ptrace.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. // SPDX-License-Identifier: GPL-2.0
  2. // Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd.
  3. #include <linux/audit.h>
  4. #include <linux/elf.h>
  5. #include <linux/errno.h>
  6. #include <linux/kernel.h>
  7. #include <linux/mm.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/regset.h>
  10. #include <linux/sched.h>
  11. #include <linux/sched/task_stack.h>
  12. #include <linux/signal.h>
  13. #include <linux/smp.h>
  14. #include <linux/uaccess.h>
  15. #include <linux/user.h>
  16. #include <asm/thread_info.h>
  17. #include <asm/page.h>
  18. #include <asm/processor.h>
  19. #include <asm/asm-offsets.h>
  20. #include <abi/regdef.h>
  21. #include <abi/ckmmu.h>
  22. #define CREATE_TRACE_POINTS
  23. #include <trace/events/syscalls.h>
  24. /* sets the trace bits. */
  25. #define TRACE_MODE_SI (1 << 14)
  26. #define TRACE_MODE_RUN 0
  27. #define TRACE_MODE_MASK ~(0x3 << 14)
  28. /*
  29. * Make sure the single step bit is not set.
  30. */
  31. static void singlestep_disable(struct task_struct *tsk)
  32. {
  33. struct pt_regs *regs;
  34. regs = task_pt_regs(tsk);
  35. regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
  36. /* Enable irq */
  37. regs->sr |= BIT(6);
  38. }
  39. static void singlestep_enable(struct task_struct *tsk)
  40. {
  41. struct pt_regs *regs;
  42. regs = task_pt_regs(tsk);
  43. regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
  44. /* Disable irq */
  45. regs->sr &= ~BIT(6);
  46. }
  47. /*
  48. * Make sure the single step bit is set.
  49. */
  50. void user_enable_single_step(struct task_struct *child)
  51. {
  52. singlestep_enable(child);
  53. }
  54. void user_disable_single_step(struct task_struct *child)
  55. {
  56. singlestep_disable(child);
  57. }
  58. enum csky_regset {
  59. REGSET_GPR,
  60. REGSET_FPR,
  61. };
  62. static int gpr_get(struct task_struct *target,
  63. const struct user_regset *regset,
  64. struct membuf to)
  65. {
  66. struct pt_regs *regs = task_pt_regs(target);
  67. /* Abiv1 regs->tls is fake and we need sync here. */
  68. regs->tls = task_thread_info(target)->tp_value;
  69. return membuf_write(&to, regs, sizeof(*regs));
  70. }
  71. static int gpr_set(struct task_struct *target,
  72. const struct user_regset *regset,
  73. unsigned int pos, unsigned int count,
  74. const void *kbuf, const void __user *ubuf)
  75. {
  76. int ret;
  77. struct pt_regs regs;
  78. ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &regs, 0, -1);
  79. if (ret)
  80. return ret;
  81. /* BIT(0) of regs.sr is Condition Code/Carry bit */
  82. regs.sr = (regs.sr & BIT(0)) | (task_pt_regs(target)->sr & ~BIT(0));
  83. #ifdef CONFIG_CPU_HAS_HILO
  84. regs.dcsr = task_pt_regs(target)->dcsr;
  85. #endif
  86. task_thread_info(target)->tp_value = regs.tls;
  87. *task_pt_regs(target) = regs;
  88. return 0;
  89. }
  90. static int fpr_get(struct task_struct *target,
  91. const struct user_regset *regset,
  92. struct membuf to)
  93. {
  94. struct user_fp *regs = (struct user_fp *)&target->thread.user_fp;
  95. #if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP)
  96. int i;
  97. struct user_fp tmp = *regs;
  98. for (i = 0; i < 16; i++) {
  99. tmp.vr[i*4] = regs->vr[i*2];
  100. tmp.vr[i*4 + 1] = regs->vr[i*2 + 1];
  101. }
  102. for (i = 0; i < 32; i++)
  103. tmp.vr[64 + i] = regs->vr[32 + i];
  104. return membuf_write(&to, &tmp, sizeof(tmp));
  105. #else
  106. return membuf_write(&to, regs, sizeof(*regs));
  107. #endif
  108. }
  109. static int fpr_set(struct task_struct *target,
  110. const struct user_regset *regset,
  111. unsigned int pos, unsigned int count,
  112. const void *kbuf, const void __user *ubuf)
  113. {
  114. int ret;
