dma.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * linux/arch/arm/mach-rpc/dma.c
  4. *
  5. * Copyright (C) 1998 Russell King
  6. *
  7. * DMA functions specific to RiscPC architecture
  8. */
  9. #include <linux/mman.h>
  10. #include <linux/init.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/dma-mapping.h>
  13. #include <linux/io.h>
  14. #include <asm/page.h>
  15. #include <asm/dma.h>
  16. #include <asm/fiq.h>
  17. #include <asm/irq.h>
  18. #include <mach/hardware.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/mach/dma.h>
  21. #include <asm/hardware/iomd.h>
  22. struct iomd_dma {
  23. struct dma_struct dma;
  24. void __iomem *base; /* Controller base address */
  25. int irq; /* Controller IRQ */
  26. unsigned int state;
  27. dma_addr_t cur_addr;
  28. unsigned int cur_len;
  29. dma_addr_t dma_addr;
  30. unsigned int dma_len;
  31. };
  32. #if 0
  33. typedef enum {
  34. dma_size_8 = 1,
  35. dma_size_16 = 2,
  36. dma_size_32 = 4,
  37. dma_size_128 = 16
  38. } dma_size_t;
  39. #endif
  40. #define TRANSFER_SIZE 2
  41. #define CURA (0)
  42. #define ENDA (IOMD_IO0ENDA - IOMD_IO0CURA)
  43. #define CURB (IOMD_IO0CURB - IOMD_IO0CURA)
  44. #define ENDB (IOMD_IO0ENDB - IOMD_IO0CURA)
  45. #define CR (IOMD_IO0CR - IOMD_IO0CURA)
  46. #define ST (IOMD_IO0ST - IOMD_IO0CURA)
  47. static void iomd_get_next_sg(struct iomd_dma *idma)
  48. {
  49. unsigned long end, offset, flags = 0;
  50. if (idma->dma.sg) {
  51. idma->cur_addr = idma->dma_addr;
  52. offset = idma->cur_addr & ~PAGE_MASK;
  53. end = offset + idma->dma_len;
  54. if (end > PAGE_SIZE)
  55. end = PAGE_SIZE;
  56. if (offset + TRANSFER_SIZE >= end)
  57. flags |= DMA_END_L;
  58. idma->cur_len = end - TRANSFER_SIZE;
  59. idma->dma_len -= end - offset;
  60. idma->dma_addr += end - offset;
  61. if (idma->dma_len == 0) {
  62. if (idma->dma.sgcount > 1) {
  63. idma->dma.sg = sg_next(idma->dma.sg);
  64. idma->dma_addr = idma->dma.sg->dma_address;
  65. idma->dma_len = idma->dma.sg->length;
  66. idma->dma.sgcount--;
  67. } else {
  68. idma->dma.sg = NULL;
  69. flags |= DMA_END_S;
  70. }
  71. }
  72. } else {
  73. flags = DMA_END_S | DMA_END_L;
  74. idma->cur_addr = 0;
  75. idma->cur_len = 0;
  76. }
  77. idma->cur_len |= flags;
  78. }
  79. static irqreturn_t iomd_dma_handle(int irq, void *dev_id)
  80. {
  81. struct iomd_dma *idma = dev_id;
  82. void __iomem *base = idma->base;
  83. unsigned int state = idma->state;
  84. unsigned int status, cur, end;
  85. do {
  86. status = readb(base + ST);
  87. if (!(status & DMA_ST_INT))
  88. goto out;
  89. if ((state ^ status) & DMA_ST_AB)
  90. iomd_get_next_sg(idma);
  91. // This efficiently implements state = OFL != AB ? AB : 0
  92. state = ((status >> 2) ^ status) & DMA_ST_AB;
  93. if (state) {
  94. cur = CURA;
  95. end = ENDA;
  96. } else {
  97. cur = CURB;
  98. end = ENDB;
  99. }
  100. writel(idma->cur_addr, base + cur);
  101. writel(idma->cur_len, base + end);
  102. if (status & DMA_ST_OFL &&
  103. idma->cur_len == (DMA_END_S|DMA_END_L))
  104. break;
  105. } while (1);
  106. state = ~DMA_ST_AB;
  107. disable_irq_nosync(irq);
  108. out:
  109. idma->state = state;
  110. return IRQ_HANDLED;
  111. }
  112. static int iomd_request_dma(unsigned int chan, dma_t *dma)
  113. {
  114. struct iomd_dma *idma = container_of(dma, struct iomd_dma, dma);
  115. return request_irq(idma->irq, iomd_dma_handle,
  116. 0, idma->dma.device_id, idma);
  117. }
  118. static void iomd_free_dma(unsigned int chan, dma_t *dma)
  119. {
  120. struct iomd_dma *idma = container_of(dma, struct iomd_dma, dma);
  121. free_irq(idma->irq, idma);
  122. }
  123. static struct device isa_dma_dev = {
  124. .init_name = "fallback device",
  125. .coherent_dma_mask = ~(dma_addr_t)0,
  126. .dma_mask = &isa_dma_dev.coherent_dma_mask,
  127. };
  128. static void iomd_enable_dma(unsigned int chan, dma_t *dma)
  129. {
  130. struct iomd_dma *idma = container_of(dma, struct iomd_dma, dma);
  131. void __iomem *base = idma->base;
  132. unsigned int ctrl = TRANSFER_SIZE | DMA_CR_E;
  133. if (idma->dma.invalid) {
  134. idma->dma.invalid = 0;
  135. /*
  136. * Cope with ISA-style drivers which expect cache
  137. * coherence.
