dma.h 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. /*
  3. * linux/include/asm/dma.h: Defines for using and allocating dma channels.
  4. * Written by Hennus Bergman, 1992.
  5. * High DMA channel support & info by Hannu Savolainen
  6. * and John Boyd, Nov. 1992.
  7. *
  8. * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
  9. * and can only be used for expansion cards. Onboard DMA controllers, such
  10. * as the R4030 on Jazz boards behave totally different!
  11. */
  12. #ifndef _ASM_DMA_H
  13. #define _ASM_DMA_H
  14. #include <asm/io.h> /* need byte IO */
  15. #include <linux/spinlock.h> /* And spinlocks */
  16. #include <linux/delay.h>
  17. #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
  18. #define dma_outb outb_p
  19. #else
  20. #define dma_outb outb
  21. #endif
  22. #define dma_inb inb
  23. /*
  24. * NOTES about DMA transfers:
  25. *
  26. * controller 1: channels 0-3, byte operations, ports 00-1F
  27. * controller 2: channels 4-7, word operations, ports C0-DF
  28. *
  29. * - ALL registers are 8 bits only, regardless of transfer size
  30. * - channel 4 is not used - cascades 1 into 2.
  31. * - channels 0-3 are byte - addresses/counts are for physical bytes
  32. * - channels 5-7 are word - addresses/counts are for physical words
  33. * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
  34. * - transfer count loaded to registers is 1 less than actual count
  35. * - controller 2 offsets are all even (2x offsets for controller 1)
  36. * - page registers for 5-7 don't use data bit 0, represent 128K pages
  37. * - page registers for 0-3 use bit 0, represent 64K pages
  38. *
  39. * DMA transfers are limited to the lower 16MB of _physical_ memory.
  40. * Note that addresses loaded into registers must be _physical_ addresses,
  41. * not logical addresses (which may differ if paging is active).
  42. *
  43. * Address mapping for channels 0-3:
  44. *
  45. * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
  46. * | ... | | ... | | ... |
  47. * | ... | | ... | | ... |
  48. * | ... | | ... | | ... |
  49. * P7 ... P0 A7 ... A0 A7 ... A0
  50. * | Page | Addr MSB | Addr LSB | (DMA registers)
  51. *
  52. * Address mapping for channels 5-7:
  53. *
  54. * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
  55. * | ... | \ \ ... \ \ \ ... \ \
  56. * | ... | \ \ ... \ \ \ ... \ (not used)
  57. * | ... | \ \ ... \ \ \ ... \
  58. * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
  59. * | Page | Addr MSB | Addr LSB | (DMA registers)
  60. *
  61. * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
  62. * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
  63. * the hardware level, so odd-byte transfers aren't possible).
  64. *
  65. * Transfer count (_not # bytes_) is limited to 64K, represented as actual
  66. * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
  67. * and up to 128K bytes may be transferred on channels 5-7 in one operation.
  68. *
  69. */
  70. #ifndef CONFIG_GENERIC_ISA_DMA_SUPPORT_BROKEN
  71. #define MAX_DMA_CHANNELS 8
  72. #endif
  73. /*
  74. * The maximum address in KSEG0 that we can perform a DMA transfer to on this
  75. * platform. This describes only the PC style part of the DMA logic like on
  76. * Deskstations or Acer PICA but not the much more versatile DMA logic used
  77. * for the local devices on Acer PICA or Magnums.
  78. */
  79. #if defined(CONFIG_SGI_IP22) || defined(CONFIG_SGI_IP28)
  80. /* don't care; ISA bus master won't work, ISA slave DMA supports 32bit addr */
  81. #define MAX_DMA_ADDRESS PAGE_OFFSET
  82. #else
  83. #define MAX_DMA_ADDRESS (PAGE_OFFSET + 0x01000000)
  84. #endif
  85. #define MAX_DMA_PFN PFN_DOWN(virt_to_phys((void *)MAX_DMA_ADDRESS))
  86. #ifndef MAX_DMA32_PFN
  87. #define MAX_DMA32_PFN (1UL << (32 - PAGE_SHIFT))
  88. #endif
  89. /* 8237 DMA controllers */
  90. #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
  91. #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
  92. /* DMA controller registers */
  93. #define DMA1_CMD_REG 0x08 /* command register (w) */
  94. #define DMA1_STAT_REG 0x08 /* status register (r) */
  95. #define DMA1_REQ_REG 0x09 /* request register (w) */
  96. #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
  97. #define DMA1_MODE_REG 0x0B /* mode register (w) */
  98. #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
  99. #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
  100. #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
  101. #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
  102. #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
  103. #define DMA2_CMD_REG 0xD0 /* command register (w) */
  104. #define DMA2_STAT_REG 0xD0 /* status register (r) */
  105. #define DMA2_REQ_REG 0xD2 /* request register (w) */
  106. #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
  107. #define DMA2_MODE_REG 0xD6 /* mode register (w) */
  108. #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
  109. #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
  110. #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
  111. #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
  112. #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
  113. #define DMA_ADDR_0 0x00 /* DMA address registers */
  114. #define DMA_ADDR_1 0x02
  115. #define DMA_ADDR_2 0x04
  116. #define DMA_ADDR_3 0x06
  117. #define DMA_ADDR_4 0xC0
  118. #define DMA_ADDR_5 0xC4
  119. #define DMA_ADDR_6 0xC8
  120. #define DMA_ADDR_7 0xCC
