// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2018 The Hafnium Authors. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * This driver is based on idea from Hafnium Hypervisor Linux Driver, * but modified to work with Gunyah Hypervisor as needed. * * Copyright (c) 2021-2023, Qualcomm Innovation Center, Inc. All rights reserved. */ #define pr_fmt(fmt) "gh_proxy_sched: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gh_proxy_sched.h" #define CREATE_TRACE_POINTS #include "gh_proxy_sched_trace.h" #define GH_MAX_VMS 5 #define GH_MAX_VCPUS_PER_VM 8 #define GH_MAX_SYSTEM_VCPUS (GH_MAX_VMS * GH_MAX_VCPUS_PER_VM) /* VCPU is ready to run */ #define GH_VCPU_STATE_READY 0 /* VCPU is sleeping until an interrupt arrives */ #define GH_VCPU_STATE_EXPECTS_WAKEUP 1 /* VCPU is powered off */ #define GH_VCPU_STATE_POWERED_OFF 2 /* VCPU is blocked in EL2 for an unspecified reason */ #define GH_VCPU_STATE_BLOCKED 3 #define GH_VCPU_SUSPEND_STATE_STANDBY 0 #define GH_VCPU_SUSPEND_STATE_POWERDOWN 1 #define SVM_STATE_RUNNING 1 #define SVM_STATE_SYSTEM_SUSPENDED 3 struct gh_proxy_vcpu { struct gh_proxy_vm *vm; gh_capid_t cap_id; gh_label_t idx; bool abort_sleep; bool wdog_frozen; struct task_struct *task; int virq; char irq_name[32]; char ws_name[32]; wait_queue_head_t wait_queue; struct wakeup_source *ws; bool workqueue_mode; struct work_struct work; struct notifier_block suspend_nb; }; struct gh_proxy_vm { gh_vmid_t id; int vcpu_count; struct gh_proxy_vcpu vcpu[GH_MAX_VCPUS_PER_VM]; bool is_vcpu_info_populated; bool is_active; gh_capid_t wdog_cap_id; gh_capid_t vpmg_cap_id; int susp_res_irq; bool is_vpm_group_info_populated; struct workqueue_struct *vcpu_wq; }; static struct gh_proxy_vm *gh_vms; static int nr_vms; static int nr_vcpus; static bool init_done; static DEFINE_MUTEX(gh_vm_mutex); static DEFINE_SPINLOCK(gh_vm_lock); /* * Wakes up the thread responsible for running the given vcpu. */ static inline void gh_vcpu_wake_up(struct gh_proxy_vcpu *vcpu) { vcpu->abort_sleep = true; wake_up(&vcpu->wait_queue); } /* * Puts the current thread to sleep. The current thread must be responsible for * running the given vcpu. */ static inline void gh_vcpu_sleep(struct gh_proxy_vcpu *vcpu) { if (!vcpu->abort_sleep && !signal_pending(current)) wait_event_interruptible(vcpu->wait_queue, vcpu->abort_sleep); } static void gh_init_wait_queues(struct gh_proxy_vm *vm) { gh_label_t j; for (j = 0; j < vm->vcpu_count; j++) init_waitqueue_head(&vm->vcpu[j].wait_queue); } static inline bool is_vm_supports_proxy(gh_vmid_t gh_vmid) { gh_vmid_t vmid; if ((!ghd_rm_get_vmid(GH_TRUSTED_VM, &vmid) && vmid == gh_vmid) || (!ghd_rm_get_vmid(GH_OEM_VM, &vmid) && vmid == gh_vmid)) return true; return false; } static inline struct gh_proxy_vm *gh_get_vm(gh_vmid_t vmid) { int i; struct gh_proxy_vm *vm = NULL; for (i = 0; i < GH_MAX_VMS; i++) { vm = &gh_vms[i]; if (vmid == vm->id || vm->id == GH_VMID_INVAL) break; } return vm; } static inline struct gh_proxy_vcpu *gh_get_vcpu(struct gh_proxy_vm *vm, gh_capid_t cap_id) { int i; struct gh_proxy_vcpu *vcpu = NULL; for (i = 0; i < vm->vcpu_count; i++) { if (vm->vcpu[i].cap_id == cap_id) { vcpu = &vm->vcpu[i]; break; } } return vcpu; } static inline void gh_reset_vm(struct gh_proxy_vm *vm) { int j; vm->id = GH_VMID_INVAL; vm->vcpu_count = 0; vm->is_vcpu_info_populated = false; vm->is_active = false; vm->susp_res_irq = U32_MAX; vm->is_vpm_group_info_populated = false; vm->vpmg_cap_id = GH_CAPID_INVAL; for (j = 0; j < GH_MAX_VCPUS_PER_VM; j++) { vm->vcpu[j].cap_id = GH_CAPID_INVAL; vm->vcpu[j].virq = U32_MAX; vm->vcpu[j].idx = U32_MAX; vm->vcpu[j].vm = NULL; vm->vcpu[j].abort_sleep = false; vm->vcpu[j].wdog_frozen = false; vm->vcpu[j].ws = NULL; strscpy(vm->vcpu[vm->vcpu_count].irq_name, "", sizeof(vm->vcpu[vm->vcpu_count].irq_name)); strscpy(vm->vcpu[vm->vcpu_count].ws_name, "", sizeof(vm->vcpu[vm->vcpu_count].ws_name)); } } static void gh_init_vms(void) { struct gh_proxy_vm *vm; int i; for (i = 0; i < GH_MAX_VMS; i++) { vm = &gh_vms[i]; gh_reset_vm(vm); } } static irqreturn_t gh_vcpu_irq_handler(int irq, void *data) { struct gh_proxy_vcpu *vcpu; struct gh_proxy_vm *vm; spin_lock(&gh_vm_lock); vcpu = data; if (!vcpu || !vcpu->vm || !vcpu->vm->is_vcpu_info_populated) goto unlock; vm = vcpu->vm; trace_gh_vcpu_irq_handler(vcpu->vm->id, vcpu->idx); if (vcpu->workqueue_mode) queue_work(vm->vcpu_wq, &vcpu->work); else gh_vcpu_wake_up(vcpu); unlock: spin_unlock(&gh_vm_lock); return IRQ_HANDLED; } static inline void gh_get_vcpu_prop_name(int vmid, int vcpu_num, char *name) { char extrastr[12]; scnprintf(extrastr, 12, "_%d_%d", vmid, vcpu_num); strlcat(name, extrastr, 32); } static int gh_wdog_manage(gh_vmid_t vmid, gh_capid_t cap_id, bool populate) { struct gh_proxy_vm *vm; int ret = 0; if (!init_done) { pr_err("Driver probe failed\n"); return -ENXIO; } if (!is_vm_supports_proxy(vmid)) { pr_info("Skip populating VCPU affinity info for VM=%d\n", vmid); return -EINVAL; } mutex_lock(&gh_vm_mutex); vm = gh_get_vm(vmid); if (!vm) { ret = -ENODEV; goto unlock; } if (populate) vm->wdog_cap_id = cap_id; else vm->wdog_cap_id = GH_CAPID_INVAL; unlock: mutex_unlock(&gh_vm_mutex); return ret; } /* * Called when vm_status is STATUS_READY, multiple times before status * moves to STATUS_RUNNING */ static int gh_populate_vm_vcpu_info(gh_vmid_t vmid, gh_label_t cpu_idx, gh_capid_t cap_id, int virq_num) { struct gh_proxy_vm *vm; int ret = 0; char *vcpu_irq_name; if (!init_done) { pr_err("Driver probe failed\n"); ret = -ENXIO; goto out; } if (!is_vm_supports_proxy(vmid)) { pr_info("Skip populating VCPU affinity info for VM=%d\n", vmid); goto out; } if (nr_vcpus >= GH_MAX_SYSTEM_VCPUS) { pr_err("Exceeded max vcpus in the system %d\n", nr_vcpus); ret = -ENXIO; goto out; } if (!virq_num || virq_num == U32_MAX) { pr_err("Invalid VIRQ, proxy scheduling isn't supported\n"); goto out; } mutex_lock(&gh_vm_mutex); vm = gh_get_vm(vmid); if (vm && !vm->is_vcpu_info_populated) { if (vm->vcpu_count >= GH_MAX_VCPUS_PER_VM) { pr_err("Exceeded max vcpus per VM %d\n", vm->vcpu_count); ret = -ENXIO; goto unlock; } strscpy(vm->vcpu[vm->vcpu_count].irq_name, "gh_vcpu_irq", sizeof(vm->vcpu[vm->vcpu_count].irq_name)); gh_get_vcpu_prop_name(vmid, vm->vcpu_count, vm->vcpu[vm->vcpu_count].irq_name); ret = request_irq(virq_num, gh_vcpu_irq_handler, 0, vm->vcpu[vm->vcpu_count].irq_name, &vm->vcpu[vm->vcpu_count]); if (ret < 0) { pr_err("%s: IRQ registration failed ret=%d\n", __func__, ret); goto err_irq; } irq_set_irq_wake(virq_num, 1); strscpy(vm->vcpu[vm->vcpu_count].ws_name, "gh_vcpu_ws", sizeof(vm->vcpu[vm->vcpu_count].ws_name)); gh_get_vcpu_prop_name(vmid, vm->vcpu_count, vm->vcpu[vm->vcpu_count].ws_name); vm->vcpu[vm->vcpu_count].ws = wakeup_source_register(NULL, vm->vcpu[vm->vcpu_count].ws_name); if (!vm->vcpu[vm->vcpu_count].ws) { pr_err("%s: Wakeup source creation failed\n", __func__); goto err_ws; } vm->id = vmid; vm->vcpu[vm->vcpu_count].cap_id = cap_id; vm->vcpu[vm->vcpu_count].virq = virq_num; vm->vcpu[vm->vcpu_count].idx = cpu_idx; vm->vcpu[vm->vcpu_count].vm = vm; vcpu_irq_name = vm->vcpu[vm->vcpu_count].irq_name; vm->vcpu_count++; nr_vcpus++; pr_info("vmid=%d cpu_index:%u vcpu_cap_id:%llu virq_num=%d irq_name=%s nr_vcpus:%d\n", vmid, cpu_idx, cap_id, virq_num, vcpu_irq_name, nr_vcpus); } goto unlock; err_ws: strscpy(vm->vcpu[vm->vcpu_count].ws_name, "", sizeof(vm->vcpu[vm->vcpu_count].ws_name)); free_irq(virq_num, &vm->vcpu[vm->vcpu_count]); err_irq: strscpy(vm->vcpu[vm->vcpu_count].irq_name, "", sizeof(vm->vcpu[vm->vcpu_count].irq_name)); unlock: mutex_unlock(&gh_vm_mutex); out: return ret; } static int gh_unpopulate_vm_vcpu_info(gh_vmid_t vmid, gh_label_t cpu_idx, gh_capid_t cap_id, int *irq) { struct gh_proxy_vm *vm; struct gh_proxy_vcpu *vcpu; if (!init_done) { pr_err("Driver probe failed\n"); return -ENXIO; } if (!is_vm_supports_proxy(vmid)) { pr_info("Skip unpopulating VCPU affinity info for VM=%d\n", vmid); goto out; } mutex_lock(&gh_vm_mutex); vm = gh_get_vm(vmid); if (vm && vm->is_vcpu_info_populated) { vcpu = gh_get_vcpu(vm, cap_id); if (vcpu) { *irq = vcpu->virq; free_irq(vcpu->virq, vcpu); vcpu->virq = U32_MAX; wakeup_source_unregister(vcpu->ws); if (nr_vcpus) nr_vcpus--; } } mutex_unlock(&gh_vm_mutex); out: return 0; } static inline void gh_get_vpmg_cap_id(int irq, gh_capid_t *vpmg_cap_id) { int i; struct gh_proxy_vm *vm; for (i = 0; i < GH_MAX_VMS; i++) { vm = &gh_vms[i]; if (vm->susp_res_irq == irq) *vpmg_cap_id = vm->vpmg_cap_id; } } static irqreturn_t gh_susp_res_irq_handler(int irq, void *data) { int err; uint64_t vpmg_state; gh_capid_t