sysctrl.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. *
  4. * Copyright (C) 2011 Thomas Langer <[email protected]>
  5. * Copyright (C) 2011 John Crispin <[email protected]>
  6. */
  7. #include <linux/ioport.h>
  8. #include <linux/export.h>
  9. #include <linux/clkdev.h>
  10. #include <linux/of_address.h>
  11. #include <asm/delay.h>
  12. #include <lantiq_soc.h>
  13. #include "../clk.h"
  14. /* infrastructure control register */
  15. #define SYS1_INFRAC 0x00bc
  16. /* Configuration fuses for drivers and pll */
  17. #define STATUS_CONFIG 0x0040
  18. /* GPE frequency selection */
  19. #define GPPC_OFFSET 24
  20. #define GPEFREQ_MASK 0x0000C00
  21. #define GPEFREQ_OFFSET 10
  22. /* Clock status register */
  23. #define SYSCTL_CLKS 0x0000
  24. /* Clock enable register */
  25. #define SYSCTL_CLKEN 0x0004
  26. /* Clock clear register */
  27. #define SYSCTL_CLKCLR 0x0008
  28. /* Activation Status Register */
  29. #define SYSCTL_ACTS 0x0020
  30. /* Activation Register */
  31. #define SYSCTL_ACT 0x0024
  32. /* Deactivation Register */
  33. #define SYSCTL_DEACT 0x0028
  34. /* reboot Register */
  35. #define SYSCTL_RBT 0x002c
  36. /* CPU0 Clock Control Register */
  37. #define SYS1_CPU0CC 0x0040
  38. /* HRST_OUT_N Control Register */
  39. #define SYS1_HRSTOUTC 0x00c0
  40. /* clock divider bit */
  41. #define CPU0CC_CPUDIV 0x0001
  42. /* Activation Status Register */
  43. #define ACTS_ASC0_ACT 0x00001000
  44. #define ACTS_SSC0 0x00002000
  45. #define ACTS_ASC1_ACT 0x00000800
  46. #define ACTS_I2C_ACT 0x00004000
  47. #define ACTS_P0 0x00010000
  48. #define ACTS_P1 0x00010000
  49. #define ACTS_P2 0x00020000
  50. #define ACTS_P3 0x00020000
  51. #define ACTS_P4 0x00040000
  52. #define ACTS_PADCTRL0 0x00100000
  53. #define ACTS_PADCTRL1 0x00100000
  54. #define ACTS_PADCTRL2 0x00200000
  55. #define ACTS_PADCTRL3 0x00200000
  56. #define ACTS_PADCTRL4 0x00400000
  57. #define sysctl_w32(m, x, y) ltq_w32((x), sysctl_membase[m] + (y))
  58. #define sysctl_r32(m, x) ltq_r32(sysctl_membase[m] + (x))
  59. #define sysctl_w32_mask(m, clear, set, reg) \
  60. sysctl_w32(m, (sysctl_r32(m, reg) & ~(clear)) | (set), reg)
  61. #define status_w32(x, y) ltq_w32((x), status_membase + (y))
  62. #define status_r32(x) ltq_r32(status_membase + (x))
  63. static void __iomem *sysctl_membase[3], *status_membase;
  64. void __iomem *ltq_sys1_membase, *ltq_ebu_membase;
  65. void falcon_trigger_hrst(int level)
  66. {
  67. sysctl_w32(SYSCTL_SYS1, level & 1, SYS1_HRSTOUTC);
  68. }
  69. static inline void sysctl_wait(struct clk *clk,
  70. unsigned int test, unsigned int reg)
  71. {
  72. int err = 1000000;
  73. do {} while (--err && ((sysctl_r32(clk->module, reg)
  74. & clk->bits) != test));
  75. if (!err)
  76. pr_err("module de/activation failed %d %08X %08X %08X\n",
  77. clk->module, clk->bits, test,
  78. sysctl_r32(clk->module, reg) & clk->bits);
  79. }
  80. static int sysctl_activate(struct clk *clk)
  81. {
  82. sysctl_w32(clk->module, clk->bits, SYSCTL_CLKEN);
  83. sysctl_w32(clk->module, clk->bits, SYSCTL_ACT);
