// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2021-2024, Qualcomm Innovation Center, Inc. All rights reserved. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define REG_SIZE_PER_LPG 0x100 #define LPG_BASE "lpg-base" #define LUT_BASE "lut-base" /* LPG module registers */ #define REG_LPG_PERPH_SUBTYPE 0x05 #define REG_LPG_PATTERN_CONFIG 0x40 #define REG_LPG_PWM_SIZE_CLK 0x41 #define REG_LPG_PWM_FREQ_PREDIV_CLK 0x42 #define REG_LPG_PWM_TYPE_CONFIG 0x43 #define REG_LPG_PWM_VALUE_LSB 0x44 #define REG_LPG_PWM_VALUE_MSB 0x45 #define REG_LPG_ENABLE_CONTROL 0x46 #define REG_LPG_PWM_SYNC 0x47 #define REG_LPG_RAMP_STEP_DURATION_LSB 0x50 #define REG_LPG_RAMP_STEP_DURATION_MSB 0x51 #define REG_LPG_PAUSE_HI_MULTIPLIER 0x52 #define REG_LPG_PAUSE_LO_MULTIPLIER 0x54 #define REG_LPG_HI_INDEX 0x56 #define REG_LPG_LO_INDEX 0x57 /* PWM module registers */ #define REG_PWM_STATUS1 0x08 #define FM_MODE_PRESENT BIT(0) #define REG_PWM_FM_MODE 0x50 #define FM_MODE_ENABLE BIT(7) /* REG_LPG_PATTERN_CONFIG */ #define LPG_PATTERN_EN_PAUSE_LO BIT(0) #define LPG_PATTERN_EN_PAUSE_HI BIT(1) #define LPG_PATTERN_RAMP_TOGGLE BIT(2) #define LPG_PATTERN_REPEAT BIT(3) #define LPG_PATTERN_RAMP_LO_TO_HI BIT(4) /* REG_LPG_PERPH_SUBTYPE */ #define SUBTYPE_PWM 0x0b #define SUBTYPE_HI_RES_PWM 0x0c #define SUBTYPE_LPG_LITE 0x11 /* REG_LPG_PWM_SIZE_CLK */ #define LPG_PWM_SIZE_LPG_MASK BIT(4) #define LPG_PWM_SIZE_PWM_MASK BIT(2) #define LPG_PWM_SIZE_PWM_HI_RES_MASK GENMASK(6, 4) #define LPG_PWM_SIZE_LPG_SHIFT 4 #define LPG_PWM_SIZE_PWM_SHIFT 2 #define LPG_PWM_SIZE_PWM_HI_RES_SHIFT 4 #define LPG_PWM_CLK_FREQ_SEL_MASK GENMASK(1, 0) #define LPG_PWM_HI_RES_CLK_FREQ_SEL_MASK GENMASK(2, 0) /* REG_LPG_PWM_FREQ_PREDIV_CLK */ #define LPG_PWM_FREQ_PREDIV_MASK GENMASK(6, 5) #define LPG_PWM_FREQ_PREDIV_SHIFT 5 #define LPG_PWM_FREQ_EXPONENT_MASK GENMASK(2, 0) /* REG_LPG_PWM_TYPE_CONFIG */ #define LPG_PWM_EN_GLITCH_REMOVAL_MASK BIT(5) /* REG_LPG_PWM_VALUE_LSB */ #define LPG_PWM_VALUE_LSB_MASK GENMASK(7, 0) /* REG_LPG_PWM_VALUE_MSB */ #define LPG_PWM_VALUE_MSB_MASK BIT(0) #define LPG_PWM_HI_RES_VALUE_MSB_MASK GENMASK(7, 0) /* REG_LPG_ENABLE_CONTROL */ #define LPG_EN_LPG_OUT_BIT BIT(7) #define LPG_EN_LPG_OUT_SHIFT 7 #define LPG_PWM_SRC_SELECT_MASK BIT(2) #define LPG_PWM_SRC_SELECT_SHIFT 2 #define LPG_EN_RAMP_GEN_MASK BIT(1) #define LPG_EN_RAMP_GEN_SHIFT 1 /* REG_LPG_PWM_SYNC */ #define LPG_PWM_VALUE_SYNC BIT(0) #define NUM_PWM_SIZE 2 #define NUM_PWM_HI_RES_SIZE 8 #define NUM_PWM_CLK 3 #define NUM_PWM_HI_RES_CLK 4 #define NUM_CLK_PREDIV 4 #define NUM_PWM_EXP 8 #define LPG_HI_LO_IDX_MASK GENMASK(5, 0) /* LUT module registers */ #define REG_LPG_LUT_1_LSB 0x42 #define REG_LPG_LUT_RAMP_CONTROL 0xc8 #define LPG_LUT_VALUE_MSB_MASK BIT(0) #define LPG_LUT_COUNT_MAX 47 /* LPG config settings in SDAM */ #define SDAM_REG_PBS_SEQ_EN 0x42 #define PBS_SW_TRG_BIT BIT(0) #define SDAM_REG_RAMP_STEP_DURATION 0x47 #define SDAM_LUT_EN_OFFSET 0x0 #define SDAM_PATTERN_CONFIG_OFFSET 0x1 #define SDAM_END_INDEX_OFFSET 0x3 #define SDAM_START_INDEX_OFFSET 0x4 #define SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET 0x6 #define SDAM_PAUSE_START_MULTIPLIER_OFFSET 0x8 #define SDAM_PAUSE_END_MULTIPLIER_OFFSET 0x9 /* SDAM_REG_LUT_EN */ #define SDAM_LUT_EN_BIT BIT(0) /* SDAM_REG_PATTERN_CONFIG */ #define SDAM_PATTERN_LOOP_ENABLE BIT(3) #define SDAM_PATTERN_EN_PAUSE_START BIT(1) #define SDAM_PATTERN_EN_PAUSE_END BIT(0) #define SDAM_PAUSE_COUNT_MAX (U8_MAX - 1) #define SDAM_LUT_COUNT_MAX 64 enum lpg_src { LUT_PATTERN = 0, PWM_VALUE, }; enum ppg_num_nvmems { PPG_NO_NVMEMS, PPG_NVMEMS_1, /* A single nvmem for both LUT and LPG channel config */ PPG_NVMEMS_2, /* Two separate nvmems for LUT and LPG channel config */ }; static const int pwm_size[NUM_PWM_SIZE] = {6, 9}; static const int pwm_hi_res_size[NUM_PWM_HI_RES_SIZE] = {8, 9, 10, 11, 12, 13, 14, 15}; static const int clk_freq_hz[NUM_PWM_CLK] = {1024, 32768, 19200000}; static const int clk_freq_hz_hi_res[NUM_PWM_HI_RES_CLK] = {1024, 32768, 19200000, 76800000}; /* clk_period_ns = NSEC_PER_SEC / clk_freq_hz */ static const int clk_period_ns[NUM_PWM_CLK] = {976562, 30517, 52}; static const int clk_period_ns_hi_res[NUM_PWM_HI_RES_CLK] = {976562, 30517, 52, 13}; static const int clk_prediv[NUM_CLK_PREDIV] = {1, 3, 5, 6}; static const int pwm_exponent[NUM_PWM_EXP] = {0, 1, 2, 3, 4, 5, 6, 7}; struct lpg_ramp_config { u16 step_ms; u8 pause_hi_count; u8 pause_lo_count; u8 hi_idx; u8 lo_idx; bool ramp_dir_low_to_hi; bool pattern_repeat; bool toggle; u32 *pattern; u32 pattern_length; }; struct lpg_pwm_config { u32 pwm_size; u32 pwm_clk; u32 prediv; u32 clk_exp; u16 pwm_value; u64 best_period_ns; }; struct qpnp_lpg_lut { struct qpnp_lpg_chip *chip; struct mutex lock; enum ppg_num_nvmems nvmem_count; u32 reg_base; u32 *pattern; /* patterns in percentage */ u32 ramp_step_tick_us; }; struct qpnp_lpg_channel { struct qpnp_lpg_chip *chip; struct lpg_pwm_config pwm_config; struct lpg_ramp_config ramp_config; enum pwm_output_type output_type; u32 lpg_idx; u32 reg_base; u32 max_pattern_length; u32 lpg_sdam_base; u8 src_sel; u8 subtype; bool lut_written; bool enable_pfm; u64 current_period_ns; u64 current_duty_ns; }; struct qpnp_lpg_chip { struct pwm_chip pwm_chip; struct regmap *regmap; struct device *dev; struct qpnp_lpg_channel *lpgs; struct qpnp_lpg_lut *lut; struct mutex bus_lock; u32 *lpg_group; struct nvmem_device *lpg_chan_nvmem; struct nvmem_device *lut_nvmem; struct device_node *pbs_dev_node; u32 num_lpgs; unsigned long pbs_en_bitmap; bool use_sdam; }; static int qpnp_lpg_read(struct qpnp_lpg_channel *lpg, u16 addr, u8 *val) { int rc; unsigned int tmp; mutex_lock(&lpg->chip->bus_lock); rc = regmap_read(lpg->chip->regmap, lpg->reg_base + addr, &tmp); if (rc < 0) dev_err(lpg->chip->dev, "Read addr 0x%x failed, rc=%d\n", lpg->reg_base + addr, rc); else *val = (u8)tmp; mutex_unlock(&lpg->chip->bus_lock); return rc; } static int qpnp_lpg_write(struct qpnp_lpg_channel *lpg, u16 addr, u8 val) { int rc; mutex_lock(&lpg->chip->bus_lock); rc = regmap_write(lpg->chip->regmap, lpg->reg_base + addr, val); if (rc < 0) dev_err(lpg->chip->dev, "Write addr 0x%x