123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- ==================================
- VDUSE - "vDPA Device in Userspace"
- ==================================
- vDPA (virtio data path acceleration) device is a device that uses a
- datapath which complies with the virtio specifications with vendor
- specific control path. vDPA devices can be both physically located on
- the hardware or emulated by software. VDUSE is a framework that makes it
- possible to implement software-emulated vDPA devices in userspace. And
- to make the device emulation more secure, the emulated vDPA device's
- control path is handled in the kernel and only the data path is
- implemented in the userspace.
- Note that only virtio block device is supported by VDUSE framework now,
- which can reduce security risks when the userspace process that implements
- the data path is run by an unprivileged user. The support for other device
- types can be added after the security issue of corresponding device driver
- is clarified or fixed in the future.
- Create/Destroy VDUSE devices
- ----------------------------
- VDUSE devices are created as follows:
- 1. Create a new VDUSE instance with ioctl(VDUSE_CREATE_DEV) on
- /dev/vduse/control.
- 2. Setup each virtqueue with ioctl(VDUSE_VQ_SETUP) on /dev/vduse/$NAME.
- 3. Begin processing VDUSE messages from /dev/vduse/$NAME. The first
- messages will arrive while attaching the VDUSE instance to vDPA bus.
- 4. Send the VDPA_CMD_DEV_NEW netlink message to attach the VDUSE
- instance to vDPA bus.
- VDUSE devices are destroyed as follows:
- 1. Send the VDPA_CMD_DEV_DEL netlink message to detach the VDUSE
- instance from vDPA bus.
- 2. Close the file descriptor referring to /dev/vduse/$NAME.
- 3. Destroy the VDUSE instance with ioctl(VDUSE_DESTROY_DEV) on
- /dev/vduse/control.
- The netlink messages can be sent via vdpa tool in iproute2 or use the
- below sample codes:
- .. code-block:: c
- static int netlink_add_vduse(const char *name, enum vdpa_command cmd)
- {
- struct nl_sock *nlsock;
- struct nl_msg *msg;
- int famid;
- nlsock = nl_socket_alloc();
- if (!nlsock)
- return -ENOMEM;
- if (genl_connect(nlsock))
- goto free_sock;
- famid = genl_ctrl_resolve(nlsock, VDPA_GENL_NAME);
- if (famid < 0)
- goto close_sock;
- msg = nlmsg_alloc();
- if (!msg)
- goto close_sock;
- if (!genlmsg_put(msg, NL_AUTO_PORT, NL_AUTO_SEQ, famid, 0, 0, cmd, 0))
- goto nla_put_failure;
- NLA_PUT_STRING(msg, VDPA_ATTR_DEV_NAME, name);
- if (cmd == VDPA_CMD_DEV_NEW)
- NLA_PUT_STRING(msg, VDPA_ATTR_MGMTDEV_DEV_NAME, "vduse");
- if (nl_send_sync(nlsock, msg))
- goto close_sock;
- nl_close(nlsock);
- nl_socket_free(nlsock);
- return 0;
- nla_put_failure:
- nlmsg_free(msg);
- close_sock:
- nl_close(nlsock);
- free_sock:
- nl_socket_free(nlsock);
- return -1;
- }
- How VDUSE works
- ---------------
- As mentioned above, a VDUSE device is created by ioctl(VDUSE_CREATE_DEV) on
- /dev/vduse/control. With this ioctl, userspace can specify some basic configuration
- such as device name (uniquely identify a VDUSE device), virtio features, virtio
- configuration space, the number of virtqueues and so on for this emulated device.
- Then a char device interface (/dev/vduse/$NAME) is exported to userspace for device
- emulation. Userspace can use the VDUSE_VQ_SETUP ioctl on /dev/vduse/$NAME to
- add per-virtqueue configuration such as the max size of virtqueue to the device.
