efi.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Extensible Firmware Interface
  4. *
  5. * Based on Extensible Firmware Interface Specification version 0.9
  6. * April 30, 1999
  7. *
  8. * Copyright (C) 1999 VA Linux Systems
  9. * Copyright (C) 1999 Walt Drummond <[email protected]>
  10. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  11. * David Mosberger-Tang <[email protected]>
  12. * Stephane Eranian <[email protected]>
  13. * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  14. * Bjorn Helgaas <[email protected]>
  15. *
  16. * All EFI Runtime Services are not implemented yet as EFI only
  17. * supports physical mode addressing on SoftSDV. This is to be fixed
  18. * in a future version. --drummond 1999-07-20
  19. *
  20. * Implemented EFI runtime services and virtual mode calls. --davidm
  21. *
  22. * Goutham Rao: <[email protected]>
  23. * Skip non-WB memory and ignore empty memory ranges.
  24. */
  25. #include <linux/module.h>
  26. #include <linux/memblock.h>
  27. #include <linux/crash_dump.h>
  28. #include <linux/kernel.h>
  29. #include <linux/init.h>
  30. #include <linux/types.h>
  31. #include <linux/slab.h>
  32. #include <linux/time.h>
  33. #include <linux/efi.h>
  34. #include <linux/kexec.h>
  35. #include <linux/mm.h>
  36. #include <asm/efi.h>
  37. #include <asm/io.h>
  38. #include <asm/kregs.h>
  39. #include <asm/meminit.h>
  40. #include <asm/processor.h>
  41. #include <asm/mca.h>
  42. #include <asm/sal.h>
  43. #include <asm/setup.h>
  44. #include <asm/tlbflush.h>
  45. #define EFI_DEBUG 0
  46. #define ESI_TABLE_GUID \
  47. EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3, \
  48. 0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
  49. static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
  50. static __initdata unsigned long palo_phys;
  51. unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
  52. unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
  53. unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
  54. static const efi_config_table_type_t arch_tables[] __initconst = {
  55. {ESI_TABLE_GUID, &esi_phys, "ESI" },
  56. {HCDP_TABLE_GUID, &hcdp_phys, "HCDP" },
  57. {MPS_TABLE_GUID, &mps_phys, "MPS" },
  58. {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, &palo_phys, "PALO" },
  59. {SAL_SYSTEM_TABLE_GUID, &sal_systab_phys, "SALsystab" },
  60. {},
  61. };
  62. extern efi_status_t efi_call_phys (void *, ...);
  63. static efi_runtime_services_t *runtime;
  64. static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  65. #define efi_call_virt(f, args...) (*(f))(args)
  66. #define STUB_GET_TIME(prefix, adjust_arg) \
  67. static efi_status_t \
  68. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  69. { \
  70. struct ia64_fpreg fr[6]; \
  71. efi_time_cap_t *atc = NULL; \
  72. efi_status_t ret; \
  73. \
  74. if (tc) \
  75. atc = adjust_arg(tc); \
  76. ia64_save_scratch_fpregs(fr); \
  77. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
  78. adjust_arg(tm), atc); \
  79. ia64_load_scratch_fpregs(fr); \
  80. return ret; \
  81. }
  82. #define STUB_SET_TIME(prefix, adjust_arg) \
  83. static efi_status_t \
  84. prefix##_set_time (efi_time_t *tm) \
  85. { \
  86. struct ia64_fpreg fr[6]; \
  87. efi_status_t ret; \
  88. \
  89. ia64_save_scratch_fpregs(fr); \
  90. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
  91. adjust_arg(tm)); \
  92. ia64_load_scratch_fpregs(fr); \
  93. return ret; \
  94. }
  95. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  96. static efi_status_t \
  97. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
  98. efi_time_t *tm) \
  99. { \
  100. struct ia64_fpreg fr[6]; \
  101. efi_status_t ret; \
  102. \
  103. ia64_save_scratch_fpregs(fr); \
  104. ret = efi_call_##prefix( \
  105. (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  106. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  107. ia64_load_scratch_fpregs(fr); \
  108. return ret; \
  109. }
  110. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  111. static efi_status_t \
  112. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  113. { \
  114. struct ia64_fpreg fr[6]; \
  115. efi_time_t *atm = NULL; \
  116. efi_status_t ret; \
  117. \
  118. if (tm) \
  119. atm = adjust_arg(tm); \
  120. ia64_save_scratch_fpregs(fr); \
  121. ret = efi_call_##prefix( \
  122. (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  123. enabled, atm); \
  124. ia64_load_scratch_fpregs(fr); \
  125. return ret; \
  126. }
  127. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  128. static efi_status_t \
  129. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  130. unsigned long *data_size, void *data) \
  131. { \
  132. struct ia64_fpreg fr[6]; \
  133. u32 *aattr = NULL; \
  134. efi_status_t ret; \
  135. \
  136. if (attr) \
  137. aattr = adjust_arg(attr); \
  138. ia64_save_scratch_fpregs(fr); \
  139. ret = efi_call_##prefix( \
  140. (efi_get_variable_t *) __va(runtime->get_variable), \
  141. adjust_arg(name), adjust_arg(vendor), aattr, \
  142. adjust_arg(data_size), adjust_arg(data)); \
  143. ia64_load_scratch_fpregs(fr); \
  144. return ret; \
  145. }