  84. sysctl_wait(clk, clk->bits, SYSCTL_ACTS);
  85. return 0;
  86. }
  87. static void sysctl_deactivate(struct clk *clk)
  88. {
  89. sysctl_w32(clk->module, clk->bits, SYSCTL_CLKCLR);
  90. sysctl_w32(clk->module, clk->bits, SYSCTL_DEACT);
  91. sysctl_wait(clk, 0, SYSCTL_ACTS);
  92. }
  93. static int sysctl_clken(struct clk *clk)
  94. {
  95. sysctl_w32(clk->module, clk->bits, SYSCTL_CLKEN);
  96. sysctl_w32(clk->module, clk->bits, SYSCTL_ACT);
  97. sysctl_wait(clk, clk->bits, SYSCTL_CLKS);
  98. return 0;
  99. }
  100. static void sysctl_clkdis(struct clk *clk)
  101. {
  102. sysctl_w32(clk->module, clk->bits, SYSCTL_CLKCLR);
  103. sysctl_wait(clk, 0, SYSCTL_CLKS);
  104. }
  105. static void sysctl_reboot(struct clk *clk)
  106. {
  107. unsigned int act;
  108. unsigned int bits;
  109. act = sysctl_r32(clk->module, SYSCTL_ACT);
  110. bits = ~act & clk->bits;
  111. if (bits != 0) {
  112. sysctl_w32(clk->module, bits, SYSCTL_CLKEN);
  113. sysctl_w32(clk->module, bits, SYSCTL_ACT);
  114. sysctl_wait(clk, bits, SYSCTL_ACTS);
  115. }
  116. sysctl_w32(clk->module, act & clk->bits, SYSCTL_RBT);
  117. sysctl_wait(clk, clk->bits, SYSCTL_ACTS);
  118. }
  119. /* enable the ONU core */
  120. static void falcon_gpe_enable(void)
  121. {
  122. unsigned int freq;
  123. unsigned int status;
  124. /* if the clock is already enabled */
  125. status = sysctl_r32(SYSCTL_SYS1, SYS1_INFRAC);
  126. if (status & (1 << (GPPC_OFFSET + 1)))
  127. return;
  128. freq = (status_r32(STATUS_CONFIG) &
  129. GPEFREQ_MASK) >>
  130. GPEFREQ_OFFSET;
  131. if (freq == 0)
  132. freq = 1; /* use 625MHz on unfused chip */
  133. /* apply new frequency */
  134. sysctl_w32_mask(SYSCTL_SYS1, 7 << (GPPC_OFFSET + 1),
  135. freq << (GPPC_OFFSET + 2) , SYS1_INFRAC);
  136. udelay(1);
  137. /* enable new frequency */
  138. sysctl_w32_mask(SYSCTL_SYS1, 0, 1 << (GPPC_OFFSET + 1), SYS1_INFRAC);
  139. udelay(1);
  140. }
  141. static inline void clkdev_add_sys(const char *dev, unsigned int module,
  142. unsigned int bits)
  143. {
  144. struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
  145. if (!clk)
  146. return;
  147. clk->cl.dev_id = dev;
  148. clk->cl.con_id = NULL;
  149. clk->cl.clk = clk;
  150. clk->module = module;
  151. clk->bits = bits;
  152. clk->activate = sysctl_activate;
  153. clk->deactivate = sysctl_deactivate;
  154. clk->enable = sysctl_clken;
  155. clk->disable = sysctl_clkdis;
  156. clk->reboot = sysctl_reboot;
  157. clkdev_add(&clk->cl);
  158. }
  159. void __init ltq_soc_init(void)
  160. {
  161. struct device_node *np_status =
  162. of_find_compatible_node(NULL, NULL, "lantiq,status-falcon");
  163. struct device_node *np_ebu =
  164. of_find_compatible_node(NULL, NULL, "lantiq,ebu-falcon");
  165. struct device_node *np_sys1 =
  166. of_find_compatible_node(NULL, NULL, "lantiq,sys1-falcon");
  167. struct device_node *np_syseth =
  168. of_find_compatible_node(NULL, NULL, "lantiq,syseth-falcon");
  169. struct device_node *np_sysgpe =
  170. of_find_compatible_node(NULL, NULL, "lantiq,sysgpe-falcon");