with value 0x%x failed, rc=%d\n", lpg->reg_base + addr, val, rc); mutex_unlock(&lpg->chip->bus_lock); return rc; } static int qpnp_lpg_masked_write(struct qpnp_lpg_channel *lpg, u16 addr, u8 mask, u8 val) { int rc; mutex_lock(&lpg->chip->bus_lock); rc = regmap_update_bits(lpg->chip->regmap, lpg->reg_base + addr, mask, val); if (rc < 0) dev_err(lpg->chip->dev, "Update addr 0x%x to val 0x%x with mask 0x%x failed, rc=%d\n", lpg->reg_base + addr, val, mask, rc); mutex_unlock(&lpg->chip->bus_lock); return rc; } static int qpnp_lut_write(struct qpnp_lpg_lut *lut, u16 addr, u8 val) { int rc; mutex_lock(&lut->chip->bus_lock); rc = regmap_write(lut->chip->regmap, lut->reg_base + addr, val); if (rc < 0) dev_err(lut->chip->dev, "Write addr 0x%x with value %d failed, rc=%d\n", lut->reg_base + addr, val, rc); mutex_unlock(&lut->chip->bus_lock); return rc; } static int qpnp_lut_masked_write(struct qpnp_lpg_lut *lut, u16 addr, u8 mask, u8 val) { int rc; mutex_lock(&lut->chip->bus_lock); rc = regmap_update_bits(lut->chip->regmap, lut->reg_base + addr, mask, val); if (rc < 0) dev_err(lut->chip->dev, "Update addr 0x%x to val 0x%x with mask 0x%x failed, rc=%d\n", lut->reg_base + addr, val, mask, rc); mutex_unlock(&lut->chip->bus_lock); return rc; } static int qpnp_lpg_chan_nvmem_write(struct qpnp_lpg_chip *chip, u16 addr, u8 val) { int rc; mutex_lock(&chip->bus_lock); rc = nvmem_device_write(chip->lpg_chan_nvmem, addr, 1, &val); if (rc < 0) dev_err(chip->dev, "write SDAM add 0x%x failed, rc=%d\n", addr, rc); mutex_unlock(&chip->bus_lock); return rc > 0 ? 0 : rc; } static int qpnp_lpg_sdam_write(struct qpnp_lpg_channel *lpg, u16 addr, u8 val) { struct qpnp_lpg_chip *chip = lpg->chip; int rc; mutex_lock(&chip->bus_lock); rc = nvmem_device_write(chip->lpg_chan_nvmem, lpg->lpg_sdam_base + addr, 1, &val); if (rc < 0) dev_err(chip->dev, "write SDAM add 0x%x failed, rc=%d\n", lpg->lpg_sdam_base + addr, rc); mutex_unlock(&chip->bus_lock); return rc > 0 ? 0 : rc; } static int qpnp_lpg_sdam_masked_write(struct qpnp_lpg_channel *lpg, u16 addr, u8 mask, u8 val) { int rc; u8 tmp; struct qpnp_lpg_chip *chip = lpg->chip; mutex_lock(&chip->bus_lock); rc = nvmem_device_read(chip->lpg_chan_nvmem, lpg->lpg_sdam_base + addr, 1, &tmp); if (rc < 0) { dev_err(chip->dev, "Read SDAM addr %d failed, rc=%d\n", lpg->lpg_sdam_base + addr, rc); goto unlock; } tmp = tmp & ~mask; tmp |= val & mask; rc = nvmem_device_write(chip->lpg_chan_nvmem, lpg->lpg_sdam_base + addr, 1, &tmp); if (rc < 0) dev_err(chip->dev, "write SDAM addr %d failed, rc=%d\n", lpg->lpg_sdam_base + addr, rc); unlock: mutex_unlock(&chip->bus_lock); return rc > 0 ? 0 : rc; } static int qpnp_lut_sdam_write(struct qpnp_lpg_lut *lut, u16 addr, u8 *val, size_t length) { struct qpnp_lpg_chip *chip = lut->chip; int rc; if (addr >= SDAM_LUT_COUNT_MAX) return -EINVAL; mutex_lock(&chip->bus_lock); rc = nvmem_device_write(chip->lut_nvmem, lut->reg_base + addr, length, val); if (rc < 0) dev_err(chip->dev, "write SDAM addr %d failed, rc=%d\n", lut->reg_base + addr, rc); mutex_unlock(&chip->bus_lock); return rc > 0 ? 0 : rc; } static struct qpnp_lpg_channel *pwm_dev_to_qpnp_lpg(struct pwm_chip *pwm_chip, struct pwm_device *pwm) { struct qpnp_lpg_chip *chip = container_of(pwm_chip, struct qpnp_lpg_chip, pwm_chip); u32 hw_idx = pwm->hwpwm; if (hw_idx >= chip->num_lpgs) { dev_err(chip->dev, "hw index %d out of range [0-%d]\n", hw_idx, chip->num_lpgs - 1); return NULL; } return &chip->lpgs[hw_idx]; } static int __find_index_in_array(int member, const int array[], int length) { int i; for (i = 0; i < length; i++) { if (member == array[i]) return i; } return -EINVAL; } static int qpnp_lpg_set_glitch_removal(struct qpnp_lpg_channel *lpg, bool en) { int rc; u8 mask, val; val = en ? LPG_PWM_EN_GLITCH_REMOVAL_MASK : 0; mask = LPG_PWM_EN_GLITCH_REMOVAL_MASK; rc = qpnp_lpg_masked_write(lpg, REG_LPG_PWM_TYPE_CONFIG, mask, val); if (rc < 0) dev_err(lpg->chip->dev, "Write LPG_PWM_TYPE_CONFIG failed, rc=%d\n", rc); return rc; } static int qpnp_lpg_set_pwm_config(struct qpnp_lpg_channel *lpg) { int rc; u8 val, mask, shift; int pwm_size_idx, pwm_clk_idx, prediv_idx, clk_exp_idx; if (lpg->subtype == SUBTYPE_HI_RES_PWM) { pwm_size_idx = __find_index_in_array(lpg->pwm_config.pwm_size, pwm_hi_res_size, ARRAY_SIZE(pwm_hi_res_size)); pwm_clk_idx = __find_index_in_array(lpg->pwm_config.pwm_clk, clk_freq_hz_hi_res, ARRAY_SIZE(clk_freq_hz_hi_res)); } else { pwm_size_idx = __find_index_in_array(lpg->pwm_config.pwm_size, pwm_size, ARRAY_SIZE(pwm_size)); pwm_clk_idx = __find_index_in_array(lpg->pwm_config.pwm_clk, clk_freq_hz, ARRAY_SIZE(clk_freq_hz)); } prediv_idx = __find_index_in_array(lpg->pwm_config.prediv, clk_prediv, ARRAY_SIZE(clk_prediv)); clk_exp_idx = __find_index_in_array(lpg->pwm_config.clk_exp, pwm_exponent, ARRAY_SIZE(pwm_exponent)); if (pwm_size_idx < 0 || pwm_clk_idx < 0 || prediv_idx < 0 || clk_exp_idx < 0) return -EINVAL; /* pwm_clk_idx is 1 bit lower than the register value */ pwm_clk_idx += 1; if (lpg->subtype == SUBTYPE_PWM) { shift = LPG_PWM_SIZE_PWM_SHIFT; mask = LPG_PWM_SIZE_PWM_MASK | LPG_PWM_CLK_FREQ_SEL_MASK; } else if (lpg->subtype == SUBTYPE_HI_RES_PWM) { shift = LPG_PWM_SIZE_PWM_HI_RES_SHIFT; mask = LPG_PWM_SIZE_PWM_HI_RES_MASK | LPG_PWM_HI_RES_CLK_FREQ_SEL_MASK; } else { shift = LPG_PWM_SIZE_LPG_SHIFT; mask = LPG_PWM_SIZE_LPG_MASK | LPG_PWM_CLK_FREQ_SEL_MASK; } val = pwm_size_idx << shift | pwm_clk_idx; rc = qpnp_lpg_masked_write(lpg, REG_LPG_PWM_SIZE_CLK, mask, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PWM_SIZE_CLK failed, rc=%d\n", rc); return rc; } val = prediv_idx << LPG_PWM_FREQ_PREDIV_SHIFT | clk_exp_idx; mask = LPG_PWM_FREQ_PREDIV_MASK | LPG_PWM_FREQ_EXPONENT_MASK; rc = qpnp_lpg_masked_write(lpg, REG_LPG_PWM_FREQ_PREDIV_CLK, mask, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PWM_FREQ_PREDIV_CLK failed, rc=%d\n", rc); return rc; } if (lpg->src_sel == LUT_PATTERN) return 0; val = lpg->pwm_config.pwm_value >> 8; if (lpg->subtype == SUBTYPE_HI_RES_PWM) mask = LPG_PWM_HI_RES_VALUE_MSB_MASK; else mask = LPG_PWM_VALUE_MSB_MASK; rc = qpnp_lpg_masked_write(lpg, REG_LPG_PWM_VALUE_MSB, mask, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PWM_VALUE_MSB failed, rc=%d\n", rc); return rc; } val = lpg->pwm_config.pwm_value & LPG_PWM_VALUE_LSB_MASK; rc = qpnp_lpg_write(lpg, REG_LPG_PWM_VALUE_LSB, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PWM_VALUE_LSB failed, rc=%d\n", rc); return rc; } val = LPG_PWM_VALUE_SYNC; rc = qpnp_lpg_write(lpg, REG_LPG_PWM_SYNC, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PWM_SYNC failed, rc=%d\n", rc); return rc; } return rc; } static int qpnp_lpg_set_pfm_config(struct qpnp_lpg_channel *lpg) { int rc; u8 val, mask; int pwm_clk_idx, clk_exp_idx; if (lpg->subtype == SUBTYPE_HI_RES_PWM) pwm_clk_idx = __find_index_in_array(lpg->pwm_config.pwm_clk, clk_freq_hz_hi_res, ARRAY_SIZE(clk_freq_hz_hi_res)); else pwm_clk_idx = __find_index_in_array(lpg->pwm_config.pwm_clk, clk_freq_hz, ARRAY_SIZE(clk_freq_hz)); clk_exp_idx = __find_index_in_array(lpg->pwm_config.clk_exp, pwm_exponent, ARRAY_SIZE(pwm_exponent)); if (pwm_clk_idx < 0 || clk_exp_idx < 0) return -EINVAL; /* pwm_clk_idx is 1 bit lower than the register value */ pwm_clk_idx += 1; val = pwm_clk_idx; if (lpg->subtype == SUBTYPE_HI_RES_PWM) mask = LPG_PWM_HI_RES_CLK_FREQ_SEL_MASK; else mask = LPG_PWM_CLK_FREQ_SEL_MASK; rc = qpnp_lpg_masked_write(lpg, REG_LPG_PWM_SIZE_CLK, mask, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PWM_SIZE_CLK failed, rc=%d\n", rc); return rc; } val = clk_exp_idx; mask = LPG_PWM_FREQ_EXPONENT_MASK; rc = qpnp_lpg_masked_write(lpg, REG_LPG_PWM_FREQ_PREDIV_CLK, mask, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PWM_FREQ_PREDIV_CLK failed, rc=%d\n", rc); return rc; } val = lpg->pwm_config.pwm_value; rc = qpnp_lpg_masked_write(lpg, REG_LPG_PWM_VALUE_LSB, LPG_PWM_VALUE_LSB_MASK, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PWM_VALUE_LSB failed, rc=%d\n", rc); return rc; } val = LPG_PWM_VALUE_SYNC; rc = qpnp_lpg_write(lpg, REG_LPG_PWM_SYNC, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PWM_SYNC failed, rc=%d\n", rc); return rc; } return rc; } static int qpnp_lpg_set_sdam_lut_pattern(struct qpnp_lpg_channel *lpg, unsigned int *pattern, unsigned int length) { struct qpnp_lpg_lut *lut = lpg->chip->lut; int i, rc = 0; u8 val[SDAM_LUT_COUNT_MAX + 1], addr; if (length > lpg->max_pattern_length) { dev_err(lpg->chip->dev, "new pattern length (%d) larger than predefined (%d)\n", length, lpg->max_pattern_length); return -EINVAL; } /* Program LUT pattern */ mutex_lock(&lut->lock); addr = lpg->ramp_config.lo_idx; for (i = 0; i < length; i++) val[i] = pattern[i] * 255 / 100; rc = qpnp_lut_sdam_write(lut, addr, val, length); if (rc < 0) { dev_err(lpg->chip->dev, "Write pattern in SDAM failed, rc=%d\n", rc); goto unlock; } lpg->ramp_config.pattern_length = length; unlock: mutex_unlock(&lut->lock); return rc; } #define SDAM_START_BASE 0x40 static u8 qpnp_lpg_get_sdam_lut_idx(struct qpnp_lpg_channel *lpg, u8 idx) { struct qpnp_lpg_chip *chip = lpg->chip; u8 val = idx; if (chip->lut->nvmem_count == PPG_NVMEMS_2) val += (chip->lut->reg_base - SDAM_START_BASE); return val; } static int qpnp_lpg_set_sdam_ramp_config(struct qpnp_lpg_channel *lpg) { struct lpg_ramp_config *ramp = &lpg->ramp_config; u8 addr, mask, val; int rc = 0; /* clear PBS scatchpad register */ val = 0; rc = qpnp_lpg_sdam_write(lpg, SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET failed, rc=%d\n", rc); return rc; } /* Set ramp step duration, in ticks */ val = (ramp->step_ms * 1000 / lpg->chip->lut->ramp_step_tick_us) & 0xff; if (val > 0) val--; addr = SDAM_REG_RAMP_STEP_DURATION; rc = qpnp_lpg_chan_nvmem_write(lpg->chip, addr, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write SDAM_REG_RAMP_STEP_DURATION failed, rc=%d\n", rc); return rc; } /* Set hi_idx and lo_idx */ val = qpnp_lpg_get_sdam_lut_idx(lpg, ramp->hi_idx); rc = qpnp_lpg_sdam_write(lpg, SDAM_END_INDEX_OFFSET, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write SDAM_REG_END_INDEX failed, rc=%d\n", rc); return rc; } val = qpnp_lpg_get_sdam_lut_idx(lpg, ramp->lo_idx); rc = qpnp_lpg_sdam_write(lpg, SDAM_START_INDEX_OFFSET, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write SDAM_REG_START_INDEX failed, rc=%d\n", rc); return rc; } /* Set LPG_PATTERN_CONFIG */ addr = SDAM_PATTERN_CONFIG_OFFSET; mask = SDAM_PATTERN_LOOP_ENABLE; val = 0; if (ramp->pattern_repeat) val |= SDAM_PATTERN_LOOP_ENABLE; if (ramp->pause_hi_count) { val |= SDAM_PATTERN_EN_PAUSE_START; mask |= SDAM_PATTERN_EN_PAUSE_START; } if (ramp->pause_lo_count) { val |= SDAM_PATTERN_EN_PAUSE_END; mask |= SDAM_PATTERN_EN_PAUSE_END; } rc = qpnp_lpg_sdam_masked_write(lpg, addr, mask, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write SDAM_REG_PATTERN_CONFIG failed, rc=%d\n", rc); return rc; } /* Set PAUSE HI and LO */ rc = qpnp_lpg_sdam_write(lpg, SDAM_PAUSE_START_MULTIPLIER_OFFSET, ramp->pause_hi_count); if (rc < 0) { dev_err(lpg->chip->dev, "Write SDAM_REG_PAUSE_START_MULTIPLIER failed, rc=%d\n", rc); return rc; } rc = qpnp_lpg_sdam_write(lpg, SDAM_PAUSE_END_MULTIPLIER_OFFSET, ramp->pause_lo_count); if (rc < 0) { dev_err(lpg->chip->dev, "Write SDAM_REG_PAUSE_END_MULTIPLIER failed, rc=%d\n", rc); return rc; } return rc; } static int qpnp_lpg_set_lut_pattern(struct qpnp_lpg_channel *lpg, unsigned int *pattern, unsigned int length) { struct qpnp_lpg_lut *lut = lpg->chip->lut; u16 full_duty_value, pwm_values[SDAM_LUT_COUNT_MAX + 1] = {0}; int i, rc = 0; u8 lsb, msb, addr; if (lpg->chip->use_sdam) return qpnp_lpg_set_sdam_lut_pattern(lpg, pattern, length); if (length > lpg->max_pattern_length) { dev_err(lpg->chip->dev, "new pattern length (%d) larger than predefined (%d)\n", length, lpg->max_pattern_length); return -EINVAL; } /* Program LUT pattern */ mutex_lock(&lut->lock); addr = REG_LPG_LUT_1_LSB + lpg->ramp_config.lo_idx * 2; for (i = 0; i < length; i++) { full_duty_value = 1 << lpg->pwm_config.pwm_size; pwm_values[i] = pattern[i] * full_duty_value / 100; if (unlikely(pwm_values[i] > full_duty_value)) { dev_err(lpg->chip->dev, "PWM value %d exceed the max %d\n", pwm_values[i], full_duty_value); rc = -EINVAL; goto unlock; } if (pwm_values[i] == full_duty_value) pwm_values[i] = full_duty_value - 1; lsb = pwm_values[i] & 0xff; msb = pwm_values[i] >> 8; rc = qpnp_lut_write(lut, addr++, lsb); if (rc < 0) { dev_err(lpg->chip->dev, "Write NO.