  146. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  147. static efi_status_t \
  148. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
  149. efi_guid_t *vendor) \
  150. { \
  151. struct ia64_fpreg fr[6]; \
  152. efi_status_t ret; \
  153. \
  154. ia64_save_scratch_fpregs(fr); \
  155. ret = efi_call_##prefix( \
  156. (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  157. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  158. ia64_load_scratch_fpregs(fr); \
  159. return ret; \
  160. }
  161. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  162. static efi_status_t \
  163. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
  164. u32 attr, unsigned long data_size, \
  165. void *data) \
  166. { \
  167. struct ia64_fpreg fr[6]; \
  168. efi_status_t ret; \
  169. \
  170. ia64_save_scratch_fpregs(fr); \
  171. ret = efi_call_##prefix( \
  172. (efi_set_variable_t *) __va(runtime->set_variable), \
  173. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  174. adjust_arg(data)); \
  175. ia64_load_scratch_fpregs(fr); \
  176. return ret; \
  177. }
  178. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  179. static efi_status_t \
  180. prefix##_get_next_high_mono_count (u32 *count) \
  181. { \
  182. struct ia64_fpreg fr[6]; \
  183. efi_status_t ret; \
  184. \
  185. ia64_save_scratch_fpregs(fr); \
  186. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  187. __va(runtime->get_next_high_mono_count), \
  188. adjust_arg(count)); \
  189. ia64_load_scratch_fpregs(fr); \
  190. return ret; \
  191. }
  192. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  193. static void \
  194. prefix##_reset_system (int reset_type, efi_status_t status, \
  195. unsigned long data_size, efi_char16_t *data) \
  196. { \
  197. struct ia64_fpreg fr[6]; \
  198. efi_char16_t *adata = NULL; \
  199. \
  200. if (data) \
  201. adata = adjust_arg(data); \
  202. \
  203. ia64_save_scratch_fpregs(fr); \
  204. efi_call_##prefix( \
  205. (efi_reset_system_t *) __va(runtime->reset_system), \
  206. reset_type, status, data_size, adata); \
  207. /* should not return, but just in case... */ \
  208. ia64_load_scratch_fpregs(fr); \
  209. }
  210. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  211. STUB_GET_TIME(phys, phys_ptr)
  212. STUB_SET_TIME(phys, phys_ptr)
  213. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  214. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  215. STUB_GET_VARIABLE(phys, phys_ptr)
  216. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  217. STUB_SET_VARIABLE(phys, phys_ptr)
  218. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  219. STUB_RESET_SYSTEM(phys, phys_ptr)
  220. #define id(arg) arg
  221. STUB_GET_TIME(virt, id)
  222. STUB_SET_TIME(virt, id)
  223. STUB_GET_WAKEUP_TIME(virt, id)
  224. STUB_SET_WAKEUP_TIME(virt, id)
  225. STUB_GET_VARIABLE(virt, id)
  226. STUB_GET_NEXT_VARIABLE(virt, id)
  227. STUB_SET_VARIABLE(virt, id)
  228. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  229. STUB_RESET_SYSTEM(virt, id)
  230. void
  231. efi_gettimeofday (struct timespec64 *ts)
  232. {
  233. efi_time_t tm;
  234. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
  235. memset(ts, 0, sizeof(*ts));
  236. return;
  237. }
  238. ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
  239. tm.hour, tm.minute, tm.second);
  240. ts->tv_nsec = tm.nanosecond;
  241. }
  242. static int
  243. is_memory_available (efi_memory_desc_t *md)
  244. {
  245. if (!(md->attribute & EFI_MEMORY_WB))
  246. return 0;
  247. switch (md->type) {
  248. case EFI_LOADER_CODE:
  249. case EFI_LOADER_DATA:
  250. case EFI_BOOT_SERVICES_CODE:
  251. case EFI_BOOT_SERVICES_DATA:
  252. case EFI_CONVENTIONAL_MEMORY:
  253. return 1;
  254. }
  255. return 0;
  256. }
  257. typedef struct kern_memdesc {
  258. u64 attribute;
  259. u64 start;
  260. u64 num_pages;
  261. } kern_memdesc_t;
  262. static kern_memdesc_t *kern_memmap;
  263. #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
  264. static inline u64
  265. kmd_end(kern_memdesc_t *kmd)
  266. {
  267. return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
  268. }
  269. static inline u64
  270. efi_md_end(efi_memory_desc_t *md)
  271. {
  272. return (md->phys_addr + efi_md_size(md));
  273. }
  274. static inline int
  275. efi_wb(efi_memory_desc_t *md)
  276. {
  277. return (md->attribute & EFI_MEMORY_WB);
  278. }
  279. static inline int
  280. efi_uc(efi_memory_desc_t *md)
  281. {
  282. return (md->attribute & EFI_MEMORY_UC);
  283. }
  284. static void
  285. walk (efi_freemem_callback_t callback, void *arg, u64 attr)
  286. {
  287. kern_memdesc_t *k;
  288. u64 start, end, voff;
  289. voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
  290. for (k = kern_memmap; k->start != ~0UL; k++) {
  291. if (k->attribute != attr)
  292. continue;
  293. start = PAGE_ALIGN(k->start);
  294. end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
  295. if (start < end)
  296. if ((*callback)(start + voff, end + voff, arg) < 0)
  297. return;
  298. }
  299. }
  300. /*
  301. * Walk the EFI memory map and call CALLBACK once for each EFI memory
  302. * descriptor that has memory that is available for OS use.
