// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define QUSB2PHY_PLL_PWR_CTL 0x18 #define REF_BUF_EN BIT(0) #define REXT_EN BIT(1) #define PLL_BYPASSNL BIT(2) #define REXT_TRIM_0 BIT(4) #define QUSB2PHY_PLL_AUTOPGM_CTL1 0x1C #define PLL_RESET_N_CNT_5 0x5 #define PLL_RESET_N BIT(4) #define PLL_AUTOPGM_EN BIT(7) #define QUSB2PHY_PLL_STATUS 0x38 #define QUSB2PHY_PLL_LOCK BIT(5) #define QUSB2PHY_PORT_QC1 0x70 #define VDM_SRC_EN BIT(4) #define VDP_SRC_EN BIT(2) #define QUSB2PHY_PORT_QC2 0x74 #define RDM_UP_EN BIT(1) #define RDP_UP_EN BIT(3) #define RPUM_LOW_EN BIT(4) #define RPUP_LOW_EN BIT(5) #define QUSB2PHY_PORT_POWERDOWN 0xB4 #define CLAMP_N_EN BIT(5) #define FREEZIO_N BIT(1) #define POWER_DOWN BIT(0) #define QUSB2PHY_PORT_TEST_CTRL 0xB8 #define QUSB2PHY_PWR_CTRL1 0x210 #define PWR_CTRL1_CLAMP_N_EN BIT(1) #define PWR_CTRL1_POWR_DOWN BIT(0) #define QUSB2PHY_PLL_COMMON_STATUS_ONE 0x1A0 #define CORE_READY_STATUS BIT(0) #define QUSB2PHY_PORT_UTMI_CTRL1 0xC0 #define SUSPEND_N BIT(5) #define TERM_SELECT BIT(4) #define XCVR_SELECT_FS BIT(2) #define OP_MODE_NON_DRIVE BIT(0) #define QUSB2PHY_PORT_UTMI_CTRL2 0xC4 #define UTMI_ULPI_SEL BIT(7) #define UTMI_TEST_MUX_SEL BIT(6) #define QUSB2PHY_PLL_AUTOPGM_CTL1 0x1C #define QUSB2PHY_PLL_PWR_CTL 0x18 #define QUSB2PHY_PLL_TEST 0x04 #define CLK_REF_SEL BIT(7) #define QUSB2PHY_PORT_TUNE1 0x80 #define QUSB2PHY_PORT_TUNE2 0x84 #define QUSB2PHY_PORT_TUNE3 0x88 #define QUSB2PHY_PORT_TUNE4 0x8C #define QUSB2PHY_PORT_TUNE5 0x90 /* Get TUNE2's high nibble value read from efuse */ #define TUNE2_HIGH_NIBBLE_VAL(val, pos, mask) ((val >> pos) & mask) #define QUSB2PHY_PORT_INTR_CTRL 0xBC #define CHG_DET_INTR_EN BIT(4) #define DMSE_INTR_HIGH_SEL BIT(3) #define DMSE_INTR_EN BIT(2) #define DPSE_INTR_HIGH_SEL BIT(1) #define DPSE_INTR_EN BIT(0) #define QUSB2PHY_PORT_INTR_STATUS 0xF0 #define DPSE_INTR_HIGH BIT(0) #define QUSB2PHY_PORT_UTMI_STATUS 0xF4 #define LINESTATE_DP BIT(0) #define LINESTATE_DM BIT(1) #define QUSB2PHY_1P8_VOL_MIN 1800000 /* uV */ #define QUSB2PHY_1P8_VOL_MAX 1800000 /* uV */ #define QUSB2PHY_1P8_HPM_LOAD 30000 /* uA */ #define QUSB2PHY_3P3_VOL_MIN 3075000 /* uV */ #define QUSB2PHY_3P3_VOL_MAX 3200000 /* uV */ #define QUSB2PHY_3P3_HPM_LOAD 30000 /* uA */ #define QUSB2PHY_REFCLK_ENABLE BIT(0) #define HSTX_TRIMSIZE 4 enum port_state { PORT_UNKNOWN, PORT_DISCONNECTED, PORT_DCD_IN_PROGRESS, PORT_PRIMARY_IN_PROGRESS, PORT_SECONDARY_IN_PROGRESS, PORT_CHG_DET_DONE, PORT_HOST_MODE, }; enum chg_det_state { STATE_UNKNOWN, STATE_DCD, STATE_PRIMARY, STATE_SECONDARY, }; struct qusb_phy { struct usb_phy phy; void __iomem *base; void __iomem *tune2_efuse_reg; void __iomem *ref_clk_base; void __iomem *tcsr_clamp_dig_n; void __iomem *tcsr_conn_box_spare; void __iomem *eud_enable_reg; struct clk *ref_clk_src; struct clk *ref_clk; struct clk *cfg_ahb_clk; struct reset_control *phy_reset; struct clk *iface_clk; struct clk *core_clk; struct regulator *gdsc; struct regulator *vdd; struct regulator *vdda33; struct regulator *vdda18; int vdd_levels[3]; /* none, low, high */ int init_seq_len; int *qusb_phy_init_seq; u32 major_rev; u32 usb_hs_ac_bitmask; u32 usb_hs_ac_value; u32 tune2_val; int tune2_efuse_bit_pos; int tune2_efuse_num_of_bits; int tune2_efuse_correction; bool cable_connected; bool suspended; bool ulpi_mode; bool dpdm_enable; bool is_se_clk; bool scm_lvl_shifter; struct regulator_desc dpdm_rdesc; struct regulator_dev *dpdm_rdev; bool put_into_high_z_state; struct mutex phy_lock; struct extcon_dev *usb_extcon; bool vbus_active; bool id_state; struct power_supply *usb_psy; struct delayed_work port_det_w; enum port_state port_state; unsigned int dcd_timeout; /* debugfs entries */ struct dentry *root; u8 tune1; u8 tune2; u8 tune3; u8 tune4; u8 tune5; }; static void qusb_phy_update_tcsr_level_shifter(struct qusb_phy *qphy, u32 val) { if (qphy->tcsr_clamp_dig_n) { writel_relaxed(val, qphy->tcsr_clamp_dig_n); dev_dbg(qphy->phy.dev, "update tcsr level shifter: %d\n", val); } else if (qphy->scm_lvl_shifter) { dev_dbg(qphy->phy.dev, "update scm level shifter: %d\n", val); qcom_scm_phy_update_scm_level_shifter(val); } } static void