vpmg_cap_id; gh_get_vpmg_cap_id(irq, &vpmg_cap_id); err = gh_hcall_vpm_group_get_state(vpmg_cap_id, &vpmg_state); if (err != GH_ERROR_OK) { pr_err("Failed to get VPM Group state for cap_id=%llu err=%d\n", vpmg_cap_id, err); return IRQ_HANDLED; } if (vpmg_state == SVM_STATE_RUNNING) pr_debug("SVM is in running state\n"); else if (vpmg_state == SVM_STATE_SYSTEM_SUSPENDED) pr_debug("SVM is in system suspend state\n"); else pr_err("VPM Group state invalid/non-existent\n"); trace_gh_susp_res_irq_handler(vpmg_state); return IRQ_HANDLED; } static int gh_populate_vm_vpm_grp_info(gh_vmid_t vmid, gh_capid_t cap_id, int virq_num) { int ret = 0; struct gh_proxy_vm *vm; if (!init_done) { pr_err("%s: Driver probe failed\n", __func__); ret = -ENXIO; goto out; } if (!is_vm_supports_proxy(vmid)) { pr_info("Skip populating VPM GRP info for VM=%d\n", vmid); goto out; } if (virq_num < 0) { pr_err("%s: Invalid IRQ number\n", __func__); ret = -EINVAL; goto out; } mutex_lock(&gh_vm_mutex); vm = gh_get_vm(vmid); if (vm && !vm->is_vpm_group_info_populated) { ret = request_irq(virq_num, gh_susp_res_irq_handler, 0, "gh_susp_res_irq", NULL); if (ret < 0) { pr_err("%s: IRQ registration failed ret=%d\n", __func__, ret); goto unlock; } vm->vpmg_cap_id = cap_id; vm->susp_res_irq = virq_num; vm->is_vpm_group_info_populated = true; } unlock: mutex_unlock(&gh_vm_mutex); out: return ret; } static int gh_unpopulate_vm_vpm_grp_info(gh_vmid_t vmid, int *irq) { struct gh_proxy_vm *vm; if (!init_done) { pr_err("%s: Driver probe failed\n", __func__); return -ENXIO; } if (!is_vm_supports_proxy(vmid)) { pr_info("Skip unpopulating VPM GRP info for VM=%d\n", vmid); goto out; } mutex_lock(&gh_vm_mutex); vm = gh_get_vm(vmid); if (vm && vm->is_vpm_group_info_populated) { *irq = vm->susp_res_irq; free_irq(vm->susp_res_irq, NULL); vm->susp_res_irq = U32_MAX; vm->is_vpm_group_info_populated = false; } mutex_unlock(&gh_vm_mutex); out: return 0; } static void gh_populate_all_res_info(gh_vmid_t vmid, bool res_populated) { struct gh_proxy_vm *vm; char workqueue_name[24]; if (!init_done) { pr_err("%s: Driver probe failed\n", __func__); return; } if (!is_vm_supports_proxy(vmid)) { pr_info("Proxy Scheduling isn't supported for VM=%d\n", vmid); return; } if (nr_vms >= GH_MAX_VMS) { pr_err("Exceeded max VMs in the system %d\n", nr_vms); return; } mutex_lock(&gh_vm_mutex); vm = gh_get_vm(vmid); if (!vm) goto unlock; if (res_populated && !vm->is_vcpu_info_populated) { gh_init_wait_queues(vm); snprintf(workqueue_name, sizeof(workqueue_name), "vm%d_vcpu_wq", vm->id); vm->vcpu_wq = create_freezable_workqueue(workqueue_name); nr_vms++; vm->is_vcpu_info_populated = true; vm->is_active = true; } else if (!res_populated && vm->is_vcpu_info_populated) { gh_reset_vm(vm); if (nr_vms) nr_vms--; } unlock: mutex_unlock(&gh_vm_mutex); } int gh_get_nr_vcpus(gh_vmid_t vmid) { struct gh_proxy_vm *vm; vm = gh_get_vm(vmid); if (vm && vm->is_vcpu_info_populated) return vm->vcpu_count; return 0; } /* Gets called from VM EXIT notification */ void gh_wakeup_all_vcpus(gh_vmid_t vmid) { struct gh_proxy_vm *vm; int i; vm = gh_get_vm(vmid); if (vm && vm->is_active) { vm->is_active = false; for (i = 0; i < vm->vcpu_count; i++) gh_vcpu_wake_up(&vm->vcpu[i]); } } bool gh_vm_supports_proxy_sched(gh_vmid_t vmid) { struct gh_proxy_vm *vm; vm = gh_get_vm(vmid); if (vm && vm->is_vcpu_info_populated && vm->vcpu_count) return true; return false; } int gh_poll_vcpu_run(gh_vmid_t vmid) { struct gh_hcall_vcpu_run_resp resp; struct gh_proxy_vcpu *vcpu; struct gh_proxy_vm *vm; unsigned int vcpu_id; int poll_nr_vcpus; ktime_t start_ts, yield_ts; int ret = -EPERM; vm = gh_get_vm(vmid); if (!vm || !vm->is_active) return ret; poll_nr_vcpus = gh_get_nr_vcpus(vmid); if (poll_nr_vcpus < 0) { printk_deferred("Failed to get vcpu count for VM %d ret %d\n", vmid, nr_vcpus); ret = poll_nr_vcpus; return ret; } for (vcpu_id = 0; vcpu_id < poll_nr_vcpus; vcpu_id++) { if (vm->vcpu[vcpu_id].cap_id == GH_CAPID_INVAL) return -EPERM; vcpu = &vm->vcpu[vcpu_id]; do { start_ts = ktime_get(); ret = gh_hcall_vcpu_run(vcpu->cap_id, 0, 0, 0, &resp); yield_ts = ktime_get() - start_ts; trace_gh_hcall_vcpu_run(ret, vcpu->vm->id, vcpu_id, yield_ts, resp.vcpu_state, resp.vcpu_suspend_state); if (ret == GH_ERROR_OK) { if (resp.vcpu_state > GH_VCPU_STATE_BLOCKED) printk_deferred("Unknown VCPU STATE: state=%d VCPU=%u of VM=%d\n", resp.vcpu_state, vcpu_id, vmid); break; } } while (ret == GH_ERROR_RETRY); } return ret; } EXPORT_SYMBOL(gh_poll_vcpu_run); void gh_vcpu_work_function(struct work_struct *work) { struct gh_proxy_vcpu *vcpu = container_of(work, struct gh_proxy_vcpu, work); struct gh_proxy_vm *vm = vcpu->vm; uint64_t resume_data_0 = 0, resume_data_1 = 0, resume_data_2 = 0; struct gh_hcall_vcpu_run_resp resp; ktime_t start_ts, yield_ts; int ret; vcpu->abort_sleep = false; __pm_stay_awake(vcpu->ws); start_ts = ktime_get(); preempt_disable(); if (vcpu->wdog_frozen) { gh_hcall_wdog_manage(vm->wdog_cap_id, WATCHDOG_MANAGE_OP_UNFREEZE); vcpu->wdog_frozen = false; } ret = gh_hcall_vcpu_run(vcpu->cap_id, resume_data_0, resume_data_1, resume_data_2, &resp); if (ret == GH_ERROR_OK && resp.vcpu_state == GH_VCPU_STATE_READY) { gh_hcall_wdog_manage(vm->wdog_cap_id, WATCHDOG_MANAGE_OP_FREEZE); vcpu->wdog_frozen = true; } preempt_enable(); yield_ts = ktime_get() - start_ts; trace_gh_hcall_vcpu_run(ret, vcpu->vm->id, vcpu->idx, yield_ts, resp.vcpu_state, resp.vcpu_suspend_state); if (ret == GH_ERROR_OK) { switch (resp.vcpu_state) { /* VCPU is preempted by PVM interrupt. */ case GH_VCPU_STATE_READY: queue_work(vm->vcpu_wq, &vcpu->work); break; /* VCPU in WFI or suspended/powered down. */ case GH_VCPU_STATE_EXPECTS_WAKEUP: if (resp.vcpu_suspend_state) __pm_relax(vcpu->ws); if (!vcpu->abort_sleep) { return; } break; case GH_VCPU_STATE_POWERED_OFF: __pm_relax(vcpu->ws); /* once cpu is powered off, the work is done */ if (!vcpu->abort_sleep) return; break; /* VCPU is blocked in EL2 for an unspecified reason */ case GH_VCPU_STATE_BLOCKED: queue_work(vm->vcpu_wq, &vcpu->work); break; } } } int gh_vcpu_pm_notifier_call(struct notifier_block *nb, unsigned long action, void *data) { struct gh_proxy_vcpu *vcpu = container_of(nb, struct gh_proxy_vcpu, suspend_nb); struct gh_proxy_vm *vm = vcpu->vm; if (action == PM_SUSPEND_PREPARE) { if (!vcpu->wdog_frozen) { gh_hcall_wdog_manage(vm->wdog_cap_id, WATCHDOG_MANAGE_OP_FREEZE); vcpu->wdog_frozen = true; } } else if (action == PM_POST_SUSPEND) { queue_work(vm->vcpu_wq, &vcpu->work); } return NOTIFY_OK; } int gh_vcpu_create_wq(gh_vmid_t vmid, unsigned int vcpu_id) { struct gh_proxy_vm *vm; struct gh_proxy_vcpu *vcpu; vm = gh_get_vm(vmid); if (!vm || !vm->is_active) return -EINVAL; if (vm->vcpu[vcpu_id].cap_id == GH_CAPID_INVAL) return -EINVAL; vcpu = &vm->vcpu[vcpu_id]; INIT_WORK(&vcpu->work, gh_vcpu_work_function); vcpu->workqueue_mode = true; vcpu->suspend_nb.notifier_call = gh_vcpu_pm_notifier_call; register_pm_notifier(&vcpu->suspend_nb); /* schedule once incase we miss any interrupt */ schedule_work(&vcpu->work); queue_work(vm->vcpu_wq, &vcpu->work); return 0; } int gh_vcpu_run(gh_vmid_t vmid, unsigned int vcpu_id, uint64_t resume_data_0, uint64_t resume_data_1, uint64_t resume_data_2, struct gh_hcall_vcpu_run_resp *resp) { struct gh_proxy_vcpu *vcpu; struct gh_proxy_vm *vm; int ret; ktime_t start_ts, yield_ts; vm = gh_get_vm(vmid); if (!vm || !vm->is_active) return -EPERM; if (vm->vcpu[vcpu_id].cap_id == GH_CAPID_INVAL) return -EPERM; vcpu = &vm->vcpu[vcpu_id]; do { /* * We're about to run the vcpu, so we can reset the abort-sleep flag. */ vcpu->abort_sleep = false; __pm_stay_awake(vcpu->ws); start_ts = ktime_get(); /* Call into Gunyah to run vcpu. */ preempt_disable(); if (vcpu->wdog_frozen) { gh_hcall_wdog_manage(vm->wdog_cap_id, WATCHDOG_MANAGE_OP_UNFREEZE); vcpu->wdog_frozen = false; } ret = gh_hcall_vcpu_run(vcpu->cap_id, resume_data_0, resume_data_1, resume_data_2, resp); if (ret == GH_ERROR_OK && resp->vcpu_state == GH_VCPU_STATE_READY) { if (need_resched()) { gh_hcall_wdog_manage(vm->wdog_cap_id, WATCHDOG_MANAGE_OP_FREEZE); vcpu->wdog_frozen = true; } } preempt_enable(); yield_ts = ktime_get() - start_ts; trace_gh_hcall_vcpu_run(ret, vcpu->vm->id, vcpu_id, yield_ts, resp->vcpu_state, resp->vcpu_suspend_state); if (ret == GH_ERROR_OK) { switch (resp->vcpu_state) { /* * The caller's hypervisor timeslice ended, or the caller received an interrupt. * The caller should retry after handling any pending interrupts. */ case GH_VCPU_STATE_READY: if (need_resched()) schedule(); break; /* * The VCPU is waiting to receive an interrupt; for