%d LUT pattern LSB (%d) failed, rc=%d\n", i, lsb, rc); goto unlock; } rc = qpnp_lut_masked_write(lut, addr++, LPG_LUT_VALUE_MSB_MASK, msb); if (rc < 0) { dev_err(lpg->chip->dev, "Write NO.%d LUT pattern MSB (%d) failed, rc=%d\n", i, msb, rc); goto unlock; } } lpg->ramp_config.pattern_length = length; unlock: mutex_unlock(&lut->lock); return rc; } static int qpnp_lpg_set_ramp_config(struct qpnp_lpg_channel *lpg) { struct lpg_ramp_config *ramp = &lpg->ramp_config; u8 lsb, msb, addr, mask, val; int rc = 0; if (lpg->chip->use_sdam) return qpnp_lpg_set_sdam_ramp_config(lpg); /* Set ramp step duration */ lsb = ramp->step_ms & 0xff; msb = ramp->step_ms >> 8; addr = REG_LPG_RAMP_STEP_DURATION_LSB; rc = qpnp_lpg_write(lpg, addr, lsb); if (rc < 0) { dev_err(lpg->chip->dev, "Write RAMP_STEP_DURATION_LSB failed, rc=%d\n", rc); return rc; } rc = qpnp_lpg_write(lpg, addr + 1, msb); if (rc < 0) { dev_err(lpg->chip->dev, "Write RAMP_STEP_DURATION_MSB failed, rc=%d\n", rc); return rc; } /* Set hi_idx and lo_idx */ rc = qpnp_lpg_masked_write(lpg, REG_LPG_HI_INDEX, LPG_HI_LO_IDX_MASK, ramp->hi_idx); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_HI_IDX failed, rc=%d\n", rc); return rc; } rc = qpnp_lpg_masked_write(lpg, REG_LPG_LO_INDEX, LPG_HI_LO_IDX_MASK, ramp->lo_idx); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_LO_IDX failed, rc=%d\n", rc); return rc; } /* Set pause_hi/lo_count */ rc = qpnp_lpg_write(lpg, REG_LPG_PAUSE_HI_MULTIPLIER, ramp->pause_hi_count); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PAUSE_HI_MULTIPLIER failed, rc=%d\n", rc); return rc; } rc = qpnp_lpg_write(lpg, REG_LPG_PAUSE_LO_MULTIPLIER, ramp->pause_lo_count); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PAUSE_LO_MULTIPLIER failed, rc=%d\n", rc); return rc; } /* Set LPG_PATTERN_CONFIG */ addr = REG_LPG_PATTERN_CONFIG; mask = LPG_PATTERN_EN_PAUSE_LO | LPG_PATTERN_EN_PAUSE_HI | LPG_PATTERN_RAMP_TOGGLE | LPG_PATTERN_REPEAT | LPG_PATTERN_RAMP_LO_TO_HI; val = 0; if (ramp->pause_lo_count != 0) val |= LPG_PATTERN_EN_PAUSE_LO; if (ramp->pause_hi_count != 0) val |= LPG_PATTERN_EN_PAUSE_HI; if (ramp->ramp_dir_low_to_hi) val |= LPG_PATTERN_RAMP_LO_TO_HI; if (ramp->pattern_repeat) val |= LPG_PATTERN_REPEAT; if (ramp->toggle) val |= LPG_PATTERN_RAMP_TOGGLE; rc = qpnp_lpg_masked_write(lpg, addr, mask, val); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PATTERN_CONFIG failed, rc=%d\n", rc); return rc; } return rc; } static int __qpnp_lpg_calc_pwm_period(u64 period_ns, struct lpg_pwm_config *pwm_config) { struct qpnp_lpg_channel *lpg = container_of(pwm_config, struct qpnp_lpg_channel, pwm_config); struct lpg_pwm_config configs[NUM_PWM_HI_RES_SIZE]; int i, j, m, n; u64 tmp1, tmp2; u64 clk_period_ns = 0, pwm_clk_period_ns; u64 clk_delta_ns = U64_MAX, min_clk_delta_ns = U64_MAX; u64 pwm_period_delta = U64_MAX, min_pwm_period_delta = U64_MAX; int pwm_size_step, clk_len, pwm_size_len; const int *pwm_size_arr, *clk_freq_hz_arr; /* * (2^pwm_size) * (2^pwm_exp) * prediv * NSEC_PER_SEC * pwm_period = --------------------------------------------------- * clk_freq_hz * * Searching the closest settings for the requested PWM period. */ if (lpg->subtype == SUBTYPE_HI_RES_PWM) { pwm_size_arr = pwm_hi_res_size; pwm_size_len = NUM_PWM_HI_RES_SIZE; clk_freq_hz_arr = clk_freq_hz_hi_res; clk_len = NUM_PWM_HI_RES_CLK; } else { pwm_size_arr = pwm_size; pwm_size_len = NUM_PWM_SIZE; clk_freq_hz_arr = clk_freq_hz; clk_len = NUM_PWM_CLK; } if (lpg->chip->use_sdam) { /* SDAM pattern control can only use 9 bit resolution */ n = 1; pwm_size_len = 2; } else n = 0; for (; n < pwm_size_len; n++) { pwm_clk_period_ns = period_ns >> pwm_size_arr[n]; for (i = clk_len - 1; i >= 0; i--) { for (j = 0; j < clk_len; j++) { for (m = 0; m < ARRAY_SIZE(pwm_exponent); m++) { tmp1 = 1 << pwm_exponent[m]; tmp1 *= clk_prediv[j]; tmp2 = NSEC_PER_SEC; do_div(tmp2, clk_freq_hz_arr[i]); clk_period_ns = tmp1 * tmp2; clk_delta_ns = abs(pwm_clk_period_ns - clk_period_ns); /* * Find the closest setting for * PWM frequency predivide value */ if (clk_delta_ns < min_clk_delta_ns) { min_clk_delta_ns = clk_delta_ns; configs[n].pwm_clk = clk_freq_hz_arr[i]; configs[n].prediv = clk_prediv[j]; configs[n].clk_exp = pwm_exponent[m]; configs[n].pwm_size = pwm_size_arr[n]; configs[n].best_period_ns = clk_period_ns; } } } } configs[n].best_period_ns *= 1 << pwm_size_arr[n]; /* Find the closest setting for PWM period */ pwm_period_delta = min_clk_delta_ns << pwm_size_arr[n]; if (pwm_period_delta < min_pwm_period_delta) { min_pwm_period_delta = pwm_period_delta; memcpy(pwm_config, &configs[n], sizeof(struct lpg_pwm_config)); } } /* Larger PWM size can achieve better resolution for PWM duty */ for (n = pwm_size_len - 1; n > 0; n--) { if (pwm_config->pwm_size >= pwm_size_arr[n]) break; pwm_size_step = pwm_size_arr[n] - pwm_config->pwm_size; if (pwm_config->clk_exp >= pwm_size_step) { pwm_config->pwm_size = pwm_size_arr[n]; pwm_config->clk_exp -= pwm_size_step; } } pr_debug("PWM setting for period_ns %llu: pwm_clk = %dHZ, prediv = %d, exponent = %d, pwm_size = %d\n", period_ns, pwm_config->pwm_clk, pwm_config->prediv, pwm_config->clk_exp, pwm_config->pwm_size); pr_debug("Actual period: %lluns\n", pwm_config->best_period_ns); return 0; } static void __qpnp_lpg_calc_pwm_duty(u64 period_ns, u64 duty_ns, struct lpg_pwm_config *pwm_config) { u16 pwm_value, max_pwm_value; u64 tmp; tmp = (u64)duty_ns << pwm_config->pwm_size; pwm_value = (u16)div64_u64(tmp, period_ns); max_pwm_value = (1 << pwm_config->pwm_size) - 1; if (pwm_value > max_pwm_value) pwm_value = max_pwm_value; pwm_config->pwm_value = pwm_value; } static int __qpnp_lpg_calc_pfm_period(u64 period_ns, struct lpg_pwm_config *pwm_config) { struct qpnp_lpg_channel *lpg = container_of(pwm_config, struct qpnp_lpg_channel, pwm_config); int clk, exp, lsb, clk_len; int best_clk = 0, best_exp = 0, best_lsb = -EINVAL; u64 lsb_tmp, period_tmp, curr_p_err, last_p_err = 0; u64 min_p_err = U64_MAX; const int *clk_freq_hz_arr, *clk_period_ns_arr; /* * 2 * (pwm_value_lsb + 1) * (2^pwm_exp) * NSEC_PER_SEC * pwm_period = --------------------------------------------------- * clk_freq_hz * * For each (clk, exp) solve above equation for pwm_value_lsb, and then * use this pwm_lsb to calculate pwm_period and compare with desired * period. Store the triplet values that yield the closest value to * desired period. */ if (lpg->subtype == SUBTYPE_HI_RES_PWM) { clk_freq_hz_arr = clk_freq_hz_hi_res; clk_period_ns_arr = clk_period_ns_hi_res; clk_len = NUM_PWM_HI_RES_CLK; } else { clk_freq_hz_arr = clk_freq_hz; clk_period_ns_arr = clk_period_ns; clk_len = NUM_PWM_CLK; } for (clk = 0; clk < clk_len; clk++) { last_p_err = U64_MAX; for (exp = 0; exp < NUM_PWM_EXP; exp++) { lsb_tmp = div_u64(period_ns, clk_period_ns_arr[clk]); lsb_tmp >>= (exp + 1); lsb = lsb_tmp - 1; if (lsb >= 0 && lsb <= U8_MAX) { period_tmp = (lsb + 1); period_tmp <<= (exp + 1); period_tmp *= clk_period_ns_arr[clk]; curr_p_err = abs(period_ns - period_tmp); if (curr_p_err < min_p_err) { min_p_err = curr_p_err; /* Closest settings found! Save them. */ best_clk = clk; best_exp = exp; best_lsb = lsb; /* * No need to set pwm_size or prediv in * `struct pwm_config` as they are * no-ops in PFM mode. */ pwm_config->best_period_ns = period_tmp; } if (curr_p_err > last_p_err) /* No need to iterate further */ break; last_p_err = curr_p_err; } } } if (best_lsb < 0) { pr_err("Cannot generate %llu ns\n", period_ns); return -EINVAL; } pwm_config->pwm_clk = clk_freq_hz_arr[best_clk]; pwm_config->clk_exp = pwm_exponent[best_exp]; pwm_config->pwm_value = best_lsb; pr_debug("PFM setting for period_ns %llu: pwm_clk = %d Hz, exponent = %d, pwm_val_lsb = %d\n", period_ns, pwm_config->pwm_clk, pwm_config->clk_exp, pwm_config->pwm_value); pr_debug("Actual PFM period: %llu ns\n", pwm_config->best_period_ns); return 0; } static int qpnp_lpg_config(struct qpnp_lpg_channel *lpg, u64 duty_ns, u64 period_ns) { int rc; if (duty_ns > period_ns) { dev_err(lpg->chip->dev, "Duty %lluns is larger than period %lluns\n", duty_ns, period_ns); return -EINVAL; } if (period_ns != lpg->current_period_ns) { if (lpg->enable_pfm) { rc = __qpnp_lpg_calc_pfm_period(period_ns, &lpg->pwm_config); if (rc) return rc; } else { rc = __qpnp_lpg_calc_pwm_period(period_ns, &lpg->pwm_config); if (rc) return rc; /* program LUT if PWM period is changed */ if (lpg->src_sel == LUT_PATTERN) { rc = qpnp_lpg_set_lut_pattern(lpg, lpg->ramp_config.pattern, lpg->ramp_config.pattern_length); if (rc < 0) { dev_err(lpg->chip->dev, "set LUT pattern failed for LPG%d, rc=%d\n", lpg->lpg_idx, rc); return rc; } lpg->lut_written = true; } } } /* Don't calculate duty cycle for PFM as it is fixed at 50% */ if ((period_ns != lpg->current_period_ns || duty_ns != lpg->current_duty_ns) && !lpg->enable_pfm) __qpnp_lpg_calc_pwm_duty(period_ns, duty_ns, &lpg->pwm_config); if (lpg->enable_pfm) rc = qpnp_lpg_set_pfm_config(lpg); else rc = qpnp_lpg_set_pwm_config(lpg); if (rc < 0) { dev_err(lpg->chip->dev, "Config %s failed for channel %d, rc=%d\n", lpg->enable_pfm ? "PFM" : "PWM", lpg->lpg_idx, rc); return rc; } lpg->current_period_ns = period_ns; lpg->current_duty_ns = duty_ns; return rc; } static int qpnp_lpg_pwm_config(struct pwm_chip *pwm_chip, struct pwm_device *pwm, u64 duty_ns, u64 period_ns) { struct qpnp_lpg_channel *lpg; lpg = pwm_dev_to_qpnp_lpg(pwm_chip, pwm); if (lpg == NULL) { dev_err(pwm_chip->dev, "lpg not found\n"); return -ENODEV; } return qpnp_lpg_config(lpg, duty_ns, period_ns); } #define SDAM_PBS_TRIG_SET 0xe5 #define SDAM_PBS_TRIG_CLR 0xe6 static int qpnp_lpg_clear_pbs_trigger(struct qpnp_lpg_chip *chip) { int rc; rc = qpnp_lpg_chan_nvmem_write(chip, SDAM_REG_PBS_SEQ_EN, 0); if (rc < 0) { dev_err(chip->dev, "Write SDAM_REG_PBS_SEQ_EN failed, rc=%d\n", rc); return rc; } if (chip->lut->nvmem_count == PPG_NVMEMS_2) { rc = qpnp_lpg_chan_nvmem_write(chip, SDAM_PBS_TRIG_CLR, PBS_SW_TRG_BIT); if (rc < 0) { dev_err(chip->dev, "Failed to fire PBS seq, rc=%d\n", rc); return rc; } } return 0; } static int qpnp_lpg_set_pbs_trigger(struct qpnp_lpg_chip *chip) { int rc; rc = qpnp_lpg_chan_nvmem_write(chip, SDAM_REG_PBS_SEQ_EN, PBS_SW_TRG_BIT); if (rc < 0) { dev_err(chip->dev, "Write SDAM_REG_PBS_SEQ_EN failed, rc=%d\n", rc); return rc; } if (chip->lut->nvmem_count == PPG_NVMEMS_1) { if (!chip->pbs_dev_node) { dev_err(chip->dev, "PBS device unavailable\n"); return -ENODEV; } rc = qpnp_pbs_trigger_event(chip->pbs_dev_node, PBS_SW_TRG_BIT); } else { rc = qpnp_lpg_chan_nvmem_write(chip, SDAM_PBS_TRIG_SET, PBS_SW_TRG_BIT); } if (rc < 0) dev_err(chip->dev, "Failed to trigger PBS, rc=%d\n", rc); return rc; } static int qpnp_lpg_pbs_trigger_enable(struct qpnp_lpg_channel *lpg, bool en) { struct qpnp_lpg_chip *chip = lpg->chip; int rc = 0; if (en) { if (chip->pbs_en_bitmap == 0) { rc = qpnp_lpg_set_pbs_trigger(chip); if (rc < 0) return rc; } set_bit(lpg->lpg_idx, &chip->pbs_en_bitmap); } else { clear_bit(lpg->lpg_idx, &chip->pbs_en_bitmap); if (chip->pbs_en_bitmap == 0) { rc = qpnp_lpg_clear_pbs_trigger(chip); if (rc < 0) return rc; } } return rc; } static int qpnp_lpg_pwm_src_enable(struct qpnp_lpg_channel *lpg, bool en) { struct qpnp_lpg_chip *chip = lpg->chip; struct qpnp_lpg_lut *lut = chip->lut; struct pwm_device *pwm; u8 mask, val; int i, lpg_idx, rc; mask = LPG_PWM_SRC_SELECT_MASK | LPG_EN_LPG_OUT_BIT | LPG_EN_RAMP_GEN_MASK; val = lpg->src_sel << LPG_PWM_SRC_SELECT_SHIFT; if (lpg->src_sel == LUT_PATTERN && !chip->use_sdam) val |= 1 << LPG_EN_RAMP_GEN_SHIFT; if (en) val |= 1 << LPG_EN_LPG_OUT_SHIFT; rc = qpnp_lpg_masked_write(lpg, REG_LPG_ENABLE_CONTROL, mask, val); if (rc < 0) { dev_err(chip->dev, "Write LPG_ENABLE_CONTROL failed, rc=%d\n", rc); return rc; } if (chip->use_sdam) { if (lpg->src_sel == LUT_PATTERN && en) { val = SDAM_LUT_EN_BIT; en = true; } else { val = 0; en = false; } rc = qpnp_lpg_sdam_write(lpg, SDAM_LUT_EN_OFFSET, val); if (rc < 0) { dev_err(chip->dev, "Write SDAM_REG_LUT_EN failed, rc=%d\n", rc); return rc; } qpnp_lpg_pbs_trigger_enable(lpg, en); return rc; } if (lpg->src_sel == LUT_PATTERN && en) { val = 