uasm-micromips.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * A small micro-assembler. It is intentionally kept simple, does only
  7. * support a subset of instructions, and does not try to hide pipeline
  8. * effects like branch delay slots.
  9. *
  10. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  11. * Copyright (C) 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2006 Ralf Baechle ([email protected])
  13. * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/types.h>
  17. #include <asm/inst.h>
  18. #include <asm/elf.h>
  19. #include <asm/bugs.h>
  20. #include <asm/uasm.h>
  21. #define RS_MASK 0x1f
  22. #define RS_SH 16
  23. #define RT_MASK 0x1f
  24. #define RT_SH 21
  25. #define SCIMM_MASK 0x3ff
  26. #define SCIMM_SH 16
  27. /* This macro sets the non-variable bits of an instruction. */
  28. #define M(a, b, c, d, e, f) \
  29. ((a) << OP_SH \
  30. | (b) << RT_SH \
  31. | (c) << RS_SH \
  32. | (d) << RD_SH \
  33. | (e) << RE_SH \
  34. | (f) << FUNC_SH)
  35. #include "uasm.c"
  36. static const struct insn insn_table_MM[insn_invalid] = {
  37. [insn_addu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD},
  38. [insn_addiu] = {M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
  39. [insn_and] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD},
  40. [insn_andi] = {M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
  41. [insn_beq] = {M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  42. [insn_beql] = {0, 0},
  43. [insn_bgez] = {M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM},
  44. [insn_bgezl] = {0, 0},
  45. [insn_bltz] = {M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM},
  46. [insn_bltzl] = {0, 0},
  47. [insn_bne] = {M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM},
  48. [insn_cache] = {M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM},
  49. [insn_cfc1] = {M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS},
  50. [insn_cfcmsa] = {M(mm_pool32s_op, 0, msa_cfc_op, 0, 0, mm_32s_elm_op), RD | RE},
  51. [insn_ctc1] = {M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS},
  52. [insn_ctcmsa] = {M(mm_pool32s_op, 0, msa_ctc_op, 0, 0, mm_32s_elm_op), RD | RE},
  53. [insn_daddu] = {0, 0},
  54. [insn_daddiu] = {0, 0},
  55. [insn_di] = {M(mm_pool32a_op, 0, 0, 0, mm_di_op, mm_pool32axf_op), RS},
  56. [insn_divu] = {M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS},
  57. [insn_dmfc0] = {0, 0},
  58. [insn_dmtc0] = {0, 0},
  59. [insn_dsll] = {0, 0},
  60. [insn_dsll32] = {0, 0},
  61. [insn_dsra] = {0, 0},
  62. [insn_dsrl] = {0, 0},
  63. [insn_dsrl32] = {0, 0},
  64. [insn_drotr] = {0, 0},
  65. [insn_drotr32] = {0, 0},
  66. [insn_dsubu] = {0, 0},
  67. [insn_eret] = {M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0},
  68. [insn_ins] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE},
  69. [insn_ext] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE},
  70. [insn_j] = {M(mm_j32_op, 0, 0, 0, 0, 0), JIMM},
  71. [insn_jal] = {M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM},
  72. [insn_jalr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS},
  73. [insn_jr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS},
  74. [insn_lb] = {M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
  75. [insn_ld] = {0, 0},
  76. [insn_lh] = {M(mm_lh32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
  77. [insn_ll] = {M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM},
  78. [insn_lld] = {0, 0},
  79. [insn_lui] = {M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM},
  80. [insn_lw] = {M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
  81. [insn_mfc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD},
  82. [insn_mfhi] = {M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS},
  83. [insn_mflo] = {M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS},
  84. [insn_mtc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD},
  85. [insn_mthi] = {M(mm_pool32a_op, 0, 0, 0, mm_mthi32_op, mm_pool32axf_op), RS},
  86. [insn_mtlo] = {M(mm_pool32a_op, 0, 0, 0, mm_mtlo32_op, mm_pool32axf_op), RS},
  87. [insn_mul] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD},
  88. [insn_or] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD},
  89. [insn_ori] = {M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
  90. [insn_pref] = {M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM},
  91. [insn_rfe] = {0, 0},
  92. [insn_sc] = {M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM},
  93. [insn_scd] = {0, 0},
  94. [insn_sd] = {0, 0},
  95. [insn_sll] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD},
  96. [insn_sllv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD},