  303. */
  304. void
  305. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  306. {
  307. walk(callback, arg, EFI_MEMORY_WB);
  308. }
  309. /*
  310. * Walk the EFI memory map and call CALLBACK once for each EFI memory
  311. * descriptor that has memory that is available for uncached allocator.
  312. */
  313. void
  314. efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
  315. {
  316. walk(callback, arg, EFI_MEMORY_UC);
  317. }
  318. /*
  319. * Look for the PAL_CODE region reported by EFI and map it using an
  320. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  321. * Abstraction Layer chapter 11 in ADAG
  322. */
  323. void *
  324. efi_get_pal_addr (void)
  325. {
  326. void *efi_map_start, *efi_map_end, *p;
  327. efi_memory_desc_t *md;
  328. u64 efi_desc_size;
  329. int pal_code_count = 0;
  330. u64 vaddr, mask;
  331. efi_map_start = __va(ia64_boot_param->efi_memmap);
  332. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  333. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  334. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  335. md = p;
  336. if (md->type != EFI_PAL_CODE)
  337. continue;
  338. if (++pal_code_count > 1) {
  339. printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
  340. "dropped @ %llx\n", md->phys_addr);
  341. continue;
  342. }
  343. /*
  344. * The only ITLB entry in region 7 that is used is the one
  345. * installed by __start(). That entry covers a 64MB range.
  346. */
  347. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  348. vaddr = PAGE_OFFSET + md->phys_addr;
  349. /*
  350. * We must check that the PAL mapping won't overlap with the
  351. * kernel mapping.
  352. *
  353. * PAL code is guaranteed to be aligned on a power of 2 between
  354. * 4k and 256KB and that only one ITR is needed to map it. This
  355. * implies that the PAL code is always aligned on its size,
  356. * i.e., the closest matching page size supported by the TLB.
  357. * Therefore PAL code is guaranteed never to cross a 64MB unless
  358. * it is bigger than 64MB (very unlikely!). So for now the
  359. * following test is enough to determine whether or not we need
  360. * a dedicated ITR for the PAL code.
  361. */
  362. if ((vaddr & mask) == (KERNEL_START & mask)) {
  363. printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
  364. __func__);
  365. continue;
  366. }
  367. if (efi_md_size(md) > IA64_GRANULE_SIZE)
  368. panic("Whoa! PAL code size bigger than a granule!");
  369. #if EFI_DEBUG
  370. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  371. printk(KERN_INFO "CPU %d: mapping PAL code "
  372. "[0x%llx-0x%llx) into [0x%llx-0x%llx)\n",
  373. smp_processor_id(), md->phys_addr,
  374. md->phys_addr + efi_md_size(md),
  375. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  376. #endif
  377. return __va(md->phys_addr);
  378. }
  379. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
  380. __func__);
  381. return NULL;
  382. }
  383. static u8 __init palo_checksum(u8 *buffer, u32 length)
  384. {
  385. u8 sum = 0;
  386. u8 *end = buffer + length;
  387. while (buffer < end)
  388. sum = (u8) (sum + *(buffer++));
  389. return sum;
  390. }
  391. /*
  392. * Parse and handle PALO table which is published at:
  393. * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
  394. */
  395. static void __init handle_palo(unsigned long phys_addr)
  396. {
  397. struct palo_table *palo = __va(phys_addr);
  398. u8 checksum;
  399. if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
  400. printk(KERN_INFO "PALO signature incorrect.\n");
  401. return;
  402. }
  403. checksum = palo_checksum((u8 *)palo, palo->length);
  404. if (checksum) {
  405. printk(KERN_INFO "PALO checksum incorrect.\n");
  406. return;
  407. }
  408. setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
  409. }
  410. void
  411. efi_map_pal_code (void)
  412. {
  413. void *pal_vaddr = efi_get_pal_addr ();
  414. u64 psr;
  415. if (!pal_vaddr)
  416. return;
  417. /*
  418. * Cannot write to CRx with PSR.ic=1
  419. */
  420. psr = ia64_clear_ic();
  421. ia64_itr(0x1, IA64_TR_PALCODE,
  422. GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  423. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  424. IA64_GRANULE_SHIFT);
  425. ia64_set_psr(psr); /* restore psr */
  426. }
  427. void __init
  428. efi_init (void)
  429. {
  430. const efi_system_table_t *efi_systab;
  431. void *efi_map_start, *efi_map_end;
  432. u64 efi_desc_size;
  433. char *cp;
  434. set_bit(EFI_BOOT, &efi.flags);
  435. set_bit(EFI_64BIT, &efi.flags);
  436. /*
  437. * It's too early to be able to use the standard kernel command line
  438. * support...