1 << lpg->lpg_idx; for (i = 0; i < chip->num_lpgs; i++) { if (chip->lpg_group == NULL) break; if (chip->lpg_group[i] == 0) break; lpg_idx = chip->lpg_group[i] - 1; pwm = &chip->pwm_chip.pwms[lpg_idx]; if ((lpg->output_type == PWM_OUTPUT_MODULATED) && pwm_is_enabled(pwm)) { rc = qpnp_lpg_masked_write(&chip->lpgs[lpg_idx], REG_LPG_ENABLE_CONTROL, LPG_EN_LPG_OUT_BIT, 0); if (rc < 0) break; rc = qpnp_lpg_masked_write(&chip->lpgs[lpg_idx], REG_LPG_ENABLE_CONTROL, LPG_EN_LPG_OUT_BIT, LPG_EN_LPG_OUT_BIT); if (rc < 0) break; val |= 1 << lpg_idx; } } mutex_lock(&lut->lock); rc = qpnp_lut_write(lut, REG_LPG_LUT_RAMP_CONTROL, val); if (rc < 0) dev_err(chip->dev, "Write LPG_LUT_RAMP_CONTROL failed, rc=%d\n", rc); mutex_unlock(&lut->lock); } return rc; } int qpnp_lpg_pwm_set_output_type(struct pwm_device *pwm, enum pwm_output_type output_type) { struct qpnp_lpg_channel *lpg; enum lpg_src src_sel; int rc; bool is_enabled; if (!pwm) { pr_err("pwm cannot be NULL\n"); return -ENODEV; } lpg = pwm_dev_to_qpnp_lpg(pwm->chip, pwm); if (lpg == NULL) { dev_err(pwm->chip->dev, "lpg not found\n"); return -ENODEV; } if (lpg->chip->lut == NULL) { pr_debug("lpg%d only support PWM mode\n", lpg->lpg_idx); return 0; } if (output_type == lpg->output_type) return 0; src_sel = (output_type == PWM_OUTPUT_MODULATED) ? LUT_PATTERN : PWM_VALUE; if (src_sel == lpg->src_sel) return 0; is_enabled = pwm_is_enabled(pwm); if (is_enabled) { /* * Disable the channel first then enable it later to make * sure the output type is changed successfully. This is * especially useful in SDAM use case to stop the PBS * sequence when changing the PWM output type from * MODULATED to FIXED. */ rc = qpnp_lpg_pwm_src_enable(lpg, false); if (rc < 0) { dev_err(pwm->chip->dev, "Enable PWM output failed for channel %d, rc=%d\n", lpg->lpg_idx, rc); return rc; } } if (src_sel == LUT_PATTERN) { /* program LUT if it's never been programmed */ if (!lpg->lut_written) { rc = qpnp_lpg_set_lut_pattern(lpg, lpg->ramp_config.pattern, lpg->ramp_config.pattern_length); if (rc < 0) { dev_err(lpg->chip->dev, "set LUT pattern failed for LPG%d, rc=%d\n", lpg->lpg_idx, rc); return rc; } lpg->lut_written = true; } rc = qpnp_lpg_set_ramp_config(lpg); if (rc < 0) { dev_err(pwm->chip->dev, "Config LPG%d ramping failed, rc=%d\n", lpg->lpg_idx, rc); return rc; } } lpg->src_sel = src_sel; if (is_enabled) { rc = qpnp_lpg_set_pwm_config(lpg); if (rc < 0) { dev_err(pwm->chip->dev, "Config PWM failed for channel %d, rc=%d\n", lpg->lpg_idx, rc); return rc; } rc = qpnp_lpg_pwm_src_enable(lpg, true); if (rc < 0) { dev_err(pwm->chip->dev, "Enable PWM output failed for channel %d, rc=%d\n", lpg->lpg_idx, rc); return rc; } } lpg->output_type = output_type; return 0; } EXPORT_SYMBOL(qpnp_lpg_pwm_set_output_type); int qpnp_lpg_pwm_get_output_types_supported(struct pwm_device *pwm) { enum pwm_output_type type = PWM_OUTPUT_FIXED; struct qpnp_lpg_channel *lpg; if (!pwm) { pr_err("pwm cannot be NULL\n"); return -ENODEV; } lpg = pwm_dev_to_qpnp_lpg(pwm->chip, pwm); if (lpg == NULL) { dev_err(pwm->chip->dev, "lpg not found\n"); return -ENODEV; } if (lpg->chip->lut != NULL) type |= PWM_OUTPUT_MODULATED; return type; } EXPORT_SYMBOL(qpnp_lpg_pwm_get_output_types_supported); static int qpnp_lpg_pwm_enable(struct pwm_chip *pwm_chip, struct pwm_device *pwm) { struct qpnp_lpg_channel *lpg; int rc = 0; lpg = pwm_dev_to_qpnp_lpg(pwm_chip, pwm); if (lpg == NULL) { dev_err(pwm_chip->dev, "lpg not found\n"); return -ENODEV; } /* * Update PWM_VALUE_SYNC to make sure PWM_VALUE * will be updated everytime before enabling. */ if (lpg->src_sel == PWM_VALUE) { rc = qpnp_lpg_write(lpg, REG_LPG_PWM_SYNC, LPG_PWM_VALUE_SYNC); if (rc < 0) { dev_err(lpg->chip->dev, "Write LPG_PWM_SYNC failed, rc=%d\n", rc); return rc; } } rc = qpnp_lpg_set_glitch_removal(lpg, true); if (rc < 0) { dev_err(lpg->chip->dev, "Enable glitch-removal failed, rc=%d\n", rc); return rc; } rc = qpnp_lpg_pwm_src_enable(lpg, true); if (rc < 0) dev_err(pwm_chip->dev, "Enable PWM output failed for channel %d, rc=%d\n", lpg->lpg_idx, rc); return rc; } static void qpnp_lpg_pwm_disable(struct pwm_chip *pwm_chip, struct pwm_device *pwm) { struct qpnp_lpg_channel *lpg; int rc; lpg = pwm_dev_to_qpnp_lpg(pwm_chip, pwm); if (lpg == NULL) { dev_err(pwm_chip->dev, "lpg not found\n"); return; } rc = qpnp_lpg_pwm_src_enable(lpg, false); if (rc < 0) { dev_err(pwm_chip->dev, "Disable PWM output failed for channel %d, rc=%d\n", lpg->lpg_idx, rc); return; } rc = qpnp_lpg_set_glitch_removal(lpg, false); if (rc < 0) dev_err(lpg->chip->dev, "Disable glitch-removal failed, rc=%d\n", rc); } static int qpnp_lpg_pwm_apply(struct pwm_chip *pwm_chip, struct pwm_device *pwm, const struct pwm_state *state) { int rc; if (state->period != pwm->state.period || state->duty_cycle != pwm->state.duty_cycle) { rc = qpnp_lpg_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period); if (rc < 0) return rc; pwm->state.duty_cycle = state->duty_cycle; pwm->state.period = state->period; } if (state->enabled != pwm->state.enabled) { if (state->enabled) { rc = qpnp_lpg_pwm_enable(pwm->chip, pwm); if (rc < 0) return rc; } else { qpnp_lpg_pwm_disable(pwm->chip, pwm); } pwm->state.enabled = state->enabled; } return 0; } static const struct pwm_ops qpnp_lpg_pwm_ops = { .apply = qpnp_lpg_pwm_apply, .owner = THIS_MODULE, }; static int qpnp_get_lpg_channels(struct qpnp_lpg_chip *chip, u32 *base) { int rc; const __be32 *addr; addr = of_get_address(chip->dev->of_node, 0, NULL, NULL); if (!addr) { dev_err(chip->dev, "Get %s address failed\n", LPG_BASE); return -EINVAL; } *base = be32_to_cpu(addr[0]); rc = of_property_read_u32(chip->dev->of_node, "qcom,num-lpg-channels", &chip->num_lpgs); if (rc < 0) { dev_err(chip->dev, "Failed to get qcom,num-lpg-channels, rc=%d\n", rc); return rc; } if (chip->num_lpgs == 0) { dev_err(chip->dev, "No LPG channels specified\n"); return -EINVAL; } return 0; } static int qpnp_lpg_parse_ramp_props_dt(struct device_node *node, struct qpnp_lpg_chip *chip, u32 lpg_chan_id, u32 max_count) { int rc; u32 tmp; struct qpnp_lpg_channel *lpg; struct lpg_ramp_config *ramp; /* lpg channel id is