- After the initialization, the VDUSE device can be attached to vDPA bus via
- the VDPA_CMD_DEV_NEW netlink message. Userspace needs to read()/write() on
- /dev/vduse/$NAME to receive/reply some control messages from/to VDUSE kernel
- module as follows:
- .. code-block:: c
- static int vduse_message_handler(int dev_fd)
- {
- int len;
- struct vduse_dev_request req;
- struct vduse_dev_response resp;
- len = read(dev_fd, &req, sizeof(req));
- if (len != sizeof(req))
- return -1;
- resp.request_id = req.request_id;
- switch (req.type) {
- /* handle different types of messages */
- }
- len = write(dev_fd, &resp, sizeof(resp));
- if (len != sizeof(resp))
- return -1;
- return 0;
- }
- There are now three types of messages introduced by VDUSE framework:
- - VDUSE_GET_VQ_STATE: Get the state for virtqueue, userspace should return
- avail index for split virtqueue or the device/driver ring wrap counters and
- the avail and used index for packed virtqueue.
- - VDUSE_SET_STATUS: Set the device status, userspace should follow
- the virtio spec: https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
- to process this message. For example, fail to set the FEATURES_OK device
- status bit if the device can not accept the negotiated virtio features
- get from the VDUSE_DEV_GET_FEATURES ioctl.
- - VDUSE_UPDATE_IOTLB: Notify userspace to update the memory mapping for specified
- IOVA range, userspace should firstly remove the old mapping, then setup the new
- mapping via the VDUSE_IOTLB_GET_FD ioctl.
- After DRIVER_OK status bit is set via the VDUSE_SET_STATUS message, userspace is
- able to start the dataplane processing as follows:
- 1. Get the specified virtqueue's information with the VDUSE_VQ_GET_INFO ioctl,
- including the size, the IOVAs of descriptor table, available ring and used ring,
- the state and the ready status.
- 2. Pass the above IOVAs to the VDUSE_IOTLB_GET_FD ioctl so that those IOVA regions
- can be mapped into userspace. Some sample codes is shown below:
- .. code-block:: c
- static int perm_to_prot(uint8_t perm)
- {
- int prot = 0;
- switch (perm) {
- case VDUSE_ACCESS_WO:
- prot |= PROT_WRITE;
- break;
- case VDUSE_ACCESS_RO:
- prot |= PROT_READ;
- break;
- case VDUSE_ACCESS_RW:
- prot |= PROT_READ | PROT_WRITE;
- break;
- }
- return prot;
- }
- static void *iova_to_va(int dev_fd, uint64_t iova, uint64_t *len)
- {
- int fd;
- void *addr;
- size_t size;
- struct vduse_iotlb_entry entry;
- entry.start = iova;
- entry.last = iova;
- /*
- * Find the first IOVA region that overlaps with the specified
- * range [start, last] and return the corresponding file descriptor.
- */
- fd = ioctl(dev_fd, VDUSE_IOTLB_GET_FD, &entry);
- if (fd < 0)
- return NULL;
- size = entry.last - entry.start + 1;
- *len = entry.last - iova + 1;
- addr = mmap(0, size, perm_to_prot(entry.perm), MAP_SHARED,
- fd, entry.offset);
- close(fd);
- if (addr == MAP_FAILED)
- return NULL;
- /*
- * Using some data structures such as linked list to store
- * the iotlb mapping. The munmap(2) should be called for the
- * cached mapping when the corresponding VDUSE_UPDATE_IOTLB
- * message is received or the device is reset.
- */
- return addr + iova - entry.start;
- }
- 3. Setup the kick eventfd for the specified virtqueues with the VDUSE_VQ_SETUP_KICKFD
- ioctl. The kick eventfd is used by VDUSE kernel module to notify userspace to
- consume the available ring. This is optional since userspace can choose to poll the
- available ring instead.
- 4. Listen to the kick eventfd (optional) and consume the available ring. The buffer
- described by the descriptors in the descriptor table should be also mapped into
- userspace via the VDUSE_IOTLB_GET_FD ioctl before accessing.
- 5. Inject an interrupt for specific virtqueue with the VDUSE_INJECT_VQ_IRQ ioctl
- after the used ring is filled.
- For more details on the uAPI, please see include/uapi/linux/vduse.h.
|