  439. */
  440. for (cp = boot_command_line; *cp; ) {
  441. if (memcmp(cp, "mem=", 4) == 0) {
  442. mem_limit = memparse(cp + 4, &cp);
  443. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  444. max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  445. } else if (memcmp(cp, "min_addr=", 9) == 0) {
  446. min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  447. } else {
  448. while (*cp != ' ' && *cp)
  449. ++cp;
  450. while (*cp == ' ')
  451. ++cp;
  452. }
  453. }
  454. if (min_addr != 0UL)
  455. printk(KERN_INFO "Ignoring memory below %lluMB\n",
  456. min_addr >> 20);
  457. if (max_addr != ~0UL)
  458. printk(KERN_INFO "Ignoring memory above %lluMB\n",
  459. max_addr >> 20);
  460. efi_systab = __va(ia64_boot_param->efi_systab);
  461. /*
  462. * Verify the EFI Table
  463. */
  464. if (efi_systab == NULL)
  465. panic("Whoa! Can't find EFI system table.\n");
  466. if (efi_systab_check_header(&efi_systab->hdr, 1))
  467. panic("Whoa! EFI system table signature incorrect\n");
  468. efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
  469. palo_phys = EFI_INVALID_TABLE_ADDR;
  470. if (efi_config_parse_tables(__va(efi_systab->tables),
  471. efi_systab->nr_tables,
  472. arch_tables) != 0)
  473. return;
  474. if (palo_phys != EFI_INVALID_TABLE_ADDR)
  475. handle_palo(palo_phys);
  476. runtime = __va(efi_systab->runtime);
  477. efi.get_time = phys_get_time;
  478. efi.set_time = phys_set_time;
  479. efi.get_wakeup_time = phys_get_wakeup_time;
  480. efi.set_wakeup_time = phys_set_wakeup_time;
  481. efi.get_variable = phys_get_variable;
  482. efi.get_next_variable = phys_get_next_variable;
  483. efi.set_variable = phys_set_variable;
  484. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  485. efi.reset_system = phys_reset_system;
  486. efi_map_start = __va(ia64_boot_param->efi_memmap);
  487. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  488. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  489. #if EFI_DEBUG
  490. /* print EFI memory map: */
  491. {
  492. efi_memory_desc_t *md;
  493. void *p;
  494. unsigned int i;
  495. for (i = 0, p = efi_map_start; p < efi_map_end;
  496. ++i, p += efi_desc_size)
  497. {
  498. const char *unit;
  499. unsigned long size;
  500. char buf[64];
  501. md = p;
  502. size = md->num_pages << EFI_PAGE_SHIFT;
  503. if ((size >> 40) > 0) {
  504. size >>= 40;
  505. unit = "TB";
  506. } else if ((size >> 30) > 0) {
  507. size >>= 30;
  508. unit = "GB";
  509. } else if ((size >> 20) > 0) {
  510. size >>= 20;
  511. unit = "MB";
  512. } else {
  513. size >>= 10;
  514. unit = "KB";
  515. }
  516. printk("mem%02d: %s "
  517. "range=[0x%016llx-0x%016llx) (%4lu%s)\n",
  518. i, efi_md_typeattr_format(buf, sizeof(buf), md),
  519. md->phys_addr,
  520. md->phys_addr + efi_md_size(md), size, unit);
  521. }
  522. }
  523. #endif
  524. efi_map_pal_code();
  525. efi_enter_virtual_mode();
  526. }
  527. void
  528. efi_enter_virtual_mode (void)
  529. {
  530. void *efi_map_start, *efi_map_end, *p;
  531. efi_memory_desc_t *md;
  532. efi_status_t status;
  533. u64 efi_desc_size;
  534. efi_map_start = __va(ia64_boot_param->efi_memmap);
  535. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  536. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  537. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  538. md = p;
  539. if (md->attribute & EFI_MEMORY_RUNTIME) {
  540. /*
  541. * Some descriptors have multiple bits set, so the
  542. * order of the tests is relevant.
  543. */
  544. if (md->attribute & EFI_MEMORY_WB) {
  545. md->virt_addr = (u64) __va(md->phys_addr);
  546. } else if (md->attribute & EFI_MEMORY_UC) {
  547. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  548. } else if (md->attribute & EFI_MEMORY_WC) {
  549. #if 0
  550. md->virt_addr = ia64_remap(md->phys_addr,
  551. (_PAGE_A |
  552. _PAGE_P |
  553. _PAGE_D |
  554. _PAGE_MA_WC |
  555. _PAGE_PL_0 |
  556. _PAGE_AR_RW));
  557. #else
  558. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  559. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  560. #endif
  561. } else if (md->attribute & EFI_MEMORY_WT) {
  562. #if 0
  563. md->virt_addr = ia64_remap(md->phys_addr,
  564. (_PAGE_A |
  565. _PAGE_P |
  566. _PAGE_D |
  567. _PAGE_MA_WT |
  568. _PAGE_PL_0 |
  569. _PAGE_AR_RW));
  570. #else
  571. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  572. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  573. #endif
  574. }
  575. }
  576. }
  577. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  578. ia64_boot_param->efi_memmap_size,
  579. efi_desc_size,
  580. ia64_boot_param->efi_memdesc_version,
  581. ia64_boot_param->efi_memmap);
  582. if (status != EFI_SUCCESS) {
  583. printk(KERN_WARNING "warning: unable to switch EFI into "
  584. "virtual mode (status=%lu)\n", status);
  585. return;
  586. }
  587. set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
  588. /*
  589. * Now that EFI is in virtual mode, we call the EFI functions more
  590. * efficiently:
  591. */
  592. efi.get_time = virt_get_time;
  593. efi.set_time = virt_set_time;
  594. efi.get_wakeup_time = virt_get_wakeup_time;
  595. efi.set_wakeup_time = virt_set_wakeup_time;
  596. efi.get_variable = virt_get_variable;
  597. efi.get_next_variable = virt_get_next_variable;
  598. efi.set_variable = virt_set_variable;
  599. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  600. efi.reset_system = virt_reset_system;
  601. }
  602. /*
  603. * Walk the EFI memory map looking for the I/O port range. There can only be
  604. * one entry of this type, other I/O port ranges should be described via ACPI.