  138. */
  139. if (!idma->dma.sg) {
  140. idma->dma.sg = &idma->dma.buf;
  141. idma->dma.sgcount = 1;
  142. idma->dma.buf.length = idma->dma.count;
  143. idma->dma.buf.dma_address = dma_map_single(&isa_dma_dev,
  144. idma->dma.addr, idma->dma.count,
  145. idma->dma.dma_mode == DMA_MODE_READ ?
  146. DMA_FROM_DEVICE : DMA_TO_DEVICE);
  147. }
  148. idma->dma_addr = idma->dma.sg->dma_address;
  149. idma->dma_len = idma->dma.sg->length;
  150. writeb(DMA_CR_C, base + CR);
  151. idma->state = DMA_ST_AB;
  152. }
  153. if (idma->dma.dma_mode == DMA_MODE_READ)
  154. ctrl |= DMA_CR_D;
  155. writeb(ctrl, base + CR);
  156. enable_irq(idma->irq);
  157. }
  158. static void iomd_disable_dma(unsigned int chan, dma_t *dma)
  159. {
  160. struct iomd_dma *idma = container_of(dma, struct iomd_dma, dma);
  161. void __iomem *base = idma->base;
  162. unsigned long flags;
  163. local_irq_save(flags);
  164. if (idma->state != ~DMA_ST_AB)
  165. disable_irq(idma->irq);
  166. writeb(0, base + CR);
  167. local_irq_restore(flags);
  168. }
  169. static int iomd_set_dma_speed(unsigned int chan, dma_t *dma, int cycle)
  170. {
  171. int tcr, speed;
  172. if (cycle < 188)
  173. speed = 3;
  174. else if (cycle <= 250)
  175. speed = 2;
  176. else if (cycle < 438)
  177. speed = 1;
  178. else
  179. speed = 0;
  180. tcr = iomd_readb(IOMD_DMATCR);
  181. speed &= 3;
  182. switch (chan) {
  183. case DMA_0:
  184. tcr = (tcr & ~0x03) | speed;
  185. break;
  186. case DMA_1:
  187. tcr = (tcr & ~0x0c) | (speed << 2);
  188. break;
  189. case DMA_2:
  190. tcr = (tcr & ~0x30) | (speed << 4);
  191. break;
  192. case DMA_3:
  193. tcr = (tcr & ~0xc0) | (speed << 6);
  194. break;
  195. default:
  196. break;
  197. }
  198. iomd_writeb(tcr, IOMD_DMATCR);
  199. return speed;
  200. }
  201. static struct dma_ops iomd_dma_ops = {
  202. .type = "IOMD",
  203. .request = iomd_request_dma,
  204. .free = iomd_free_dma,
  205. .enable = iomd_enable_dma,
  206. .disable = iomd_disable_dma,
  207. .setspeed = iomd_set_dma_speed,
  208. };
  209. static struct fiq_handler fh = {
  210. .name = "floppydma"
  211. };
  212. struct floppy_dma {
  213. struct dma_struct dma;
  214. unsigned int fiq;
  215. };
  216. static void floppy_enable_dma(unsigned int chan, dma_t *dma)
  217. {
  218. struct floppy_dma *fdma = container_of(dma, struct floppy_dma, dma);
  219. void *fiqhandler_start;
  220. unsigned int fiqhandler_length;
  221. struct pt_regs regs;
  222. if (fdma->dma.sg)
  223. BUG();
  224. if (fdma->dma.dma_mode == DMA_MODE_READ) {
  225. extern unsigned char floppy_fiqin_start, floppy_fiqin_end;
  226. fiqhandler_start = &floppy_fiqin_start;
  227. fiqhandler_length = &floppy_fiqin_end - &floppy_fiqin_start;
  228. } else {
  229. extern unsigned char floppy_fiqout_start, floppy_fiqout_end;
  230. fiqhandler_start = &floppy_fiqout_start;
  231. fiqhandler_length = &floppy_fiqout_end - &floppy_fiqout_start;
  232. }
  233. regs.ARM_r9 = fdma->dma.count;
  234. regs.ARM_r10 = (unsigned long)fdma->dma.addr;