example, it may have executed a WFI instruction, * or made a firmware call requesting entry into a low-power state. */ case GH_VCPU_STATE_EXPECTS_WAKEUP: /* * VCPU requested a firmware call requesting * entry into a low-power state. * Release wake lock for non C1 states */ if (resp->vcpu_suspend_state) __pm_relax(vcpu->ws); gh_vcpu_sleep(vcpu); break; /* * The VCPU has not yet been started by calling vcpu_poweron, or has stopped itself by calling vcpu_poweroff, * or has been terminated due to a reset request from another VM. */ case GH_VCPU_STATE_POWERED_OFF: __pm_relax(vcpu->ws); gh_vcpu_sleep(vcpu); break; /* * The VCPU is temporarily unable to run due to a hypervisor operation. * This may include a hypercall made by the VCPU that transiently blocks it, * or by an incomplete migration from another physical CPU. The caller should * retry after yielding to the calling VM's scheduler. */ case GH_VCPU_STATE_BLOCKED: schedule(); break; /* Unknown VCPU state. */ default: pr_err("Unknown VCPU STATE: state=%d VCPU=%u of VM=%d state_data_0=0x%llx state_data_1=0x%llx state_data_2=0x%llx\n", resp->vcpu_state, vcpu_id, vcpu->vm->id, resp->state_data_0, resp->state_data_1, resp->state_data_2); schedule(); break; } } else if (ret == GH_ERROR_RETRY) { schedule(); } if (signal_pending(current)) { if (!vcpu->wdog_frozen) { gh_hcall_wdog_manage(vm->wdog_cap_id, WATCHDOG_MANAGE_OP_FREEZE); vcpu->wdog_frozen = true; } ret = -ERESTARTSYS; break; } } while ((ret == GH_ERROR_OK || ret == GH_ERROR_RETRY) && vm->is_active); if (ret != -ERESTARTSYS) ret = gh_error_remap(ret); return ret; } static int gh_proxy_sched_reg_rm_cbs(void) { int ret = -EINVAL; ret = gh_rm_set_wdog_manage_cb(&gh_wdog_manage); if (ret) { pr_err("fail to set the WDOG resource callback\n"); return ret; } ret = gh_rm_set_vcpu_affinity_cb(&gh_populate_vm_vcpu_info); if (ret) { pr_err("fail to set the VM VCPU populate callback\n"); return ret; } ret = gh_rm_reset_vcpu_affinity_cb(&gh_unpopulate_vm_vcpu_info); if (ret) { pr_err("fail to set the VM VCPU unpopulate callback\n"); return ret; } ret = gh_rm_set_vpm_grp_cb(&gh_populate_vm_vpm_grp_info); if (ret) { pr_err("fail to set the VM VPM GRP populate callback\n"); return ret; } ret = gh_rm_reset_vpm_grp_cb(&gh_unpopulate_vm_vpm_grp_info); if (ret) { pr_err("fail to set the VM VPM GRP unpopulate callback\n"); return ret; } ret = gh_rm_all_res_populated_cb(&gh_populate_all_res_info); if (ret) { pr_err("fail to set the all res populate callback\n"); return ret; } return 0; } int gh_proxy_sched_init(void) { int ret; gh_vms = kcalloc(GH_MAX_VMS, sizeof(struct gh_proxy_vm), GFP_KERNEL); if (!gh_vms) { ret = -ENOMEM; goto err; } ret = gh_proxy_sched_reg_rm_cbs(); if (ret) goto free_gh_vms; gh_init_vms(); init_done = true; return 0; free_gh_vms: kfree(gh_vms); err: return ret; } void gh_proxy_sched_exit(void) { kfree(gh_vms); }