timer-ep93xx.c 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/kernel.h>
  3. #include <linux/init.h>
  4. #include <linux/clocksource.h>
  5. #include <linux/clockchips.h>
  6. #include <linux/sched_clock.h>
  7. #include <linux/interrupt.h>
  8. #include <linux/irq.h>
  9. #include <linux/io.h>
  10. #include <asm/mach/time.h>
  11. #include "soc.h"
  12. #include "platform.h"
  13. /*************************************************************************
  14. * Timer handling for EP93xx
  15. *************************************************************************
  16. * The ep93xx has four internal timers. Timers 1, 2 (both 16 bit) and
  17. * 3 (32 bit) count down at 508 kHz, are self-reloading, and can generate
  18. * an interrupt on underflow. Timer 4 (40 bit) counts down at 983.04 kHz,
  19. * is free-running, and can't generate interrupts.
  20. *
  21. * The 508 kHz timers are ideal for use for the timer interrupt, as the
  22. * most common values of HZ divide 508 kHz nicely. We pick the 32 bit
  23. * timer (timer 3) to get as long sleep intervals as possible when using
  24. * CONFIG_NO_HZ.
  25. *
  26. * The higher clock rate of timer 4 makes it a better choice than the
  27. * other timers for use as clock source and for sched_clock(), providing
  28. * a stable 40 bit time base.
  29. *************************************************************************
  30. */
  31. #define EP93XX_TIMER_REG(x) (EP93XX_TIMER_BASE + (x))
  32. #define EP93XX_TIMER1_LOAD EP93XX_TIMER_REG(0x00)
  33. #define EP93XX_TIMER1_VALUE EP93XX_TIMER_REG(0x04)
  34. #define EP93XX_TIMER1_CONTROL EP93XX_TIMER_REG(0x08)
  35. #define EP93XX_TIMER123_CONTROL_ENABLE (1 << 7)
  36. #define EP93XX_TIMER123_CONTROL_MODE (1 << 6)
  37. #define EP93XX_TIMER123_CONTROL_CLKSEL (1 << 3)
  38. #define EP93XX_TIMER1_CLEAR EP93XX_TIMER_REG(0x0c)
  39. #define EP93XX_TIMER2_LOAD EP93XX_TIMER_REG(0x20)
  40. #define EP93XX_TIMER2_VALUE EP93XX_TIMER_REG(0x24)
  41. #define EP93XX_TIMER2_CONTROL EP93XX_TIMER_REG(0x28)
  42. #define EP93XX_TIMER2_CLEAR EP93XX_TIMER_REG(0x2c)
  43. #define EP93XX_TIMER4_VALUE_LOW EP93XX_TIMER_REG(0x60)
  44. #define EP93XX_TIMER4_VALUE_HIGH EP93XX_TIMER_REG(0x64)
  45. #define EP93XX_TIMER4_VALUE_HIGH_ENABLE (1 << 8)
  46. #define EP93XX_TIMER3_LOAD EP93XX_TIMER_REG(0x80)
  47. #define EP93XX_TIMER3_VALUE EP93XX_TIMER_REG(0x84)
  48. #define EP93XX_TIMER3_CONTROL EP93XX_TIMER_REG(0x88)
  49. #define EP93XX_TIMER3_CLEAR EP93XX_TIMER_REG(0x8c)
  50. #define EP93XX_TIMER123_RATE 508469
  51. #define EP93XX_TIMER4_RATE 983040
  52. static u64 notrace ep93xx_read_sched_clock(void)
  53. {
  54. u64 ret;
  55. ret = readl(EP93XX_TIMER4_VALUE_LOW);
  56. ret |= ((u64) (readl(EP93XX_TIMER4_VALUE_HIGH) & 0xff) << 32);
  57. return ret;
  58. }
  59. static u64 ep93xx_clocksource_read(struct clocksource *c)
  60. {
  61. u64 ret;
  62. ret = readl(EP93XX_TIMER4_VALUE_LOW);
  63. ret |= ((u64) (readl(EP93XX_TIMER4_VALUE_HIGH) & 0xff) << 32);
  64. return (u64) ret;
  65. }
  66. static int ep93xx_clkevt_set_next_event(unsigned long next,
  67. struct clock_event_device *evt)
  68. {
  69. /* Default mode: periodic, off, 508 kHz */
  70. u32 tmode = EP93XX_TIMER123_CONTROL_MODE |
  71. EP93XX_TIMER123_CONTROL_CLKSEL;
  72. /* Clear timer */
  73. writel(tmode, EP93XX_TIMER3_CONTROL);
  74. /* Set next event */
  75. writel(next, EP93XX_TIMER3_LOAD);
  76. writel(tmode | EP93XX_TIMER123_CONTROL_ENABLE,
  77. EP93XX_TIMER3_CONTROL);
  78. return 0;
  79. }
  80. static int ep93xx_clkevt_shutdown(struct clock_event_device *evt)
  81. {
  82. /* Disable timer */
  83. writel(0, EP93XX_TIMER3_CONTROL);
  84. return 0;
  85. }
  86. static struct clock_event_device ep93xx_clockevent = {
  87. .name = "timer1",
  88. .features = CLOCK_EVT_FEAT_ONESHOT,
  89. .set_state_shutdown = ep93xx_clkevt_shutdown,
  90. .set_state_oneshot = ep93xx_clkevt_shutdown,
  91. .tick_resume = ep93xx_clkevt_shutdown,
  92. .set_next_event = ep93xx_clkevt_set_next_event,
  93. .rating = 300,
  94. };
  95. static irqreturn_t ep93xx_timer_interrupt(int irq, void *dev_id)
  96. {
  97. struct clock_event_device *evt = dev_id;
  98. /* Writing any value clears the timer interrupt */
  99. writel(1, EP93XX_TIMER3_CLEAR);
  100. evt->event_handler(evt);
  101. return IRQ_HANDLED;
  102. }
  103. void __init ep93xx_timer_init(void)
  104. {
  105. int irq = IRQ_EP93XX_TIMER3;
  106. unsigned long flags = IRQF_TIMER | IRQF_IRQPOLL;
  107. /* Enable and register clocksource and sched_clock on timer 4 */
  108. writel(EP93XX_TIMER4_VALUE_HIGH_ENABLE,
  109. EP93XX_TIMER4_VALUE_HIGH);
  110. clocksource_mmio_init(NULL, "timer4",
  111. EP93XX_TIMER4_RATE, 200, 40,
  112. ep93xx_clocksource_read);
  113. sched_clock_register(ep93xx_read_sched_clock, 40,
  114. EP93XX_TIMER4_RATE);
  115. /* Set up clockevent on timer 3 */
  116. if (request_irq(irq, ep93xx_timer_interrupt, flags, "ep93xx timer",
  117. &ep93xx_clockevent))
  118. pr_err("Failed to request irq %d (ep93xx timer)\n", irq);
  119. clockevents_config_and_register(&ep93xx_clockevent,
  120. EP93XX_TIMER123_RATE,
  121. 1,
  122. 0xffffffffU);
  123. }