qusb_phy_enable_clocks(struct qusb_phy *qphy, bool on) { dev_dbg(qphy->phy.dev, "%s(): on:%d\n", __func__, on); if (on) { clk_prepare_enable(qphy->ref_clk_src); clk_prepare_enable(qphy->ref_clk); clk_prepare_enable(qphy->iface_clk); clk_prepare_enable(qphy->core_clk); clk_prepare_enable(qphy->cfg_ahb_clk); } else { clk_disable_unprepare(qphy->cfg_ahb_clk); /* * FSM depedency beween iface_clk and core_clk. * Hence turned off core_clk before iface_clk. */ clk_disable_unprepare(qphy->core_clk); clk_disable_unprepare(qphy->iface_clk); clk_disable_unprepare(qphy->ref_clk); clk_disable_unprepare(qphy->ref_clk_src); } } static int qusb_phy_gdsc(struct qusb_phy *qphy, bool on) { int ret; if (IS_ERR_OR_NULL(qphy->gdsc)) return -EPERM; if (on) { dev_dbg(qphy->phy.dev, "TURNING ON GDSC\n"); ret = regulator_enable(qphy->gdsc); if (ret) { dev_err(qphy->phy.dev, "unable to enable gdsc\n"); return ret; } } else { dev_dbg(qphy->phy.dev, "TURNING OFF GDSC\n"); ret = regulator_disable(qphy->gdsc); if (ret) { dev_err(qphy->phy.dev, "unable to disable gdsc\n"); return ret; } } return ret; } static int qusb_phy_config_vdd(struct qusb_phy *qphy, int high) { int min, ret; min = high ? 1 : 0; /* low or none? */ ret = regulator_set_voltage(qphy->vdd, qphy->vdd_levels[min], qphy->vdd_levels[2]); if (ret) { dev_err(qphy->phy.dev, "unable to set voltage for qusb vdd\n"); return ret; } dev_dbg(qphy->phy.dev, "min_vol:%d max_vol:%d\n", qphy->vdd_levels[min], qphy->vdd_levels[2]); return ret; } static int qusb_phy_enable_power(struct qusb_phy *qphy, bool on) { int ret = 0; dev_dbg(qphy->phy.dev, "%s turn %s regulators\n", __func__, on ? "on" : "off"); if (!on) goto disable_vdda33; ret = qusb_phy_config_vdd(qphy, true); if (ret) { dev_err(qphy->phy.dev, "Unable to config VDD:%d\n", ret); goto err_vdd; } ret = regulator_enable(qphy->vdd); if (ret) { dev_err(qphy->phy.dev, "Unable to enable VDD\n"); goto unconfig_vdd; } ret = regulator_set_load(qphy->vdda18, QUSB2PHY_1P8_HPM_LOAD); if (ret < 0) { dev_err(qphy->phy.dev, "Unable to set HPM of vdda18:%d\n", ret); goto disable_vdd; } ret = regulator_set_voltage(qphy->vdda18, QUSB2PHY_1P8_VOL_MIN, QUSB2PHY_1P8_VOL_MAX); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for vdda18:%d\n", ret); goto put_vdda18_lpm; } ret = regulator_enable(qphy->vdda18); if (ret) { dev_err(qphy->phy.dev, "Unable to enable vdda18:%d\n", ret); goto unset_vdda18; } ret = regulator_set_load(qphy->vdda33, QUSB2PHY_3P3_HPM_LOAD); if (ret < 0) { dev_err(qphy->phy.dev, "Unable to set HPM of vdda33:%d\n", ret); goto disable_vdda18; } ret = regulator_set_voltage(qphy->vdda33, QUSB2PHY_3P3_VOL_MIN, QUSB2PHY_3P3_VOL_MAX); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for vdda33:%d\n", ret); goto put_vdda33_lpm; } ret = regulator_enable(qphy->vdda33); if (ret) { dev_err(qphy->phy.dev, "Unable to enable vdda33:%d\n", ret); goto unset_vdd33; } pr_debug("%s(): QUSB PHY's regulators are turned ON.\n", __func__); return ret; disable_vdda33: ret = regulator_disable(qphy->vdda33); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda33:%d\n", ret); unset_vdd33: ret = regulator_set_voltage(qphy->vdda33, 0, QUSB2PHY_3P3_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda33:%d\n", ret); put_vdda33_lpm: ret = regulator_set_load(qphy->vdda33, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set (0) HPM of vdda33\n"); disable_vdda18: ret = regulator_disable(qphy->vdda18); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda18:%d\n", ret); unset_vdda18: ret = regulator_set_voltage(qphy->vdda18, 0, QUSB2PHY_1P8_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda18:%d\n", ret); put_vdda18_lpm: ret = regulator_set_load(qphy->vdda18, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set LPM of vdda18\n"); disable_vdd: ret = regulator_disable(qphy->vdd); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdd:%d\n", ret); unconfig_vdd: ret = qusb_phy_config_vdd(qphy, false); if (ret) dev_err(qphy->phy.dev, "Unable unconfig VDD:%d\n", ret); err_vdd: dev_dbg(qphy->phy.dev, "QUSB PHY's regulators are turned OFF.