT_ENTRY_DIRTY;
  1302. mask |= _SEGMENT_ENTRY_YOUNG;
  1303. mask |= _SEGMENT_ENTRY_LARGE;
  1304. mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
  1305. pmd = __pmd(pmd_val(pmd) & mask);
  1306. pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
  1307. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  1308. pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
  1309. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
  1310. pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
  1311. return pmd;
  1312. }
  1313. static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
  1314. {
  1315. return __pmd(physpage + massage_pgprot_pmd(pgprot));
  1316. }
  1317. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
  1318. static inline void __pmdp_csp(pmd_t *pmdp)
  1319. {
  1320. csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
  1321. pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
  1322. }
  1323. #define IDTE_GLOBAL 0
  1324. #define IDTE_LOCAL 1
  1325. #define IDTE_PTOA 0x0800
  1326. #define IDTE_NODAT 0x1000
  1327. #define IDTE_GUEST_ASCE 0x2000
  1328. static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
  1329. unsigned long opt, unsigned long asce,
  1330. int local)
  1331. {
  1332. unsigned long sto;
  1333. sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
  1334. if (__builtin_constant_p(opt) && opt == 0) {
  1335. /* flush without guest asce */
  1336. asm volatile(
  1337. " idte %[r1],0,%[r2],%[m4]"
  1338. : "+m" (*pmdp)
  1339. : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
  1340. [m4] "i" (local)
  1341. : "cc" );
  1342. } else {
  1343. /* flush with guest asce */
  1344. asm volatile(
  1345. " idte %[r1],%[r3],%[r2],%[m4]"
  1346. : "+m" (*pmdp)
  1347. : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
  1348. [r3] "a" (asce), [m4] "i" (local)
  1349. : "cc" );
  1350. }
  1351. }
  1352. static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
  1353. unsigned long opt, unsigned long asce,
  1354. int local)
  1355. {
  1356. unsigned long r3o;
  1357. r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
  1358. r3o |= _ASCE_TYPE_REGION3;
  1359. if (__builtin_constant_p(opt) && opt == 0) {
  1360. /* flush without guest asce */
  1361. asm volatile(
  1362. " idte %[r1],0,%[r2],%[m4]"
  1363. : "+m" (*pudp)
  1364. : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
  1365. [m4] "i" (local)
  1366. : "cc");
  1367. } else {
  1368. /* flush with guest asce */
  1369. asm volatile(
  1370. " idte %[r1],%[r3],%[r2],%[m4]"
  1371. : "+m" (*pudp)
  1372. : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
  1373. [r3] "a" (asce), [m4] "i" (local)
  1374. : "cc" );
  1375. }
  1376. }
  1377. pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
  1378. pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
  1379. pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
  1380. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1381. #define __HAVE_ARCH_PGTABLE_DEPOSIT
  1382. void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  1383. pgtable_t pgtable);
  1384. #define __HAVE_ARCH_PGTABLE_WITHDRAW
  1385. pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
  1386. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  1387. static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  1388. unsigned long addr, pmd_t *pmdp,
  1389. pmd_t entry, int dirty)
  1390. {
  1391. VM_BUG_ON(addr & ~HPAGE_MASK);
  1392. entry = pmd_mkyoung(entry);
  1393. if (dirty)
  1394. entry = pmd_mkdirty(entry);
  1395. if (pmd_val(*pmdp) == pmd_val(entry))
  1396. return 0;
  1397. pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
  1398. return 1;
  1399. }
  1400. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  1401. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  1402. unsigned long addr, pmd_t *pmdp)
  1403. {
  1404. pmd_t pmd = *pmdp;
  1405. pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
  1406. return pmd_young(pmd);
  1407. }
  1408. #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  1409. static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
  1410. unsigned long addr, pmd_t *pmdp)
  1411. {
  1412. VM_BUG_ON(addr & ~HPAGE_MASK);
  1413. return pmdp_test_and_clear_young(vma, addr, pmdp);
  1414. }
  1415. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  1416. pmd_t *pmdp, pmd_t entry)
  1417. {
  1418. if (!MACHINE_HAS_NX)
  1419. entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
  1420. set_pmd(pmdp, entry);
  1421. }
  1422. static inline pmd_t pmd_mkhuge(pmd_t pmd)
  1423. {
  1424. pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
  1425. pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
  1426. return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
  1427. }
  1428. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