  121. #define DMA_CNT_0 0x01 /* DMA count registers */
  122. #define DMA_CNT_1 0x03
  123. #define DMA_CNT_2 0x05
  124. #define DMA_CNT_3 0x07
  125. #define DMA_CNT_4 0xC2
  126. #define DMA_CNT_5 0xC6
  127. #define DMA_CNT_6 0xCA
  128. #define DMA_CNT_7 0xCE
  129. #define DMA_PAGE_0 0x87 /* DMA page registers */
  130. #define DMA_PAGE_1 0x83
  131. #define DMA_PAGE_2 0x81
  132. #define DMA_PAGE_3 0x82
  133. #define DMA_PAGE_5 0x8B
  134. #define DMA_PAGE_6 0x89
  135. #define DMA_PAGE_7 0x8A
  136. #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
  137. #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
  138. #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
  139. #define DMA_AUTOINIT 0x10
  140. extern spinlock_t dma_spin_lock;
  141. static __inline__ unsigned long claim_dma_lock(void)
  142. {
  143. unsigned long flags;
  144. spin_lock_irqsave(&dma_spin_lock, flags);
  145. return flags;
  146. }
  147. static __inline__ void release_dma_lock(unsigned long flags)
  148. {
  149. spin_unlock_irqrestore(&dma_spin_lock, flags);
  150. }
  151. /* enable/disable a specific DMA channel */
  152. static __inline__ void enable_dma(unsigned int dmanr)
  153. {
  154. if (dmanr<=3)
  155. dma_outb(dmanr, DMA1_MASK_REG);
  156. else
  157. dma_outb(dmanr & 3, DMA2_MASK_REG);
  158. }
  159. static __inline__ void disable_dma(unsigned int dmanr)
  160. {
  161. if (dmanr<=3)
  162. dma_outb(dmanr | 4, DMA1_MASK_REG);
  163. else
  164. dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
  165. }
  166. /* Clear the 'DMA Pointer Flip Flop'.
  167. * Write 0 for LSB/MSB, 1 for MSB/LSB access.
  168. * Use this once to initialize the FF to a known state.
  169. * After that, keep track of it. :-)
  170. * --- In order to do that, the DMA routines below should ---
  171. * --- only be used while holding the DMA lock ! ---
  172. */
  173. static __inline__ void clear_dma_ff(unsigned int dmanr)
  174. {
  175. if (dmanr<=3)
  176. dma_outb(0, DMA1_CLEAR_FF_REG);
  177. else
  178. dma_outb(0, DMA2_CLEAR_FF_REG);
  179. }
  180. /* set mode (above) for a specific DMA channel */
  181. static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
  182. {
  183. if (dmanr<=3)
  184. dma_outb(mode | dmanr, DMA1_MODE_REG);
  185. else
  186. dma_outb(mode | (dmanr&3), DMA2_MODE_REG);
  187. }
  188. /* Set only the page register bits of the transfer address.
  189. * This is used for successive transfers when we know the contents of
  190. * the lower 16 bits of the DMA current address register, but a 64k boundary
  191. * may have been crossed.
  192. */
  193. static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
  194. {
  195. switch(dmanr) {
  196. case 0:
  197. dma_outb(pagenr, DMA_PAGE_0);
  198. break;
  199. case 1:
  200. dma_outb(pagenr, DMA_PAGE_1);
  201. break;
  202. case 2:
  203. dma_outb(pagenr, DMA_PAGE_2);
  204. break;
  205. case 3:
  206. dma_outb(pagenr, DMA_PAGE_3);
  207. break;
  208. case 5:
  209. dma_outb(pagenr & 0xfe, DMA_PAGE_5);
  210. break;
  211. case 6:
  212. dma_outb(pagenr & 0xfe, DMA_PAGE_6);
  213. break;
  214. case 7:
  215. dma_outb(pagenr & 0xfe, DMA_PAGE_7);
  216. break;
  217. }
  218. }
  219. /* Set transfer address & page bits for specific DMA channel.
  220. * Assumes dma flipflop is clear.
  221. */
  222. static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
  223. {
  224. set_dma_page(dmanr, a>>16);
  225. if (dmanr <= 3) {
  226. dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
  227. dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
  228. } else {
  229. dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
  230. dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
  231. }
  232. }
  233. /* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
  234. * a specific DMA channel.
  235. * You must ensure the parameters are valid.
  236. * NOTE: from a manual: "the number of transfers is one more
  237. * than the initial word count"! This is taken into account.
  238. * Assumes dma flip-flop is clear.
  239. * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
  240. */
  241. static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
  242. {
  243. count--;
  244. if (dmanr <= 3) {
  245. dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
  246. dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
  247. } else {
  248. dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
  249. dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
  250. }
  251. }
  252. /* Get DMA residue count. After a DMA transfer, this
  253. * should return zero. Reading this while a DMA transfer is
  254. * still in progress will return unpredictable results.
  255. * If called before the channel has been used, it may return 1.
  256. * Otherwise, it returns the number of _bytes_ left to transfer.
  257. *
  258. * Assumes DMA flip-flop is clear.
  259. */
  260. static __inline__ int get_dma_residue(unsigned int dmanr)
  261. {
  262. unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
  263. : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
  264. /* using short to get 16-bit wrap around */
  265. unsigned short count;
  266. count = 1 + dma_inb(io_port);
  267. count += dma_inb(io_port) << 8;
  268. return (dmanr<=3)? count : (count<<1);
  269. }
  270. /* These are in kernel/dma.c: */
  271. extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */
  272. extern void free_dma(unsigned int dmanr); /* release it again */
  273. #endif /* _ASM_DMA_H */