\n"); return ret; } static void qusb_phy_get_tune2_param(struct qusb_phy *qphy) { u32 bit_mask = 1; u8 reg_val; pr_debug("%s(): num_of_bits:%d bit_pos:%d\n", __func__, qphy->tune2_efuse_num_of_bits, qphy->tune2_efuse_bit_pos); /* get bit mask based on number of bits to use with efuse reg */ bit_mask = (bit_mask << qphy->tune2_efuse_num_of_bits) - 1; /* * Read EFUSE register having TUNE2 parameter's high nibble. * If efuse register shows value as 0x0, then use previous value * as it is. Otherwise use efuse register based value for this purpose. */ if (qphy->tune2_efuse_num_of_bits < HSTX_TRIMSIZE) { qphy->tune2_val = TUNE2_HIGH_NIBBLE_VAL(readl_relaxed(qphy->tune2_efuse_reg), qphy->tune2_efuse_bit_pos, bit_mask); bit_mask = (1 << (HSTX_TRIMSIZE - qphy->tune2_efuse_num_of_bits)) - 1; qphy->tune2_val |= TUNE2_HIGH_NIBBLE_VAL(readl_relaxed(qphy->tune2_efuse_reg + 4), 0, bit_mask) << qphy->tune2_efuse_num_of_bits; } else { qphy->tune2_val = readl_relaxed(qphy->tune2_efuse_reg); qphy->tune2_val = TUNE2_HIGH_NIBBLE_VAL(qphy->tune2_val, qphy->tune2_efuse_bit_pos, bit_mask); } pr_debug("%s(): efuse based tune2 value:%d\n", __func__, qphy->tune2_val); /* Update higher nibble of TUNE2 value for better rise/fall times */ if (qphy->tune2_efuse_correction && qphy->tune2_val) { if (qphy->tune2_efuse_correction > 5 || qphy->tune2_efuse_correction < -10) pr_warn("Correction value is out of range : %d\n", qphy->tune2_efuse_correction); else qphy->tune2_val = qphy->tune2_val + qphy->tune2_efuse_correction; } reg_val = readb_relaxed(qphy->base + QUSB2PHY_PORT_TUNE2); if (qphy->tune2_val) { reg_val &= 0x0f; reg_val |= (qphy->tune2_val << 4); } qphy->tune2_val = reg_val; } static void qusb_phy_write_seq(void __iomem *base, u32 *seq, int cnt, unsigned long delay) { int i; pr_debug("Seq count:%d\n", cnt); for (i = 0; i < cnt; i = i+2) { pr_debug("write 0x%02x to 0x%02x\n", seq[i], seq[i+1]); writel_relaxed(seq[i], base + seq[i+1]); if (delay) usleep_range(delay, (delay + 2000)); } } static int qusb_phy_init(struct usb_phy *phy) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); int ret, reset_val = 0; u8 reg; bool pll_lock_fail = false; if (qphy->eud_enable_reg && readl_relaxed(qphy->eud_enable_reg)) { dev_err(qphy->phy.dev, "eud is enabled\n"); return 0; } /* * ref clock is enabled by default after power on reset. Linux clock * driver will disable this clock as part of late init if peripheral * driver(s) does not explicitly votes for it. Linux clock driver also * does not disable the clock until late init even if peripheral * driver explicitly requests it and cannot defer the probe until late * init. Hence, Explicitly disable the clock using register write to * allow QUSB PHY PLL to lock properly. */ if (qphy->ref_clk_base) { writel_relaxed((readl_relaxed(qphy->ref_clk_base) & ~QUSB2PHY_REFCLK_ENABLE), qphy->ref_clk_base); /* Make sure that above write complete to get ref clk OFF */ wmb(); } /* Perform phy reset */ ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset assert failed\n", __func__); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(phy->dev, "%s: phy_reset deassert failed\n", __func__); /* Disable the PHY */ if (qphy->major_rev < 2) writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN, qphy->base + QUSB2PHY_PORT_POWERDOWN); else writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) | PWR_CTRL1_POWR_DOWN, qphy->base + QUSB2PHY_PWR_CTRL1); /* configure for ULPI mode if requested */ if (qphy->ulpi_mode) writel_relaxed(0x0, qphy->base + QUSB2PHY_PORT_UTMI_CTRL2); /* save reset value to override based on clk scheme */ if (qphy->ref_clk_base) reset_val = readl_relaxed(qphy->base + QUSB2PHY_PLL_TEST); if (qphy->qusb_phy_init_seq) qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq, qphy->init_seq_len, 0); /* * Check for EFUSE value only if tune2_efuse_reg is available * and try to read EFUSE value only once i.e. not every USB * cable connect case. */ if (qphy->tune2_efuse_reg && !qphy->tune2) { if (!qphy->tune2_val) qusb_phy_get_tune2_param(qphy); pr_debug("%s(): Programming TUNE2 parameter as:%x\n", __func__, qphy->tune2_val); writel_relaxed(qphy->tune2_val, qphy->base + QUSB2PHY_PORT_TUNE2); } /* If tune modparam set, override