  115. struct user_fp *regs = (struct user_fp *)&target->thread.user_fp;
  116. #if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP)
  117. int i;
  118. struct user_fp tmp;
  119. ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tmp, 0, -1);
  120. *regs = tmp;
  121. for (i = 0; i < 16; i++) {
  122. regs->vr[i*2] = tmp.vr[i*4];
  123. regs->vr[i*2 + 1] = tmp.vr[i*4 + 1];
  124. }
  125. for (i = 0; i < 32; i++)
  126. regs->vr[32 + i] = tmp.vr[64 + i];
  127. #else
  128. ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, regs, 0, -1);
  129. #endif
  130. return ret;
  131. }
  132. static const struct user_regset csky_regsets[] = {
  133. [REGSET_GPR] = {
  134. .core_note_type = NT_PRSTATUS,
  135. .n = sizeof(struct pt_regs) / sizeof(u32),
  136. .size = sizeof(u32),
  137. .align = sizeof(u32),
  138. .regset_get = gpr_get,
  139. .set = gpr_set,
  140. },
  141. [REGSET_FPR] = {
  142. .core_note_type = NT_PRFPREG,
  143. .n = sizeof(struct user_fp) / sizeof(u32),
  144. .size = sizeof(u32),
  145. .align = sizeof(u32),
  146. .regset_get = fpr_get,
  147. .set = fpr_set,
  148. },
  149. };
  150. static const struct user_regset_view user_csky_view = {
  151. .name = "csky",
  152. .e_machine = ELF_ARCH,
  153. .regsets = csky_regsets,
  154. .n = ARRAY_SIZE(csky_regsets),
  155. };
  156. const struct user_regset_view *task_user_regset_view(struct task_struct *task)
  157. {
  158. return &user_csky_view;
  159. }
  160. struct pt_regs_offset {
  161. const char *name;
  162. int offset;
  163. };
  164. #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
  165. #define REG_OFFSET_END {.name = NULL, .offset = 0}
  166. static const struct pt_regs_offset regoffset_table[] = {
  167. REG_OFFSET_NAME(tls),
  168. REG_OFFSET_NAME(lr),
  169. REG_OFFSET_NAME(pc),
  170. REG_OFFSET_NAME(sr),
  171. REG_OFFSET_NAME(usp),
  172. REG_OFFSET_NAME(orig_a0),
  173. REG_OFFSET_NAME(a0),
  174. REG_OFFSET_NAME(a1),
  175. REG_OFFSET_NAME(a2),
  176. REG_OFFSET_NAME(a3),
  177. REG_OFFSET_NAME(regs[0]),
  178. REG_OFFSET_NAME(regs[1]),
  179. REG_OFFSET_NAME(regs[2]),
  180. REG_OFFSET_NAME(regs[3]),
  181. REG_OFFSET_NAME(regs[4]),
  182. REG_OFFSET_NAME(regs[5]),
  183. REG_OFFSET_NAME(regs[6]),
  184. REG_OFFSET_NAME(regs[7]),
  185. REG_OFFSET_NAME(regs[8]),
  186. REG_OFFSET_NAME(regs[9]),
  187. #if defined(__CSKYABIV2__)
  188. REG_OFFSET_NAME(exregs[0]),
  189. REG_OFFSET_NAME(exregs[1]),
  190. REG_OFFSET_NAME(exregs[2]),
  191. REG_OFFSET_NAME(exregs[3]),
  192. REG_OFFSET_NAME(exregs[4]),
  193. REG_OFFSET_NAME(exregs[5]),
  194. REG_OFFSET_NAME(exregs[6]),
  195. REG_OFFSET_NAME(exregs[7]),
  196. REG_OFFSET_NAME(exregs[8]),
  197. REG_OFFSET_NAME(exregs[9]),
  198. REG_OFFSET_NAME(exregs[10]),
  199. REG_OFFSET_NAME(exregs[11]),
  200. REG_OFFSET_NAME(exregs[12]),
  201. REG_OFFSET_NAME(exregs[13]),
  202. REG_OFFSET_NAME(exregs[14]),
  203. REG_OFFSET_NAME(rhi),
  204. REG_OFFSET_NAME(rlo),
  205. REG_OFFSET_NAME(dcsr),
  206. #endif
  207. REG_OFFSET_END,
  208. };
  209. /**
  210. * regs_query_register_offset() - query register offset from its name
  211. * @name: the name of a register
  212. *
  213. * regs_query_register_offset() returns the offset of a register in struct
  214. * pt_regs from its name. If the name is invalid, this returns -EINVAL;
  215. */
  216. int regs_query_register_offset(const char *name)
  217. {
  218. const struct pt_regs_offset *roff;
  219. for (roff = regoffset_table; roff->name != NULL; roff++)
  220. if (!strcmp(roff->name, name))
  221. return roff->offset;
  222. return -EINVAL;
  223. }
  224. /**
  225. * regs_within_kernel_stack() - check the address in the stack
  226. * @regs: pt_regs which contains kernel stack pointer.
  227. * @addr: address which is checked.