  605. */
  606. u64
  607. efi_get_iobase (void)
  608. {
  609. void *efi_map_start, *efi_map_end, *p;
  610. efi_memory_desc_t *md;
  611. u64 efi_desc_size;
  612. efi_map_start = __va(ia64_boot_param->efi_memmap);
  613. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  614. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  615. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  616. md = p;
  617. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  618. if (md->attribute & EFI_MEMORY_UC)
  619. return md->phys_addr;
  620. }
  621. }
  622. return 0;
  623. }
  624. static struct kern_memdesc *
  625. kern_memory_descriptor (unsigned long phys_addr)
  626. {
  627. struct kern_memdesc *md;
  628. for (md = kern_memmap; md->start != ~0UL; md++) {
  629. if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
  630. return md;
  631. }
  632. return NULL;
  633. }
  634. static efi_memory_desc_t *
  635. efi_memory_descriptor (unsigned long phys_addr)
  636. {
  637. void *efi_map_start, *efi_map_end, *p;
  638. efi_memory_desc_t *md;
  639. u64 efi_desc_size;
  640. efi_map_start = __va(ia64_boot_param->efi_memmap);
  641. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  642. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  643. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  644. md = p;
  645. if (phys_addr - md->phys_addr < efi_md_size(md))
  646. return md;
  647. }
  648. return NULL;
  649. }
  650. static int
  651. efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
  652. {
  653. void *efi_map_start, *efi_map_end, *p;
  654. efi_memory_desc_t *md;
  655. u64 efi_desc_size;
  656. unsigned long end;
  657. efi_map_start = __va(ia64_boot_param->efi_memmap);
  658. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  659. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  660. end = phys_addr + size;
  661. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  662. md = p;
  663. if (md->phys_addr < end && efi_md_end(md) > phys_addr)
  664. return 1;
  665. }
  666. return 0;
  667. }
  668. int
  669. efi_mem_type (unsigned long phys_addr)
  670. {
  671. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  672. if (md)
  673. return md->type;
  674. return -EINVAL;
  675. }
  676. u64
  677. efi_mem_attributes (unsigned long phys_addr)
  678. {
  679. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  680. if (md)
  681. return md->attribute;
  682. return 0;
  683. }
  684. EXPORT_SYMBOL(efi_mem_attributes);
  685. u64
  686. efi_mem_attribute (unsigned long phys_addr, unsigned long size)
  687. {
  688. unsigned long end = phys_addr + size;
  689. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  690. u64 attr;
  691. if (!md)
  692. return 0;
  693. /*
  694. * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
  695. * the kernel that firmware needs this region mapped.
  696. */
  697. attr = md->attribute & ~EFI_MEMORY_RUNTIME;
  698. do {
  699. unsigned long md_end = efi_md_end(md);
  700. if (end <= md_end)
  701. return attr;
  702. md = efi_memory_descriptor(md_end);
  703. if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
  704. return 0;
  705. } while (md);
  706. return 0; /* never reached */
  707. }
  708. u64
  709. kern_mem_attribute (unsigned long phys_addr, unsigned long size)
  710. {
  711. unsigned long end = phys_addr + size;
  712. struct kern_memdesc *md;
  713. u64 attr;
  714. /*
  715. * This is a hack for ioremap calls before we set up kern_memmap.
  716. * Maybe we should do efi_memmap_init() earlier instead.
  717. */
  718. if (!kern_memmap) {
  719. attr = efi_mem_attribute(phys_addr, size);
  720. if (attr & EFI_MEMORY_WB)
  721. return EFI_MEMORY_WB;
  722. return 0;
  723. }
  724. md = kern_memory_descriptor(phys_addr);
  725. if (!md)
  726. return 0;
  727. attr = md->attribute;
  728. do {
  729. unsigned long md_end = kmd_end(md);
  730. if (end <= md_end)
  731. return attr;
  732. md = kern_memory_descriptor(md_end);
  733. if (!md || md->attribute != attr)
  734. return 0;
  735. } while (md);
  736. return 0; /* never reached */
  737. }
  738. int
  739. valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
  740. {
  741. u64 attr;
  742. /*
  743. * /dev/mem reads and writes use copy_to_user(), which implicitly
  744. * uses a granule-sized kernel identity mapping. It's really
  745. * only safe to do this for regions in kern_memmap. For more
  746. * details, see Documentation/ia64/aliasing.rst.
  747. */
  748. attr = kern_mem_attribute(phys_addr, size);
  749. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  750. return 1;
  751. return 0;
  752. }
  753. int
  754. valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
  755. {
  756. unsigned long phys_addr = pfn << PAGE_SHIFT;
  757. u64 attr;
  758. attr = efi_mem_attribute(phys_addr, size);
  759. /*
  760. * /dev/mem mmap uses normal user pages, so we don't need the entire
  761. * granule, but the entire region we're mapping must support the same
  762. * attribute.