tune value */ if (qphy->tune1) { writel_relaxed(qphy->tune1, qphy->base + QUSB2PHY_PORT_TUNE1); } if (qphy->tune2) { writel_relaxed(qphy->tune2, qphy->base + QUSB2PHY_PORT_TUNE2); } if (qphy->tune3) { writel_relaxed(qphy->tune3, qphy->base + QUSB2PHY_PORT_TUNE3); } if (qphy->tune4) { writel_relaxed(qphy->tune4, qphy->base + QUSB2PHY_PORT_TUNE4); } if (qphy->tune5) { writel_relaxed(qphy->tune5, qphy->base + QUSB2PHY_PORT_TUNE5); } /* ensure above writes are completed before re-enabling PHY */ wmb(); /* Enable the PHY */ if (qphy->major_rev < 2) writel_relaxed(CLAMP_N_EN | FREEZIO_N, qphy->base + QUSB2PHY_PORT_POWERDOWN); else writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) & ~PWR_CTRL1_POWR_DOWN, qphy->base + QUSB2PHY_PWR_CTRL1); /* Ensure above write is completed before turning ON ref clk */ wmb(); /* Require to get phy pll lock successfully */ usleep_range(150, 160); /* Turn on phy ref_clk if DIFF_CLK else select SE_CLK */ if (qphy->ref_clk_base) { if (!qphy->is_se_clk) { reset_val &= ~CLK_REF_SEL; writel_relaxed((readl_relaxed(qphy->ref_clk_base) | QUSB2PHY_REFCLK_ENABLE), qphy->ref_clk_base); } else { reset_val |= CLK_REF_SEL; writel_relaxed(reset_val, qphy->base + QUSB2PHY_PLL_TEST); } /* Make sure above write is completed to get PLL source clock */ wmb(); /* Required to get PHY PLL lock successfully */ usleep_range(100, 110); } if (qphy->major_rev < 2) { reg = readb_relaxed(qphy->base + QUSB2PHY_PLL_STATUS); dev_dbg(phy->dev, "QUSB2PHY_PLL_STATUS:%x\n", reg); if (!(reg & QUSB2PHY_PLL_LOCK)) pll_lock_fail = true; } else { reg = readb_relaxed(qphy->base + QUSB2PHY_PLL_COMMON_STATUS_ONE); dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg); if (!(reg & CORE_READY_STATUS)) pll_lock_fail = true; } if (pll_lock_fail) dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg); return 0; } static void qusb_phy_shutdown(struct usb_phy *phy) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); if (qphy->eud_enable_reg && readl_relaxed(qphy->eud_enable_reg)) { dev_err(qphy->phy.dev, "eud is enabled\n"); return; } qusb_phy_enable_clocks(qphy, true); /* Disable the PHY */ if (qphy->major_rev < 2) writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN, qphy->base + QUSB2PHY_PORT_POWERDOWN); else writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) | PWR_CTRL1_POWR_DOWN, qphy->base + QUSB2PHY_PWR_CTRL1); /* Make sure above write complete before turning off clocks */ wmb(); qusb_phy_enable_clocks(qphy, false); } /** * Performs QUSB2 PHY suspend/resume functionality. * * @uphy - usb phy pointer. * @suspend - to enable suspend or not. 1 - suspend, 0 - resume * */ static int qusb_phy_set_suspend(struct usb_phy *phy, int suspend) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); u32 linestate = 0, intr_mask = 0; if (qphy->suspended == suspend) { dev_dbg(phy->dev, "%s: USB PHY is already suspended\n", __func__); return 0; } if (suspend) { /* Bus suspend case */ if (qphy->cable_connected) { /* Clear all interrupts */ writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_INTR_CTRL); linestate = readl_relaxed(qphy->base + QUSB2PHY_PORT_UTMI_STATUS); /* * D+/D- interrupts are level-triggered, but we are * only interested if the line state changes, so enable * the high/low trigger based on current state. In * other words, enable the triggers _opposite_ of what * the current D+/D- levels are. * e.g. if currently D+ high, D- low (HS 'J'/Suspend), * configure the mask to trigger on D+ low OR D- high */ intr_mask = DPSE_INTR_EN | DMSE_INTR_EN; if (!(linestate & LINESTATE_DP)) /* D+ low */ intr_mask |= DPSE_INTR_HIGH_SEL; if (!(linestate & LINESTATE_DM)) /* D- low */ intr_mask |= DMSE_INTR_HIGH_SEL; writel_relaxed(intr_mask, qphy->base + QUSB2PHY_PORT_INTR_CTRL); if (linestate & (LINESTATE_DP | LINESTATE_DM)) { /* enable phy auto-resume */ writel_relaxed(0x0C, qphy->base + QUSB2PHY_PORT_TEST_CTRL); /* flush the previous write before next write */ wmb(); writel_relaxed(0x04, qphy->base + QUSB2PHY_PORT_TEST_CTRL); } dev_dbg(phy->dev, "%s: intr_mask = %x\n", __func__, intr_mask); /* Makes sure that above write goes through */ wmb(); qusb_phy_enable_clocks(qphy, false); } else { /* Disconnect case */ mutex_lock(&qphy->phy_lock); /* Disable all interrupts */ writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_INTR_CTRL); if (!qphy->eud_enable_reg || !readl_relaxed(qphy->eud_enable_reg)) { if (!