  228. *
  229. * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
  230. * If @addr is within the kernel stack, it returns true. If not, returns false.
  231. */
  232. static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
  233. {
  234. return (addr & ~(THREAD_SIZE - 1)) ==
  235. (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1));
  236. }
  237. /**
  238. * regs_get_kernel_stack_nth() - get Nth entry of the stack
  239. * @regs: pt_regs which contains kernel stack pointer.
  240. * @n: stack entry number.
  241. *
  242. * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
  243. * is specified by @regs. If the @n th entry is NOT in the kernel stack,
  244. * this returns 0.
  245. */
  246. unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
  247. {
  248. unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
  249. addr += n;
  250. if (regs_within_kernel_stack(regs, (unsigned long)addr))
  251. return *addr;
  252. else
  253. return 0;
  254. }
  255. void ptrace_disable(struct task_struct *child)
  256. {
  257. singlestep_disable(child);
  258. }
  259. long arch_ptrace(struct task_struct *child, long request,
  260. unsigned long addr, unsigned long data)
  261. {
  262. long ret = -EIO;
  263. switch (request) {
  264. default:
  265. ret = ptrace_request(child, request, addr, data);
  266. break;
  267. }
  268. return ret;
  269. }
  270. asmlinkage int syscall_trace_enter(struct pt_regs *regs)
  271. {
  272. if (test_thread_flag(TIF_SYSCALL_TRACE))
  273. if (ptrace_report_syscall_entry(regs))
  274. return -1;
  275. if (secure_computing() == -1)
  276. return -1;
  277. if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
  278. trace_sys_enter(regs, syscall_get_nr(current, regs));
  279. audit_syscall_entry(regs_syscallid(regs), regs->a0, regs->a1, regs->a2, regs->a3);
  280. return 0;
  281. }
  282. asmlinkage void syscall_trace_exit(struct pt_regs *regs)
  283. {
  284. audit_syscall_exit(regs);
  285. if (test_thread_flag(TIF_SYSCALL_TRACE))
  286. ptrace_report_syscall_exit(regs, 0);
  287. if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
  288. trace_sys_exit(regs, syscall_get_return_value(current, regs));
  289. }
  290. #ifdef CONFIG_CPU_CK860
  291. static void show_iutlb(void)
  292. {
  293. int entry, i;
  294. unsigned long flags;
  295. unsigned long oldpid;
  296. unsigned long entryhi[16], entrylo0[16], entrylo1[16];
  297. oldpid = read_mmu_entryhi();
  298. entry = 0x8000;
  299. local_irq_save(flags);
  300. for (i = 0; i < 16; i++) {
  301. write_mmu_index(entry);
  302. tlb_read();
  303. entryhi[i] = read_mmu_entryhi();
  304. entrylo0[i] = read_mmu_entrylo0();
  305. entrylo1[i] = read_mmu_entrylo1();
  306. entry++;
  307. }
  308. local_irq_restore(flags);
  309. write_mmu_entryhi(oldpid);
  310. printk("\n\n\n");
  311. for (i = 0; i < 16; i++)
  312. printk("iutlb[%d]: entryhi - 0x%lx; entrylo0 - 0x%lx;"
  313. " entrylo1 - 0x%lx\n",
  314. i, entryhi[i], entrylo0[i], entrylo1[i]);
  315. printk("\n\n\n");
  316. }
  317. static void show_dutlb(void)
  318. {
  319. int entry, i;
  320. unsigned long flags;
  321. unsigned long oldpid;
  322. unsigned long entryhi[16], entrylo0[16], entrylo1[16];
  323. oldpid = read_mmu_entryhi();
  324. entry = 0x4000;
  325. local_irq_save(flags);
  326. for (i = 0; i < 16; i++) {
  327. write_mmu_index(entry);
  328. tlb_read();
  329. entryhi[i] = read_mmu_entryhi();
  330. entrylo0[i] = read_mmu_entrylo0();
  331. entrylo1[i] = read_mmu_entrylo1();
  332. entry++;
  333. }
  334. local_irq_restore(flags);
  335. write_mmu_entryhi(oldpid);
  336. printk("\n\n\n");
  337. for (i = 0; i < 16; i++)
  338. printk("dutlb[%d]: entryhi - 0x%lx; entrylo0 - 0x%lx;"