  763. */
  764. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  765. return 1;
  766. /*
  767. * Intel firmware doesn't tell us about all the MMIO regions, so
  768. * in general we have to allow mmap requests. But if EFI *does*
  769. * tell us about anything inside this region, we should deny it.
  770. * The user can always map a smaller region to avoid the overlap.
  771. */
  772. if (efi_memmap_intersects(phys_addr, size))
  773. return 0;
  774. return 1;
  775. }
  776. pgprot_t
  777. phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
  778. pgprot_t vma_prot)
  779. {
  780. unsigned long phys_addr = pfn << PAGE_SHIFT;
  781. u64 attr;
  782. /*
  783. * For /dev/mem mmap, we use user mappings, but if the region is
  784. * in kern_memmap (and hence may be covered by a kernel mapping),
  785. * we must use the same attribute as the kernel mapping.
  786. */
  787. attr = kern_mem_attribute(phys_addr, size);
  788. if (attr & EFI_MEMORY_WB)
  789. return pgprot_cacheable(vma_prot);
  790. else if (attr & EFI_MEMORY_UC)
  791. return pgprot_noncached(vma_prot);
  792. /*
  793. * Some chipsets don't support UC access to memory. If
  794. * WB is supported, we prefer that.
  795. */
  796. if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
  797. return pgprot_cacheable(vma_prot);
  798. return pgprot_noncached(vma_prot);
  799. }
  800. int __init
  801. efi_uart_console_only(void)
  802. {
  803. efi_status_t status;
  804. char *s, name[] = "ConOut";
  805. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  806. efi_char16_t *utf16, name_utf16[32];
  807. unsigned char data[1024];
  808. unsigned long size = sizeof(data);
  809. struct efi_generic_dev_path *hdr, *end_addr;
  810. int uart = 0;
  811. /* Convert to UTF-16 */
  812. utf16 = name_utf16;
  813. s = name;
  814. while (*s)
  815. *utf16++ = *s++ & 0x7f;
  816. *utf16 = 0;
  817. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  818. if (status != EFI_SUCCESS) {
  819. printk(KERN_ERR "No EFI %s variable?\n", name);
  820. return 0;
  821. }
  822. hdr = (struct efi_generic_dev_path *) data;
  823. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  824. while (hdr < end_addr) {
  825. if (hdr->type == EFI_DEV_MSG &&
  826. hdr->sub_type == EFI_DEV_MSG_UART)
  827. uart = 1;
  828. else if (hdr->type == EFI_DEV_END_PATH ||
  829. hdr->type == EFI_DEV_END_PATH2) {
  830. if (!uart)
  831. return 0;
  832. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  833. return 1;
  834. uart = 0;
  835. }
  836. hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
  837. }
  838. printk(KERN_ERR "Malformed %s value\n", name);
  839. return 0;
  840. }
  841. /*
  842. * Look for the first granule aligned memory descriptor memory
  843. * that is big enough to hold EFI memory map. Make sure this
  844. * descriptor is at least granule sized so it does not get trimmed
  845. */
  846. struct kern_memdesc *
  847. find_memmap_space (void)
  848. {
  849. u64 contig_low=0, contig_high=0;
  850. u64 as = 0, ae;
  851. void *efi_map_start, *efi_map_end, *p, *q;
  852. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  853. u64 space_needed, efi_desc_size;
  854. unsigned long total_mem = 0;
  855. efi_map_start = __va(ia64_boot_param->efi_memmap);
  856. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  857. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  858. /*
  859. * Worst case: we need 3 kernel descriptors for each efi descriptor
  860. * (if every entry has a WB part in the middle, and UC head and tail),
  861. * plus one for the end marker.
  862. */
  863. space_needed = sizeof(kern_memdesc_t) *
  864. (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
  865. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  866. md = p;
  867. if (!efi_wb(md)) {
  868. continue;
  869. }
  870. if (pmd == NULL || !efi_wb(pmd) ||
  871. efi_md_end(pmd) != md->phys_addr) {
  872. contig_low = GRANULEROUNDUP(md->phys_addr);
  873. contig_high = efi_md_end(md);
  874. for (q = p + efi_desc_size; q < efi_map_end;
  875. q += efi_desc_size) {
  876. check_md = q;
  877. if (!efi_wb(check_md))
  878. break;
  879. if (contig_high != check_md->phys_addr)
  880. break;
  881. contig_high = efi_md_end(check_md);
  882. }
  883. contig_high = GRANULEROUNDDOWN(contig_high);
  884. }
  885. if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
  886. continue;
  887. /* Round ends inward to granule boundaries */
  888. as = max(contig_low, md->phys_addr);
  889. ae = min(contig_high, efi_md_end(md));
  890. /* keep within max_addr= and min_addr= command line arg */
  891. as = max(as, min_addr);
  892. ae = min(ae, max_addr);
  893. if (ae <= as)
  894. continue;
  895. /* avoid going over mem= command line arg */
  896. if (total_mem + (ae - as) > mem_limit)
  897. ae -= total_mem + (ae - as) - mem_limit;
  898. if (ae <= as)
  899. continue;
  900. if (ae - as > space_needed)
  901. break;
  902. }
  903. if (p >= efi_map_end)
  904. panic("Can't allocate space for kernel memory descriptors");
  905. return __va(as);
  906. }
  907. /*
  908. * Walk the EFI memory map and gather all memory available for kernel
  909. * to use. We can allocate partial granules only if the unavailable
  910. * parts exist, and are WB.