  235. regs.ARM_fp = (unsigned long)FLOPPYDMA_BASE;
  236. if (claim_fiq(&fh)) {
  237. printk("floppydma: couldn't claim FIQ.\n");
  238. return;
  239. }
  240. set_fiq_handler(fiqhandler_start, fiqhandler_length);
  241. set_fiq_regs(&regs);
  242. enable_fiq(fdma->fiq);
  243. }
  244. static void floppy_disable_dma(unsigned int chan, dma_t *dma)
  245. {
  246. struct floppy_dma *fdma = container_of(dma, struct floppy_dma, dma);
  247. disable_fiq(fdma->fiq);
  248. release_fiq(&fh);
  249. }
  250. static int floppy_get_residue(unsigned int chan, dma_t *dma)
  251. {
  252. struct pt_regs regs;
  253. get_fiq_regs(&regs);
  254. return regs.ARM_r9;
  255. }
  256. static struct dma_ops floppy_dma_ops = {
  257. .type = "FIQDMA",
  258. .enable = floppy_enable_dma,
  259. .disable = floppy_disable_dma,
  260. .residue = floppy_get_residue,
  261. };
  262. /*
  263. * This is virtual DMA - we don't need anything here.
  264. */
  265. static void sound_enable_disable_dma(unsigned int chan, dma_t *dma)
  266. {
  267. }
  268. static struct dma_ops sound_dma_ops = {
  269. .type = "VIRTUAL",
  270. .enable = sound_enable_disable_dma,
  271. .disable = sound_enable_disable_dma,
  272. };
  273. static struct iomd_dma iomd_dma[6];
  274. static struct floppy_dma floppy_dma = {
  275. .dma = {
  276. .d_ops = &floppy_dma_ops,
  277. },
  278. .fiq = FIQ_FLOPPYDATA,
  279. };
  280. static dma_t sound_dma = {
  281. .d_ops = &sound_dma_ops,
  282. };
  283. static int __init rpc_dma_init(void)
  284. {
  285. unsigned int i;
  286. int ret;
  287. iomd_writeb(0, IOMD_IO0CR);
  288. iomd_writeb(0, IOMD_IO1CR);
  289. iomd_writeb(0, IOMD_IO2CR);
  290. iomd_writeb(0, IOMD_IO3CR);
  291. iomd_writeb(0xa0, IOMD_DMATCR);
  292. /*
  293. * Setup DMA channels 2,3 to be for podules
  294. * and channels 0,1 for internal devices
  295. */
  296. iomd_writeb(DMA_EXT_IO3|DMA_EXT_IO2, IOMD_DMAEXT);
  297. iomd_dma[DMA_0].base = IOMD_BASE + IOMD_IO0CURA;
  298. iomd_dma[DMA_0].irq = IRQ_DMA0;
  299. iomd_dma[DMA_1].base = IOMD_BASE + IOMD_IO1CURA;
  300. iomd_dma[DMA_1].irq = IRQ_DMA1;
  301. iomd_dma[DMA_2].base = IOMD_BASE + IOMD_IO2CURA;
  302. iomd_dma[DMA_2].irq = IRQ_DMA2;
  303. iomd_dma[DMA_3].base = IOMD_BASE + IOMD_IO3CURA;
  304. iomd_dma[DMA_3].irq = IRQ_DMA3;
  305. iomd_dma[DMA_S0].base = IOMD_BASE + IOMD_SD0CURA;
  306. iomd_dma[DMA_S0].irq = IRQ_DMAS0;
  307. iomd_dma[DMA_S1].base = IOMD_BASE + IOMD_SD1CURA;
  308. iomd_dma[DMA_S1].irq = IRQ_DMAS1;
  309. for (i = DMA_0; i <= DMA_S1; i++) {
  310. iomd_dma[i].dma.d_ops = &iomd_dma_ops;
  311. ret = isa_dma_add(i, &iomd_dma[i].dma);
  312. if (ret)
  313. printk("IOMDDMA%u: unable to register: %d\n", i, ret);
  314. }
  315. ret = isa_dma_add(DMA_VIRTUAL_FLOPPY, &floppy_dma.dma);
  316. if (ret)
  317. printk("IOMDFLOPPY: unable to register: %d\n", ret);
  318. ret = isa_dma_add(DMA_VIRTUAL_SOUND, &sound_dma);
  319. if (ret)
  320. printk("IOMDSOUND: unable to register: %d\n", ret);
  321. return 0;
  322. }
  323. core_initcall(rpc_dma_init);