(qphy->phy.flags & PHY_HOST_MODE)) { /* Disable PHY */ writel_relaxed(POWER_DOWN | readl_relaxed(qphy->base + QUSB2PHY_PORT_POWERDOWN), qphy->base + QUSB2PHY_PORT_POWERDOWN); /* Make sure that above write is completed */ wmb(); qusb_phy_update_tcsr_level_shifter(qphy, 0); } } qusb_phy_enable_clocks(qphy, false); qusb_phy_enable_power(qphy, false); mutex_unlock(&qphy->phy_lock); /* * Set put_into_high_z_state to true so next USB * cable connect, DPF_DMF request performs PHY * reset and put it into high-z state. For bootup * with or without USB cable, it doesn't require * to put QUSB PHY into high-z state. */ qphy->put_into_high_z_state = true; } qphy->suspended = true; } else { /* Bus suspend case */ if (qphy->cable_connected) { qusb_phy_enable_clocks(qphy, true); /* Clear all interrupts on resume */ writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_INTR_CTRL); } else { qusb_phy_enable_power(qphy, true); qusb_phy_update_tcsr_level_shifter(qphy, 1); qusb_phy_enable_clocks(qphy, true); } qphy->suspended = false; } return 0; } static int qusb_phy_notify_connect(struct usb_phy *phy, enum usb_device_speed speed) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); qphy->cable_connected = true; dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n", qphy->cable_connected); return 0; } static int qusb_phy_notify_disconnect(struct usb_phy *phy, enum usb_device_speed speed) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); qphy->cable_connected = false; dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n", qphy->cable_connected); return 0; } #define DP_PULSE_WIDTH_MSEC 200 static enum usb_charger_type qusb_phy_drive_dp_pulse(struct usb_phy *phy) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); int ret; dev_dbg(qphy->phy.dev, "connected to a CDP, drive DP up\n"); ret = qusb_phy_enable_power(qphy, true); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator enable failed:%d\n", ret); return 0; } qusb_phy_gdsc(qphy, true); qusb_phy_enable_clocks(qphy, true); ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "phyassert failed\n"); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "deassert failed\n"); /* Configure PHY to enable control on DP/DM lines */ writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN, qphy->base + QUSB2PHY_PORT_POWERDOWN); writel_relaxed(TERM_SELECT | XCVR_SELECT_FS | OP_MODE_NON_DRIVE | SUSPEND_N, qphy->base + QUSB2PHY_PORT_UTMI_CTRL1); writel_relaxed(UTMI_ULPI_SEL | UTMI_TEST_MUX_SEL, qphy->base + QUSB2PHY_PORT_UTMI_CTRL2); writel_relaxed(PLL_RESET_N_CNT_5, qphy->base + QUSB2PHY_PLL_AUTOPGM_CTL1); writel_relaxed(CLAMP_N_EN | FREEZIO_N, qphy->base + QUSB2PHY_PORT_POWERDOWN); writel_relaxed(REF_BUF_EN | REXT_EN | PLL_BYPASSNL | REXT_TRIM_0, qphy->base + QUSB2PHY_PLL_PWR_CTL); usleep_range(5, 10); writel_relaxed(0x15, qphy->base + QUSB2PHY_PLL_AUTOPGM_CTL1); writel_relaxed(PLL_RESET_N | PLL_RESET_N_CNT_5, qphy->base + QUSB2PHY_PLL_AUTOPGM_CTL1); writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_QC1); writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_QC2); usleep_range(50, 60); /* Enable Rdp_en to pull DP up to 3V */ writel_relaxed(RDP_UP_EN, qphy->base + QUSB2PHY_PORT_QC2); msleep(DP_PULSE_WIDTH_MSEC); /* Put the PHY and DP back to normal state */ writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN, qphy->base + QUSB2PHY_PORT_POWERDOWN); /* 23 */ writel_relaxed(PLL_AUTOPGM_EN | PLL_RESET_N | PLL_RESET_N_CNT_5, qphy->base + QUSB2PHY_PLL_AUTOPGM_CTL1); writel_relaxed(UTMI_ULPI_SEL, qphy->base + QUSB2PHY_PORT_UTMI_CTRL2); writel_relaxed(TERM_SELECT, qphy->base + QUSB2PHY_PORT_UTMI_CTRL1); qusb_phy_enable_clocks(qphy, false); qusb_phy_gdsc(qphy, false); ret = qusb_phy_enable_power(qphy, false); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator disable failed:%d\n", ret); } return 0; } static int qusb_phy_dpdm_regulator_enable(struct regulator_dev *rdev) { int ret = 0; struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s dpdm_enable:%d\n", __func__, qphy->dpdm_enable); if (qphy->eud_enable_reg && readl_relaxed(qphy->eud_enable_reg)) { dev_err(qphy->phy.dev, "eud is enabled\n"); return 0; } mutex_lock(&qphy->phy_lock); if (!qphy->dpdm_enable) { ret = qusb_phy_enable_power(qphy, true); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator enable failed:%d\n", ret); mutex_unlock(&qphy->phy_lock); return ret; } qphy->dpdm_enable = true; if (qphy->put_into_high_z_state) { qusb_phy_update_tcsr_level_shifter(qphy, 1); qusb_phy_gdsc(qphy, true); qusb_phy_enable_clocks(qphy, true); dev_dbg(qphy->phy.dev, "RESET QUSB PHY\n"); ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "phyassert failed\n"); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "deassert failed\n"); /* * Phy in non-driving mode leaves Dp and Dm * lines in high-Z state. Controller power * collapse is not switching phy to non-driving * mode causing charger detection failure. Bring * phy to non-driving mode by overriding * controller output via UTMI interface. */ writel_relaxed(TERM_SELECT | XCVR_SELECT_FS | OP_MODE_NON_DRIVE, qphy->base + QUSB2PHY_PORT_UTMI_CTRL1); writel_relaxed(UTMI_ULPI_SEL | UTMI_TEST_MUX_SEL, qphy->base + QUSB2PHY_PORT_UTMI_CTRL2); /* Disable PHY */ writel_relaxed(CLAMP_N_EN | FREEZIO_N | POWER_DOWN, qphy->base + QUSB2PHY_PORT_POWERDOWN); /* Make sure that above write is completed */ wmb(); qusb_phy_enable_clocks(qphy, false); qusb_phy_gdsc(qphy, false); } } mutex_unlock(&qphy->phy_lock); return ret; } static int qusb_phy_dpdm_regulator_disable(struct regulator_dev *rdev) { int ret = 0; struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s dpdm_enable:%d\n", __func__, qphy->dpdm_enable); mutex_lock(&qphy->phy_lock); if (qphy->dpdm_enable) { /* If usb core is active, rely on set_suspend to clamp phy */ if (!qphy->cable_connected) qusb_phy_update_tcsr_level_shifter(qphy, 0); ret = qusb_phy_enable_power(qphy, false); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator disable failed:%d\n", ret); mutex_unlock(&qphy->phy_lock); return ret; } qphy->dpdm_enable = false; } mutex_unlock(&qphy->phy_lock); return ret; } static int qusb_phy_dpdm_regulator_is_enabled(struct regulator_dev *rdev) { struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s qphy->dpdm_enable = %d\n", __func__, qphy->dpdm_enable); return qphy->dpdm_enable; } static const struct regulator_ops qusb_phy_dpdm_regulator_ops = { .enable = qusb_phy_dpdm_regulator_enable, .disable = qusb_phy_dpdm_regulator_disable, .is_enabled = qusb_phy_dpdm_regulator_is_enabled, }; static int qusb_phy_regulator_init(struct qusb_phy *qphy) { struct device *dev = qphy->phy.dev; struct regulator_config cfg = {}; struct regulator_init_data *init_data; init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL); if (!init_data) return -ENOMEM; init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS; qphy->dpdm_rdesc.owner = THIS_MODULE; qphy->dpdm_rdesc.type = REGULATOR_VOLTAGE; qphy->dpdm_rdesc.ops = &qusb_phy_dpdm_regulator_ops; qphy->dpdm_rdesc.name = kbasename(dev->of_node->full_name); cfg.dev = dev; cfg.init_data = init_data; cfg.driver_data = qphy; cfg.of_node = dev->of_node; qphy->dpdm_rdev = devm_regulator_register(dev, &qphy->dpdm_rdesc, &cfg); return PTR_ERR_OR_ZERO(qphy->dpdm_rdev); } static void qusb_phy_create_debugfs(struct qusb_phy *qphy) { qphy->root = debugfs_create_dir(dev_name(qphy->phy.dev), NULL); debugfs_create_x8("tune1", 0644, qphy->root, &qphy->tune1); debugfs_create_x8("tune2", 0644, qphy->root, &qphy->tune2); debugfs_create_x8("tune3", 0644, qphy->root, &qphy->tune3); debugfs_create_x8("tune4", 0644, qphy->root, &qphy->tune4); debugfs_create_x8("tune5", 0644, qphy->root, &qphy->tune5); } static int qusb_phy_vbus_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct usb_phy *phy = container_of(nb, struct usb_phy, vbus_nb); struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); if (!qphy || !data) { pr_err("Failed to get PHY for vbus_notifier\n"); return NOTIFY_DONE; } qphy->vbus_active = !!event; dev_dbg(qphy->phy.dev, "Got