  171. struct resource res_status, res_ebu, res_sys[3];
  172. int i;
  173. /* check if all the core register ranges are available */
  174. if (!np_status || !np_ebu || !np_sys1 || !np_syseth || !np_sysgpe)
  175. panic("Failed to load core nodes from devicetree");
  176. if (of_address_to_resource(np_status, 0, &res_status) ||
  177. of_address_to_resource(np_ebu, 0, &res_ebu) ||
  178. of_address_to_resource(np_sys1, 0, &res_sys[0]) ||
  179. of_address_to_resource(np_syseth, 0, &res_sys[1]) ||
  180. of_address_to_resource(np_sysgpe, 0, &res_sys[2]))
  181. panic("Failed to get core resources");
  182. of_node_put(np_status);
  183. of_node_put(np_ebu);
  184. of_node_put(np_sys1);
  185. of_node_put(np_syseth);
  186. of_node_put(np_sysgpe);
  187. if ((request_mem_region(res_status.start, resource_size(&res_status),
  188. res_status.name) < 0) ||
  189. (request_mem_region(res_ebu.start, resource_size(&res_ebu),
  190. res_ebu.name) < 0) ||
  191. (request_mem_region(res_sys[0].start,
  192. resource_size(&res_sys[0]),
  193. res_sys[0].name) < 0) ||
  194. (request_mem_region(res_sys[1].start,
  195. resource_size(&res_sys[1]),
  196. res_sys[1].name) < 0) ||
  197. (request_mem_region(res_sys[2].start,
  198. resource_size(&res_sys[2]),
  199. res_sys[2].name) < 0))
  200. pr_err("Failed to request core resources");
  201. status_membase = ioremap(res_status.start,
  202. resource_size(&res_status));
  203. ltq_ebu_membase = ioremap(res_ebu.start,
  204. resource_size(&res_ebu));
  205. if (!status_membase || !ltq_ebu_membase)
  206. panic("Failed to remap core resources");
  207. for (i = 0; i < 3; i++) {
  208. sysctl_membase[i] = ioremap(res_sys[i].start,
  209. resource_size(&res_sys[i]));
  210. if (!sysctl_membase[i])
  211. panic("Failed to remap sysctrl resources");
  212. }
  213. ltq_sys1_membase = sysctl_membase[0];
  214. falcon_gpe_enable();
  215. /* get our 3 static rates for cpu, fpi and io clocks */
  216. if (ltq_sys1_r32(SYS1_CPU0CC) & CPU0CC_CPUDIV)
  217. clkdev_add_static(CLOCK_200M, CLOCK_100M, CLOCK_200M, 0);
  218. else
  219. clkdev_add_static(CLOCK_400M, CLOCK_100M, CLOCK_200M, 0);
  220. /* add our clock domains */
  221. clkdev_add_sys("1d810000.gpio", SYSCTL_SYSETH, ACTS_P0);
  222. clkdev_add_sys("1d810100.gpio", SYSCTL_SYSETH, ACTS_P2);
  223. clkdev_add_sys("1e800100.gpio", SYSCTL_SYS1, ACTS_P1);
  224. clkdev_add_sys("1e800200.gpio", SYSCTL_SYS1, ACTS_P3);
  225. clkdev_add_sys("1e800300.gpio", SYSCTL_SYS1, ACTS_P4);
  226. clkdev_add_sys("1db01000.pad", SYSCTL_SYSETH, ACTS_PADCTRL0);
  227. clkdev_add_sys("1db02000.pad", SYSCTL_SYSETH, ACTS_PADCTRL2);
  228. clkdev_add_sys("1e800400.pad", SYSCTL_SYS1, ACTS_PADCTRL1);
  229. clkdev_add_sys("1e800500.pad", SYSCTL_SYS1, ACTS_PADCTRL3);
  230. clkdev_add_sys("1e800600.pad", SYSCTL_SYS1, ACTS_PADCTRL4);
  231. clkdev_add_sys("1e100b00.serial", SYSCTL_SYS1, ACTS_ASC1_ACT);
  232. clkdev_add_sys("1e100c00.serial", SYSCTL_SYS1, ACTS_ASC0_ACT);
  233. clkdev_add_sys("1e100d00.spi", SYSCTL_SYS1, ACTS_SSC0);
  234. clkdev_add_sys("1e200000.i2c", SYSCTL_SYS1, ACTS_I2C_ACT);
  235. }