  97. [insn_slt] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD},
  98. [insn_sltiu] = {M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
  99. [insn_sltu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD},
  100. [insn_sra] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD},
  101. [insn_srav] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srav_op), RT | RS | RD},
  102. [insn_srl] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD},
  103. [insn_srlv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD},
  104. [insn_rotr] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD},
  105. [insn_subu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD},
  106. [insn_sw] = {M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
  107. [insn_sync] = {M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS},
  108. [insn_tlbp] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0},
  109. [insn_tlbr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0},
  110. [insn_tlbwi] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0},
  111. [insn_tlbwr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0},
  112. [insn_wait] = {M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM},
  113. [insn_wsbh] = {M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS},
  114. [insn_xor] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD},
  115. [insn_xori] = {M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
  116. [insn_dins] = {0, 0},
  117. [insn_dinsm] = {0, 0},
  118. [insn_syscall] = {M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
  119. [insn_bbit0] = {0, 0},
  120. [insn_bbit1] = {0, 0},
  121. [insn_lwx] = {0, 0},
  122. [insn_ldx] = {0, 0},
  123. };
  124. #undef M
  125. static inline u32 build_bimm(s32 arg)
  126. {
  127. WARN(arg > 0xffff || arg < -0x10000,
  128. KERN_WARNING "Micro-assembler field overflow\n");
  129. WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
  130. return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff);
  131. }
  132. static inline u32 build_jimm(u32 arg)
  133. {
  134. WARN(arg & ~((JIMM_MASK << 2) | 1),
  135. KERN_WARNING "Micro-assembler field overflow\n");
  136. return (arg >> 1) & JIMM_MASK;
  137. }
  138. /*
  139. * The order of opcode arguments is implicitly left to right,
  140. * starting with RS and ending with FUNC or IMM.
  141. */
  142. static void build_insn(u32 **buf, enum opcode opc, ...)
  143. {
  144. const struct insn *ip;
  145. va_list ap;
  146. u32 op;
  147. if (opc < 0 || opc >= insn_invalid ||
  148. (opc == insn_daddiu && r4k_daddiu_bug()) ||
  149. (insn_table_MM[opc].match == 0 && insn_table_MM[opc].fields == 0))
  150. panic("Unsupported Micro-assembler instruction %d", opc);
  151. ip = &insn_table_MM[opc];
  152. op = ip->match;
  153. va_start(ap, opc);
  154. if (ip->fields & RS) {
  155. if (opc == insn_mfc0 || opc == insn_mtc0 ||
  156. opc == insn_cfc1 || opc == insn_ctc1)
  157. op |= build_rt(va_arg(ap, u32));
  158. else
  159. op |= build_rs(va_arg(ap, u32));
  160. }
  161. if (ip->fields & RT) {
  162. if (opc == insn_mfc0 || opc == insn_mtc0 ||
  163. opc == insn_cfc1 || opc == insn_ctc1)
  164. op |= build_rs(va_arg(ap, u32));
  165. else
  166. op |= build_rt(va_arg(ap, u32));
  167. }
  168. if (ip->fields & RD)
  169. op |= build_rd(va_arg(ap, u32));
  170. if (ip->fields & RE)
  171. op |= build_re(va_arg(ap, u32));
  172. if (ip->fields & SIMM)
  173. op |= build_simm(va_arg(ap, s32));
  174. if (ip->fields & UIMM)
  175. op |= build_uimm(va_arg(ap, u32));
  176. if (ip->fields & BIMM)
  177. op |= build_bimm(va_arg(ap, s32));
  178. if (ip->fields & JIMM)
  179. op |= build_jimm(va_arg(ap, u32));
  180. if (ip->fields & FUNC)
  181. op |= build_func(va_arg(ap, u32));
  182. if (ip->fields & SET)
  183. op |= build_set(va_arg(ap, u32));
  184. if (ip->fields & SCIMM)
  185. op |= build_scimm(va_arg(ap, u32));
  186. va_end(ap);
  187. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  188. **buf = ((op & 0xffff) << 16) | (op >> 16);
  189. #else
  190. **buf = op;
  191. #endif
  192. (*buf)++;
  193. }
  194. static inline void
  195. __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
  196. {
  197. long laddr = (long)lab->addr;
  198. long raddr = (long)rel->addr;
  199. switch (rel->type) {
  200. case R_MIPS_PC16:
  201. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  202. *rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16);
  203. #else
  204. *rel->addr |= build_bimm(laddr - (raddr + 4));
  205. #endif
  206. break;
  207. default:
  208. panic("Unsupported Micro-assembler relocation %d",
  209. rel->type);
  210. }
  211. }