  1429. static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
  1430. unsigned long addr, pmd_t *pmdp)
  1431. {
  1432. return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
  1433. }
  1434. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
  1435. static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
  1436. unsigned long addr,
  1437. pmd_t *pmdp, int full)
  1438. {
  1439. if (full) {
  1440. pmd_t pmd = *pmdp;
  1441. set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
  1442. return pmd;
  1443. }
  1444. return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
  1445. }
  1446. #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
  1447. static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
  1448. unsigned long addr, pmd_t *pmdp)
  1449. {
  1450. return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
  1451. }
  1452. #define __HAVE_ARCH_PMDP_INVALIDATE
  1453. static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
  1454. unsigned long addr, pmd_t *pmdp)
  1455. {
  1456. pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
  1457. return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
  1458. }
  1459. #define __HAVE_ARCH_PMDP_SET_WRPROTECT
  1460. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  1461. unsigned long addr, pmd_t *pmdp)
  1462. {
  1463. pmd_t pmd = *pmdp;
  1464. if (pmd_write(pmd))
  1465. pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
  1466. }
  1467. static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
  1468. unsigned long address,
  1469. pmd_t *pmdp)
  1470. {
  1471. return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
  1472. }
  1473. #define pmdp_collapse_flush pmdp_collapse_flush
  1474. #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
  1475. #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
  1476. static inline int pmd_trans_huge(pmd_t pmd)
  1477. {
  1478. return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
  1479. }
  1480. #define has_transparent_hugepage has_transparent_hugepage
  1481. static inline int has_transparent_hugepage(void)
  1482. {
  1483. return MACHINE_HAS_EDAT1 ? 1 : 0;
  1484. }
  1485. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1486. /*
  1487. * 64 bit swap entry format:
  1488. * A page-table entry has some bits we have to treat in a special way.
  1489. * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
  1490. * as invalid.
  1491. * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
  1492. * | offset |E11XX|type |S0|
  1493. * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
  1494. * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
  1495. *
  1496. * Bits 0-51 store the offset.
  1497. * Bit 52 (E) is used to remember PG_anon_exclusive.
  1498. * Bits 57-61 store the type.
  1499. * Bit 62 (S) is used for softdirty tracking.
  1500. * Bits 55 and 56 (X) are unused.
  1501. */
  1502. #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
  1503. #define __SWP_OFFSET_SHIFT 12
  1504. #define __SWP_TYPE_MASK ((1UL << 5) - 1)
  1505. #define __SWP_TYPE_SHIFT 2
  1506. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  1507. {
  1508. unsigned long pteval;
  1509. pteval = _PAGE_INVALID | _PAGE_PROTECT;
  1510. pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
  1511. pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
  1512. return __pte(pteval);
  1513. }
  1514. static inline unsigned long __swp_type(swp_entry_t entry)
  1515. {
  1516. return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
  1517. }
  1518. static inline unsigned long __swp_offset(swp_entry_t entry)
  1519. {
  1520. return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
  1521. }
  1522. static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
  1523. {
  1524. return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
  1525. }
  1526. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  1527. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  1528. #define kern_addr_valid(addr) (1)
  1529. extern int vmem_add_mapping(unsigned long start, unsigned long size);
  1530. extern void vmem_remove_mapping(unsigned long start, unsigned long size);
  1531. extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
  1532. extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
  1533. extern void vmem_unmap_4k_page(unsigned long addr);
  1534. extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
  1535. extern int s390_enable_sie(void);
  1536. extern int s390_enable_skey(void);
  1537. extern void s390_reset_cmma(struct mm_struct *mm);
  1538. /* s390 has a private copy of get unmapped area to deal with cache synonyms */
  1539. #define HAVE_ARCH_UNMAPPED_AREA
  1540. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  1541. #define pmd_pgtable(pmd) \
  1542. ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
  1543. #endif /* _S390_PAGE_H */