  339. " entrylo1 - 0x%lx\n",
  340. i, entryhi[i], entrylo0[i], entrylo1[i]);
  341. printk("\n\n\n");
  342. }
  343. static unsigned long entryhi[1024], entrylo0[1024], entrylo1[1024];
  344. static void show_jtlb(void)
  345. {
  346. int entry;
  347. unsigned long flags;
  348. unsigned long oldpid;
  349. oldpid = read_mmu_entryhi();
  350. entry = 0;
  351. local_irq_save(flags);
  352. while (entry < 1024) {
  353. write_mmu_index(entry);
  354. tlb_read();
  355. entryhi[entry] = read_mmu_entryhi();
  356. entrylo0[entry] = read_mmu_entrylo0();
  357. entrylo1[entry] = read_mmu_entrylo1();
  358. entry++;
  359. }
  360. local_irq_restore(flags);
  361. write_mmu_entryhi(oldpid);
  362. printk("\n\n\n");
  363. for (entry = 0; entry < 1024; entry++)
  364. printk("jtlb[%x]: entryhi - 0x%lx; entrylo0 - 0x%lx;"
  365. " entrylo1 - 0x%lx\n",
  366. entry, entryhi[entry], entrylo0[entry], entrylo1[entry]);
  367. printk("\n\n\n");
  368. }
  369. static void show_tlb(void)
  370. {
  371. show_iutlb();
  372. show_dutlb();
  373. show_jtlb();
  374. }
  375. #else
  376. static void show_tlb(void)
  377. {
  378. return;
  379. }
  380. #endif
  381. void show_regs(struct pt_regs *fp)
  382. {
  383. pr_info("\nCURRENT PROCESS:\n\n");
  384. pr_info("COMM=%s PID=%d\n", current->comm, current->pid);
  385. if (current->mm) {
  386. pr_info("TEXT=%08x-%08x DATA=%08x-%08x BSS=%08x-%08x\n",
  387. (int) current->mm->start_code,
  388. (int) current->mm->end_code,
  389. (int) current->mm->start_data,
  390. (int) current->mm->end_data,
  391. (int) current->mm->end_data,
  392. (int) current->mm->brk);
  393. pr_info("USER-STACK=%08x KERNEL-STACK=%08x\n\n",
  394. (int) current->mm->start_stack,
  395. (int) (((unsigned long) current) + 2 * PAGE_SIZE));
  396. }
  397. pr_info("PC: 0x%08lx (%pS)\n", (long)fp->pc, (void *)fp->pc);
  398. pr_info("LR: 0x%08lx (%pS)\n", (long)fp->lr, (void *)fp->lr);
  399. pr_info("SP: 0x%08lx\n", (long)fp->usp);
  400. pr_info("PSR: 0x%08lx\n", (long)fp->sr);
  401. pr_info("orig_a0: 0x%08lx\n", fp->orig_a0);
  402. pr_info("PT_REGS: 0x%08lx\n", (long)fp);
  403. pr_info(" a0: 0x%08lx a1: 0x%08lx a2: 0x%08lx a3: 0x%08lx\n",
  404. fp->a0, fp->a1, fp->a2, fp->a3);
  405. #if defined(__CSKYABIV2__)
  406. pr_info(" r4: 0x%08lx r5: 0x%08lx r6: 0x%08lx r7: 0x%08lx\n",
  407. fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]);
  408. pr_info(" r8: 0x%08lx r9: 0x%08lx r10: 0x%08lx r11: 0x%08lx\n",
  409. fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]);
  410. pr_info("r12: 0x%08lx r13: 0x%08lx r15: 0x%08lx\n",
  411. fp->regs[8], fp->regs[9], fp->lr);
  412. pr_info("r16: 0x%08lx r17: 0x%08lx r18: 0x%08lx r19: 0x%08lx\n",
  413. fp->exregs[0], fp->exregs[1], fp->exregs[2], fp->exregs[3]);
  414. pr_info("r20: 0x%08lx r21: 0x%08lx r22: 0x%08lx r23: 0x%08lx\n",
  415. fp->exregs[4], fp->exregs[5], fp->exregs[6], fp->exregs[7]);
  416. pr_info("r24: 0x%08lx r25: 0x%08lx r26: 0x%08lx r27: 0x%08lx\n",
  417. fp->exregs[8], fp->exregs[9], fp->exregs[10], fp->exregs[11]);
  418. pr_info("r28: 0x%08lx r29: 0x%08lx r30: 0x%08lx tls: 0x%08lx\n",
  419. fp->exregs[12], fp->exregs[13], fp->exregs[14], fp->tls);
  420. pr_info(" hi: 0x%08lx lo: 0x%08lx\n",
  421. fp->rhi, fp->rlo);
  422. #else
  423. pr_info(" r6: 0x%08lx r7: 0x%08lx r8: 0x%08lx r9: 0x%08lx\n",
  424. fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]);
  425. pr_info("r10: 0x%08lx r11: 0x%08lx r12: 0x%08lx r13: 0x%08lx\n",
  426. fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]);
  427. pr_info("r14: 0x%08lx r1: 0x%08lx\n",
  428. fp->regs[8], fp->regs[9]);
  429. #endif
  430. show_tlb();
  431. return;
  432. }