indexed from 1 in hardware */ lpg = &chip->lpgs[lpg_chan_id - 1]; ramp = &lpg->ramp_config; rc = of_property_read_u32(node, "qcom,ramp-step-ms", &tmp); if (rc < 0) { dev_err(chip->dev, "get qcom,ramp-step-ms failed for lpg%d, rc=%d\n", lpg_chan_id, rc); return rc; } ramp->step_ms = (u16)tmp; rc = of_property_read_u32(node, "qcom,ramp-low-index", &tmp); if (rc < 0) { dev_err(chip->dev, "get qcom,ramp-low-index failed for lpg%d, rc=%d\n", lpg_chan_id, rc); return rc; } ramp->lo_idx = (u8)tmp; if (ramp->lo_idx >= max_count) { dev_err(chip->dev, "qcom,ramp-low-index should less than max %d\n", max_count); return -EINVAL; } rc = of_property_read_u32(node, "qcom,ramp-high-index", &tmp); if (rc < 0) { dev_err(chip->dev, "get qcom,ramp-high-index failed for lpg%d, rc=%d\n", lpg_chan_id, rc); return rc; } ramp->hi_idx = (u8)tmp; if (ramp->hi_idx > max_count) { dev_err(chip->dev, "qcom,ramp-high-index shouldn't exceed max %d\n", max_count); return -EINVAL; } if (chip->use_sdam && ramp->hi_idx <= ramp->lo_idx) { dev_err(chip->dev, "high-index(%d) should be larger than low-index(%d) when SDAM used\n", ramp->hi_idx, ramp->lo_idx); return -EINVAL; } ramp->pattern_length = ramp->hi_idx - ramp->lo_idx + 1; ramp->pattern = &chip->lut->pattern[ramp->lo_idx]; lpg->max_pattern_length = ramp->pattern_length; ramp->pattern_repeat = of_property_read_bool(node, "qcom,ramp-pattern-repeat"); ramp->pause_hi_count = 0; rc = of_property_read_u32(node, "qcom,ramp-pause-hi-count", &tmp); if (!rc) { if (chip->use_sdam && tmp > SDAM_PAUSE_COUNT_MAX) return -EINVAL; ramp->pause_hi_count = (u8)tmp; } ramp->pause_lo_count = 0; rc = of_property_read_u32(node, "qcom,ramp-pause-lo-count", &tmp); if (!rc) { if (chip->use_sdam && tmp > SDAM_PAUSE_COUNT_MAX) return -EINVAL; ramp->pause_lo_count = (u8)tmp; } if (chip->use_sdam) return 0; ramp->ramp_dir_low_to_hi = of_property_read_bool(node, "qcom,ramp-from-low-to-high"); ramp->toggle = of_property_read_bool(node, "qcom,ramp-toggle"); return rc; } static int qpnp_lpg_parse_pattern_dt(struct qpnp_lpg_chip *chip, u32 max_count) { struct device_node *child; struct qpnp_lpg_channel *lpg; struct lpg_ramp_config *ramp; int rc = 0, i; u32 length, lpg_chan_id, tmp; chip->lut->chip = chip; mutex_init(&chip->lut->lock); rc = of_property_count_elems_of_size(chip->dev->of_node, "qcom,lut-patterns", sizeof(u32)); if (rc < 0) { dev_err(chip->dev, "Read qcom,lut-patterns failed, rc=%d\n", rc); return rc; } length = rc; if (length > max_count) { dev_err(chip->dev, "qcom,lut-patterns length %d exceed max %d\n", length, max_count); return -EINVAL; } chip->lut->pattern = devm_kcalloc(chip->dev, max_count, sizeof(*chip->lut->pattern), GFP_KERNEL); if (!chip->lut->pattern) return -ENOMEM; rc = of_property_read_u32_array(chip->dev->of_node, "qcom,lut-patterns", chip->lut->pattern, length); if (rc < 0) { dev_err(chip->dev, "Get qcom,lut-patterns failed, rc=%d\n", rc); return rc; } if (of_get_available_child_count(chip->dev->of_node) == 0) { dev_err(chip->dev, "No ramp configuration for any LPG\n"); return -EINVAL; } for_each_available_child_of_node(chip->dev->of_node, child) { rc = of_property_read_u32(child, "qcom,lpg-chan-id", &lpg_chan_id); if (rc < 0) { dev_err(chip->dev, "Get qcom,lpg-chan-id failed for node %s, rc=%d\n", child->name, rc); return rc; } if (lpg_chan_id < 1 || lpg_chan_id > chip->num_lpgs) { dev_err(chip->dev, "lpg-chann-id %d is out of range 1~%d\n", lpg_chan_id, chip->num_lpgs); return -EINVAL; } if (chip->lpgs[lpg_chan_id - 1].enable_pfm) { dev_err(chip->dev, "Cannot configure ramp for PFM-enabled channel %d\n", lpg_chan_id); return -EINVAL; } if (chip->use_sdam) { rc = of_property_read_u32(child, "qcom,lpg-sdam-base", &tmp); if (rc < 0) { dev_err(chip->dev, "get qcom,lpg-sdam-base failed for lpg%d, rc=%d\n", lpg_chan_id, rc); return rc; } chip->lpgs[lpg_chan_id - 1].lpg_sdam_base = tmp; } rc = qpnp_lpg_parse_ramp_props_dt(child, chip, lpg_chan_id, max_count); if (rc) { dev_err(chip->dev, "Parsing ramp props failed for lpg%d, rc=%d\n", lpg_chan_id, rc); return rc; } } rc = of_property_count_elems_of_size(chip->dev->of_node, "qcom,sync-channel-ids", sizeof(u32)); if (rc < 0) return 0; length = rc; if (length > chip->num_lpgs) { dev_err(chip->dev, "qcom,sync-channel-ids has too many channels: %d\n", length); return -EINVAL; } chip->lpg_group = devm_kcalloc(chip->dev, chip->num_lpgs, sizeof(u32), GFP_KERNEL); if (!chip->lpg_group) return -ENOMEM; rc = of_property_read_u32_array(chip->dev->of_node, "qcom,sync-channel-ids", chip->lpg_group, length); if (rc < 0) { dev_err(chip->dev, "Get qcom,sync-channel-ids failed, rc=%d\n", rc); return rc; } for (i = 0; i < length; i++) { if (chip->lpg_group[i] <= 0 || chip->lpg_group[i] > chip->num_lpgs) { dev_err(chip->dev, "lpg_group[%d]: %d is not a valid channel\n", i, chip->lpg_group[i]); return -EINVAL; } } /* * The LPG channel in the same group should have the same ramping * configuration, so force to use the ramping configuration of the * 1st LPG channel in the group for synchronization. */ lpg = &chip->lpgs[chip->lpg_group[0] - 1]; ramp = &lpg->ramp_config; for (i = 1; i < length; i++) { lpg = &chip->lpgs[chip->lpg_group[i] - 1]; memcpy(&lpg->ramp_config, ramp, sizeof(struct lpg_ramp_config)); } return 0; } static bool lut_is_defined(struct qpnp_lpg_chip *chip, const __be32 **addr) { *addr = of_get_address(chip->dev->of_node, 1, NULL, NULL); if (*addr == NULL) return false; return true; } static int qpnp_lpg_get_nvmem_dt(struct qpnp_lpg_chip *chip) { int rc = 0; struct nvmem_device *ppg_nv, *lut_nv, *lpg_nv; /* Ensure backward compatibility */ ppg_nv = devm_nvmem_device_get(chip->dev, "ppg_sdam"); if (IS_ERR(ppg_nv)) { lut_nv = devm_nvmem_device_get(chip->dev, "lut_sdam"); if (IS_ERR(lut_nv)) { rc = PTR_ERR(lut_nv); goto err; } lpg_nv = devm_nvmem_device_get(chip->dev, "lpg_chan_sdam"); if (IS_ERR(lpg_nv)) { rc = PTR_ERR(lpg_nv); goto err; } chip->lut_nvmem = lut_nv; chip->lpg_chan_nvmem = lpg_nv; chip->lut->nvmem_count = PPG_NVMEMS_2; } else { chip->lut_nvmem = chip->lpg_chan_nvmem = ppg_nv; chip->lut->nvmem_count = PPG_NVMEMS_1; } return 0; err: if (rc != -EPROBE_DEFER) dev_err(chip->dev, "Failed to get nvmem device, rc=%d\n", rc); return rc; } static int qpnp_lpg_parse_pfm_support(struct qpnp_lpg_chip *chip) { u32 chan_idx; u32 num_pfm_channels; u8 val; int i, rc; rc = of_property_count_elems_of_size(chip->dev->of_node, "qcom,pfm-chan-ids", sizeof(u32)); if (rc < 0) return rc; if (rc == 0 || rc > chip->num_lpgs) return -EINVAL; num_pfm_channels = rc; for (i = 0; i < num_pfm_channels; i++) { rc = of_property_read_u32_index(chip->dev->of_node, "qcom,pfm-chan-ids", i, &chan_idx); if (rc) { dev_err(chip->dev, "Read pfm channel %d failed, rc=%d\n", i, rc); return -EINVAL; } if (chan_idx < 1 || chan_idx > chip->num_lpgs) { dev_err(chip->dev, "pfm chan id %u is out of range 1~%d\n", chan_idx, chip->num_lpgs); return -EINVAL; } chan_idx--; /* zero-based indexing */ if (chip->lpgs[chan_idx].subtype == SUBTYPE_PWM || chip->lpgs[chan_idx].subtype == SUBTYPE_HI_RES_PWM) { rc = qpnp_lpg_read(&chip->lpgs[chan_idx], REG_PWM_STATUS1, &val); if (rc < 0) { dev_err(chip->dev, "Read status1 failed, rc=%d\n", rc); return rc; } if (val & FM_MODE_PRESENT) chip->lpgs[chan_idx].enable_pfm = true; else return -EOPNOTSUPP; } } return rc; } #define DEFAULT_TICK_DURATION_US 7800 static int qpnp_lpg_parse_dt(struct qpnp_lpg_chip *chip) { int rc = 0, i; u32 base; const __be32 *addr; rc = qpnp_get_lpg_channels(chip, &base); if (rc < 0) return rc; chip->lpgs = devm_kcalloc(chip->dev, chip->num_lpgs, sizeof(*chip->lpgs), GFP_KERNEL); if (!chip->lpgs) return -ENOMEM; for (i = 0; i < chip->num_lpgs; i++) { chip->lpgs[i].chip = chip; chip->lpgs[i].lpg_idx = i; chip->lpgs[i].reg_base = base + i * REG_SIZE_PER_LPG; chip->lpgs[i].src_sel = PWM_VALUE; rc = qpnp_lpg_read(&chip->lpgs[i], REG_LPG_PERPH_SUBTYPE, &chip->lpgs[i].subtype); if (rc < 0) { dev_err(chip->dev, "Read subtype failed, rc=%d\n", rc); return rc; } } if (of_find_property(chip->dev->of_node, "qcom,pfm-chan-ids", NULL)) { rc = qpnp_lpg_parse_pfm_support(chip); if (rc < 0) { dev_err(chip->dev, "PFM channels specified incorrectly\n"); return rc; } } if (of_find_property(chip->dev->of_node, "nvmem", NULL)) { chip->lut = devm_kmalloc(chip->dev, sizeof(*chip->lut), GFP_KERNEL); if (!chip->lut) return -ENOMEM; rc = qpnp_lpg_get_nvmem_dt(chip); if (rc < 0) return rc; chip->use_sdam = true; if (of_find_property(chip->dev->of_node, "qcom,pbs-client", NULL)) { chip->pbs_dev_node = of_parse_phandle( chip->dev->of_node, "qcom,pbs-client", 0); if (!chip->pbs_dev_node) { dev_err(chip->dev, "Missing qcom,pbs-client property\n"); return -ENODEV; } } rc = of_property_read_u32(chip->dev->of_node, "qcom,lut-sdam-base", &chip->lut->reg_base); if (rc < 0) { dev_err(chip->dev, "Read qcom,lut-sdam-base failed, rc=%d\n", rc); of_node_put(chip->pbs_dev_node); return rc; } chip->lut->ramp_step_tick_us = DEFAULT_TICK_DURATION_US; of_property_read_u32(chip->dev->of_node, "qcom,tick-duration-us", &chip->lut->ramp_step_tick_us); rc = qpnp_lpg_parse_pattern_dt(chip, SDAM_LUT_COUNT_MAX); if (rc < 0) { of_node_put(chip->pbs_dev_node); return rc; } } else if (lut_is_defined(chip, &addr)) { chip->lut = devm_kmalloc(chip->dev, sizeof(*chip->lut), GFP_KERNEL); if (!chip->lut) return -ENOMEM; chip->lut->reg_base = be32_to_cpu(*addr); rc = qpnp_lpg_parse_pattern_dt(chip, LPG_LUT_COUNT_MAX); if (rc < 0) return rc; } else { pr_debug("Neither SDAM nor LUT specified\n"); } return 0; } static int qpnp_lpg_sdam_hw_init(struct qpnp_lpg_chip *chip) { struct qpnp_lpg_channel *lpg; int i, rc = 0; if (!chip->use_sdam) return 0; for (i = 0; i < chip->num_lpgs; i++) { lpg = &chip->lpgs[i]; if (lpg->lpg_sdam_base != 0) { rc = qpnp_lpg_sdam_write(lpg, SDAM_LUT_EN_OFFSET, 0); if (rc < 0) { dev_err(chip->dev, "Write SDAM_REG_LUT_EN failed, rc=%d\n", rc); return rc; } rc = qpnp_lpg_sdam_write(lpg, SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET, 0); if (rc < 0) { dev_err(lpg->chip->dev, "Write SDAM_REG_PBS_SCRATCH_LUT_COUNTER failed, rc=%d\n", rc); return rc; } } } return rc; } static int qpnp_lpg_probe(struct platform_device *pdev) { int rc, i; struct qpnp_lpg_chip *chip; struct qpnp_lpg_channel *lpg; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->dev = &pdev->dev; chip->regmap = dev_get_regmap(chip->dev->parent, NULL); if (!chip->regmap) { dev_err(chip->dev, "Getting regmap failed\n"); return -EINVAL; } mutex_init(&chip->bus_lock); rc = qpnp_lpg_parse_dt(chip); if (rc < 0) { if (rc != -EPROBE_DEFER) dev_err(chip->dev, "Devicetree properties parsing failed, rc=%d\n", rc); goto err_out; } rc = qpnp_lpg_sdam_hw_init(chip); if (rc < 0) { dev_err(chip->dev, "SDAM HW init failed, rc=%d\n", rc); goto err_out; } for (i = 0; i < chip->num_lpgs; i++) { lpg = &chip->lpgs[i]; lpg->output_type = PWM_OUTPUT_FIXED; if (chip->lut != NULL) { rc = qpnp_lpg_pwm_src_enable(lpg, false); if (rc < 0) { dev_err(chip->dev, "Disable PWM output failed for channel %d, rc=%d\n", lpg->lpg_idx, rc); return rc; } } if (lpg->enable_pfm) { rc = qpnp_lpg_write(lpg, REG_PWM_FM_MODE, FM_MODE_ENABLE); if (rc < 0) { dev_err(chip->dev, "Write fm_mode_enable failed, rc=%d\n", rc); return rc; } } } dev_set_drvdata(chip->dev, chip); chip->pwm_chip.dev = chip->dev; chip->pwm_chip.base = -1; chip->pwm_chip.npwm = chip->num_lpgs; chip->pwm_chip.ops = &qpnp_lpg_pwm_ops; rc = pwmchip_add(&chip->pwm_chip); if (rc < 0) { dev_err(chip->dev, "Add pwmchip failed, rc=%d\n", rc); goto err_out; } return 0; err_out: mutex_destroy(&chip->bus_lock); return rc; } static int qpnp_lpg_remove(struct platform_device *pdev) { struct qpnp_lpg_chip *chip = dev_get_drvdata(&pdev->dev); of_node_put(chip->pbs_dev_node); pwmchip_remove(&chip->pwm_chip); mutex_destroy(&chip->bus_lock); dev_set_drvdata(chip->dev, NULL); return 0; } static const struct of_device_id qpnp_lpg_of_match[] = { { .compatible = "qcom,pwm-lpg",}, { }, }; static struct platform_driver qpnp_lpg_driver = { .driver = { .name = "qcom,pwm-lpg", .of_match_table = qpnp_lpg_of_match, }, .probe = qpnp_lpg_probe, .remove = qpnp_lpg_remove, }; module_platform_driver(qpnp_lpg_driver); MODULE_DESCRIPTION("QTI LPG driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("pwm:pwm-lpg");