  911. */
  912. unsigned long
  913. efi_memmap_init(u64 *s, u64 *e)
  914. {
  915. struct kern_memdesc *k, *prev = NULL;
  916. u64 contig_low=0, contig_high=0;
  917. u64 as, ae, lim;
  918. void *efi_map_start, *efi_map_end, *p, *q;
  919. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  920. u64 efi_desc_size;
  921. unsigned long total_mem = 0;
  922. k = kern_memmap = find_memmap_space();
  923. efi_map_start = __va(ia64_boot_param->efi_memmap);
  924. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  925. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  926. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  927. md = p;
  928. if (!efi_wb(md)) {
  929. if (efi_uc(md) &&
  930. (md->type == EFI_CONVENTIONAL_MEMORY ||
  931. md->type == EFI_BOOT_SERVICES_DATA)) {
  932. k->attribute = EFI_MEMORY_UC;
  933. k->start = md->phys_addr;
  934. k->num_pages = md->num_pages;
  935. k++;
  936. }
  937. continue;
  938. }
  939. if (pmd == NULL || !efi_wb(pmd) ||
  940. efi_md_end(pmd) != md->phys_addr) {
  941. contig_low = GRANULEROUNDUP(md->phys_addr);
  942. contig_high = efi_md_end(md);
  943. for (q = p + efi_desc_size; q < efi_map_end;
  944. q += efi_desc_size) {
  945. check_md = q;
  946. if (!efi_wb(check_md))
  947. break;
  948. if (contig_high != check_md->phys_addr)
  949. break;
  950. contig_high = efi_md_end(check_md);
  951. }
  952. contig_high = GRANULEROUNDDOWN(contig_high);
  953. }
  954. if (!is_memory_available(md))
  955. continue;
  956. /*
  957. * Round ends inward to granule boundaries
  958. * Give trimmings to uncached allocator
  959. */
  960. if (md->phys_addr < contig_low) {
  961. lim = min(efi_md_end(md), contig_low);
  962. if (efi_uc(md)) {
  963. if (k > kern_memmap &&
  964. (k-1)->attribute == EFI_MEMORY_UC &&
  965. kmd_end(k-1) == md->phys_addr) {
  966. (k-1)->num_pages +=
  967. (lim - md->phys_addr)
  968. >> EFI_PAGE_SHIFT;
  969. } else {
  970. k->attribute = EFI_MEMORY_UC;
  971. k->start = md->phys_addr;
  972. k->num_pages = (lim - md->phys_addr)
  973. >> EFI_PAGE_SHIFT;
  974. k++;
  975. }
  976. }
  977. as = contig_low;
  978. } else
  979. as = md->phys_addr;
  980. if (efi_md_end(md) > contig_high) {
  981. lim = max(md->phys_addr, contig_high);
  982. if (efi_uc(md)) {
  983. if (lim == md->phys_addr && k > kern_memmap &&
  984. (k-1)->attribute == EFI_MEMORY_UC &&
  985. kmd_end(k-1) == md->phys_addr) {
  986. (k-1)->num_pages += md->num_pages;
  987. } else {
  988. k->attribute = EFI_MEMORY_UC;
  989. k->start = lim;
  990. k->num_pages = (efi_md_end(md) - lim)
  991. >> EFI_PAGE_SHIFT;
  992. k++;
  993. }
  994. }
  995. ae = contig_high;
  996. } else
  997. ae = efi_md_end(md);
  998. /* keep within max_addr= and min_addr= command line arg */
  999. as = max(as, min_addr);
  1000. ae = min(ae, max_addr);
  1001. if (ae <= as)
  1002. continue;
  1003. /* avoid going over mem= command line arg */
  1004. if (total_mem + (ae - as) > mem_limit)
  1005. ae -= total_mem + (ae - as) - mem_limit;
  1006. if (ae <= as)
  1007. continue;
  1008. if (prev && kmd_end(prev) == md->phys_addr) {
  1009. prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
  1010. total_mem += ae - as;
  1011. continue;
  1012. }
  1013. k->attribute = EFI_MEMORY_WB;
  1014. k->start = as;
  1015. k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
  1016. total_mem += ae - as;
  1017. prev = k++;
  1018. }
  1019. k->start = ~0L; /* end-marker */
  1020. /* reserve the memory we are using for kern_memmap */
  1021. *s = (u64)kern_memmap;
  1022. *e = (u64)++k;
  1023. return total_mem;
  1024. }
  1025. void
  1026. efi_initialize_iomem_resources(struct resource *code_resource,
  1027. struct resource *data_resource,
  1028. struct resource *bss_resource)
  1029. {
  1030. struct resource *res;
  1031. void *efi_map_start, *efi_map_end, *p;
  1032. efi_memory_desc_t *md;
  1033. u64 efi_desc_size;
  1034. char *name;
  1035. unsigned long flags, desc;
  1036. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1037. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1038. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1039. res = NULL;
  1040. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1041. md = p;
  1042. if (md->num_pages == 0) /* should not happen */
  1043. continue;
  1044. flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  1045. desc = IORES_DESC_NONE;
  1046. switch (md->type) {
  1047. case EFI_MEMORY_MAPPED_IO:
  1048. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  1049. continue;
  1050. case EFI_LOADER_CODE:
  1051. case EFI_LOADER_DATA:
  1052. case EFI_BOOT_SERVICES_DATA:
  1053. case EFI_BOOT_SERVICES_CODE:
  1054. case EFI_CONVENTIONAL_MEMORY:
  1055. if (md->attribute & EFI_MEMORY_WP) {
  1056. name = "System ROM";
  1057. flags |= IORESOURCE_READONLY;
  1058. } else if (md->attribute == EFI_MEMORY_UC) {
  1059. name = "Uncached RAM";
  1060. } else {
  1061. name = "System RAM";
  1062. flags |= IORESOURCE_SYSRAM;
  1063. }
  1064. break;
  1065. case EFI_ACPI_MEMORY_NVS:
  1066. name = "ACPI Non-volatile Storage";
  1067. desc = IORES_DESC_ACPI_NV_STORAGE;
  1068. break;
  1069. case EFI_UNUSABLE_MEMORY:
  1070. name = "reserved";
  1071. flags |= IORESOURCE_DISABLED;
  1072. break;
  1073. case EFI_PERSISTENT_MEMORY:
  1074. name = "Persistent Memory";
  1075. desc = IORES_DESC_PERSISTENT_MEMORY;
  1076. break;
  1077. case EFI_RESERVED_TYPE:
  1078. case EFI_RUNTIME_SERVICES_CODE:
  1079. case EFI_RUNTIME_SERVICES_DATA:
  1080. case EFI_ACPI_RECLAIM_MEMORY:
  1081. default:
  1082. name = "reserved";
  1083. break;
  1084. }
  1085. if ((res = kzalloc(sizeof(struct resource),
  1086. GFP_KERNEL)) == NULL) {
  1087. printk(KERN_ERR
  1088. "failed to allocate resource for iomem\n");
  1089. return;
  1090. }
  1091. res->name = name;
  1092. res->start = md->phys_addr;
  1093. res->end = md->phys_addr + efi_md_size(md) - 1;
  1094. res->flags = flags;
  1095. res->desc = desc;
  1096. if (insert_resource(&iomem_resource, res) < 0)
  1097. kfree(res);
  1098. else {
  1099. /*
  1100. * We don't know which region contains
  1101. * kernel data so we try it repeatedly and
  1102. * let the resource manager test it.
  1103. */
  1104. insert_resource(res, code_resource);
  1105. insert_resource(res, data_resource);
  1106. insert_resource(res, bss_resource);
  1107. #ifdef CONFIG_KEXEC
  1108. insert_resource(res, &efi_memmap_res);
  1109. insert_resource(res, &boot_param_res);
  1110. if (crashk_res.end > crashk_res.start)
  1111. insert_resource(res, &crashk_res);
  1112. #endif
  1113. }
  1114. }
  1115. }
  1116. #ifdef CONFIG_KEXEC
  1117. /* find a block of memory aligned to 64M exclude reserved regions
  1118. rsvd_regions are sorted
  1119. */
  1120. unsigned long __init
  1121. kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
  1122. {
  1123. int i;
  1124. u64 start, end;
  1125. u64 alignment = 1UL << _PAGE_SIZE_64M;
  1126. void *efi_map_start, *efi_map_end, *p;
  1127. efi_memory_desc_t *md;
  1128. u64 efi_desc_size;
  1129. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1130. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1131. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1132. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1133. md = p;
  1134. if (!efi_wb(md))
  1135. continue;
  1136. start = ALIGN(md->phys_addr, alignment);
  1137. end = efi_md_end(md);
  1138. for (i = 0; i < n; i++) {
  1139. if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
  1140. if (__pa(r[i].start) > start + size)
  1141. return start;
  1142. start = ALIGN(__pa(r[i].end), alignment);
  1143. if (i < n-1 &&
  1144. __pa(r[i+1].start) < start + size)
  1145. continue;
  1146. else
  1147. break;
  1148. }
  1149. }
  1150. if (end > start + size)
  1151. return start;
  1152. }
  1153. printk(KERN_WARNING
  1154. "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
  1155. return ~0UL;
  1156. }
  1157. #endif
  1158. #ifdef CONFIG_CRASH_DUMP
  1159. /* locate the size find a the descriptor at a certain address */
  1160. unsigned long __init
  1161. vmcore_find_descriptor_size (unsigned long address)
  1162. {
  1163. void *efi_map_start, *efi_map_end, *p;
  1164. efi_memory_desc_t *md;
  1165. u64 efi_desc_size;
  1166. unsigned long ret = 0;
  1167. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1168. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1169. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1170. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1171. md = p;
  1172. if (efi_wb(md) && md->type == EFI_LOADER_DATA
  1173. && md->phys_addr == address) {
  1174. ret = efi_md_size(md);
  1175. break;
  1176. }
  1177. }
  1178. if (ret == 0)
  1179. printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
  1180. return ret;
  1181. }
  1182. #endif
  1183. char *efi_systab_show_arch(char *str)
  1184. {
  1185. if (mps_phys != EFI_INVALID_TABLE_ADDR)
  1186. str += sprintf(str, "MPS=0x%lx\n", mps_phys);
  1187. if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
  1188. str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
  1189. return str;
  1190. }