VBUS notification: %u\n", event); queue_delayed_work(system_freezable_wq, &qphy->port_det_w, 0); return NOTIFY_DONE; } static int qusb_phy_id_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct usb_phy *phy = container_of(nb, struct usb_phy, id_nb); struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); if (!qphy || !data) { pr_err("Failed to get PHY for vbus_notifier\n"); return NOTIFY_DONE; } qphy->id_state = !event; dev_dbg(qphy->phy.dev, "Got id notification: %u\n", event); queue_delayed_work(system_freezable_wq, &qphy->port_det_w, 0); return NOTIFY_DONE; } static const unsigned int qusb_phy_extcon_cable[] = { EXTCON_USB, EXTCON_USB_HOST, EXTCON_NONE, }; static int qusb_phy_notify_charger(struct qusb_phy *qphy, enum power_supply_type charger_type) { union power_supply_propval pval = {0}; dev_dbg(qphy->phy.dev, "Notify charger type: %d\n", charger_type); if (!qphy->usb_psy) { qphy->usb_psy = power_supply_get_by_name("usb"); if (!qphy->usb_psy) { dev_err(qphy->phy.dev, "Could not get usb psy\n"); return -ENODEV; } } pval.intval = charger_type; power_supply_set_property(qphy->usb_psy, POWER_SUPPLY_PROP_USB_TYPE, &pval); return 0; } static void qusb_phy_notify_extcon(struct qusb_phy *qphy, int extcon_id, int event) { struct extcon_dev *edev = qphy->phy.edev; union extcon_property_value val; int ret; dev_dbg(qphy->phy.dev, "Notify event: %d for extcon_id: %d\n", event, extcon_id); if (event) { ret = extcon_get_property(edev, extcon_id, EXTCON_PROP_USB_TYPEC_POLARITY, &val); if (ret) dev_err(qphy->phy.dev, "Failed to get TYPEC POLARITY\n"); extcon_set_property(qphy->usb_extcon, extcon_id, EXTCON_PROP_USB_TYPEC_POLARITY, val); ret = extcon_get_property(edev, extcon_id, EXTCON_PROP_USB_SS, &val); if (ret) dev_err(qphy->phy.dev, "Failed to get USB_SS property\n"); extcon_set_property(qphy->usb_extcon, extcon_id, EXTCON_PROP_USB_SS, val); } extcon_set_state_sync(qphy->usb_extcon, extcon_id, event); } static bool qusb_phy_chg_det_status(struct qusb_phy *qphy, enum chg_det_state state) { u32 reg, status; reg = readl_relaxed(qphy->base + QUSB2PHY_PORT_INTR_STATUS); dev_dbg(qphy->phy.dev, "state: %d reg: 0x%x\n", state, reg); status = reg & 0xff; switch (state) { case STATE_DCD: return (status != DPSE_INTR_HIGH); case STATE_PRIMARY: return (status && (status != DPSE_INTR_HIGH)); case STATE_SECONDARY: return status; case STATE_UNKNOWN: default: break; } return false; } /* * Different circuit blocks are enabled on DP and DM lines as part * of different phases of charger detection. Then the state of * DP and DM lines are monitored to identify different type of * chargers. * These circuit blocks can be enabled with the configuration of * the QUICKCHARGE1 and QUICKCHARGE2 registers and the DP/DM lines * can be monitored with the status of the INTR_STATUS register. */ static void qusb_phy_chg_det_enable_seq(struct qusb_phy *qphy, int state) { dev_dbg(qphy->phy.dev, "state: %d\n", state); /* Power down the PHY*/ writel_relaxed(0x23, qphy->base + QUSB2PHY_PORT_POWERDOWN); /* Put the PHY in non driving mode */ writel_relaxed(0x35, qphy->base + QUSB2PHY_PORT_UTMI_CTRL1); /* Set the PHY to register mode */ writel_relaxed(0xC0, qphy->base + QUSB2PHY_PORT_UTMI_CTRL2); /* Keep PLL in reset */ writel_relaxed(0x05, qphy->base + QUSB2PHY_PLL_AUTOPGM_CTL1); /* Enable PHY */ writel_relaxed(0x22, qphy->base + QUSB2PHY_PORT_POWERDOWN); writel_relaxed(0x17, qphy->base + QUSB2PHY_PLL_PWR_CTL); usleep_range(5, 10); writel_relaxed(0x15, qphy->base + QUSB2PHY_PLL_AUTOPGM_CTL1); writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_QC1); writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_QC2); usleep_range(50, 60); switch (state) { case STATE_DCD: /* Enable IDP_SRC */ writel_relaxed(0x08, qphy->base + QUSB2PHY_PORT_QC1); /* Enable RDM_UP */ writel_relaxed(0x01, qphy->base + QUSB2PHY_PORT_QC2); writel_relaxed(0x1F, qphy->base + QUSB2PHY_PORT_INTR_CTRL); break; case STATE_PRIMARY: /* Enable VDAT_REF_DM, VDP_SRC and IDM_SINK */ writel_relaxed(0x25, qphy->base + QUSB2PHY_PORT_QC1); writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_QC2); writel_relaxed(0x1F, qphy->base + QUSB2PHY_PORT_INTR_CTRL); break; case STATE_SECONDARY: /* Enable VDAT_REF_DP, VDAT_REF_DM, VDP_SRC and IDM_SINK */ writel_relaxed(0x72, qphy->base + QUSB2PHY_PORT_QC1); writel_relaxed(0x00, qphy->base + QUSB2PHY_PORT_QC2); writel_relaxed(0x1F, qphy->base + QUSB2PHY_PORT_INTR_CTRL); break; case STATE_UNKNOWN: default: break; } } #define CHG_DCD_TIMEOUT_MSEC 750 #define CHG_DCD_POLL_TIME_MSEC 50 #define CHG_PRIMARY_DET_TIME_MSEC 100 #define CHG_SECONDARY_DET_TIME_MSEC 100 static int qusb_phy_enable_phy(struct qusb_phy *qphy) { int ret; ret = qusb_phy_enable_power(qphy, true); if (ret) return ret; if (qphy->tcsr_clamp_dig_n) writel_relaxed(0x1, qphy->tcsr_clamp_dig_n); qusb_phy_enable_clocks(qphy, true); return 0; } static void qusb_phy_disable_phy(struct qusb_phy *qphy) { int ret; ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "phyassert failed\n"); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "deassert failed\n"); qusb_phy_enable_clocks(qphy, false); if (qphy->tcsr_clamp_dig_n) writel_relaxed(0x0, qphy->tcsr_clamp_dig_n); qusb_phy_enable_power(qphy, false); } static void qusb_phy_port_state_work(struct work_struct *w) { struct qusb_phy *qphy = container_of(w, struct qusb_phy, port_det_w.work); unsigned long delay = 0; int status, ret; dev_dbg(qphy->phy.dev, "state: %d\n", qphy->port_state); switch (qphy->port_state) { case PORT_UNKNOWN: if (!qphy->id_state) { qphy->port_state = PORT_HOST_MODE; qusb_phy_notify_extcon(qphy, EXTCON_USB_HOST, 1); return; } if (qphy->vbus_active) { /* Enable DCD sequence */ ret = qusb_phy_enable_phy(qphy); if (ret) return; qusb_phy_chg_det_enable_seq(qphy, STATE_DCD); qphy->port_state = PORT_DCD_IN_PROGRESS; qphy->dcd_timeout = 0; delay = CHG_DCD_POLL_TIME_MSEC; break; } return; case PORT_DISCONNECTED: qusb_phy_disable_phy(qphy); qphy->port_state = PORT_UNKNOWN; break; case PORT_DCD_IN_PROGRESS: if (!qphy->vbus_active) { /* Disable PHY sequence */ qphy->port_state = PORT_DISCONNECTED; break; } status = qusb_phy_chg_det_status(qphy, STATE_DCD); if (!status && qphy->dcd_timeout < CHG_DCD_TIMEOUT_MSEC) { delay = CHG_DCD_POLL_TIME_MSEC; qphy->dcd_timeout += delay; } else if (status) { qusb_phy_chg_det_enable_seq(qphy, STATE_PRIMARY); qphy->port_state = PORT_PRIMARY_IN_PROGRESS; delay = CHG_PRIMARY_DET_TIME_MSEC; } else if (qphy->dcd_timeout >= CHG_DCD_TIMEOUT_MSEC) { qusb_phy_notify_charger(qphy, POWER_SUPPLY_TYPE_USB_DCP); qusb_phy_disable_phy(qphy); qphy->port_state = PORT_CHG_DET_DONE; } break; case PORT_PRIMARY_IN_PROGRESS: if (!qphy->vbus_active) { qphy->port_state = PORT_DISCONNECTED; break; } status = qusb_phy_chg_det_status(qphy, STATE_PRIMARY); if (status) { qusb_phy_chg_det_enable_seq(qphy, STATE_SECONDARY); qphy->port_state = PORT_SECONDARY_IN_PROGRESS; delay = CHG_SECONDARY_DET_TIME_MSEC; } else { qusb_phy_disable_phy(qphy); qusb_phy_notify_charger(qphy, POWER_SUPPLY_TYPE_USB); qusb_phy_notify_extcon(qphy, EXTCON_USB, 1); qphy->port_state = PORT_CHG_DET_DONE; } break; case PORT_SECONDARY_IN_PROGRESS: if (!qphy->vbus_active) { qphy->port_state = PORT_DISCONNECTED; break; } status = qusb_phy_chg_det_status(qphy, STATE_SECONDARY); if (status) { qusb_phy_notify_charger(qphy, POWER_SUPPLY_TYPE_USB_DCP); } else { qusb_phy_notify_charger(qphy, POWER_SUPPLY_TYPE_USB_CDP); qusb_phy_notify_extcon(qphy, EXTCON_USB, 1); } qusb_phy_disable_phy(qphy); qphy->port_state = PORT_CHG_DET_DONE; break; case PORT_CHG_DET_DONE: if (!qphy->vbus_active) { qphy->port_state = PORT_UNKNOWN; qusb_phy_notify_extcon(qphy, EXTCON_USB, 0); } return; case PORT_HOST_MODE: if (qphy->id_state) { qphy->port_state = PORT_UNKNOWN; qusb_phy_notify_extcon(qphy, EXTCON_USB_HOST, 0); } if (!qphy->vbus_active) return; break; default: return; } queue_delayed_work(system_freezable_wq, &qphy->port_det_w, msecs_to_jiffies(delay)); } static int qusb_phy_extcon_register(struct qusb_phy *qphy) { int ret; /* Register extcon for notifications from charger driver */ qphy->phy.vbus_nb.notifier_call = qusb_phy_vbus_notifier; qphy->phy.id_nb.notifier_call = qusb_phy_id_notifier; /* Register extcon to notify USB driver */ qphy->usb_extcon = devm_extcon_dev_allocate(qphy->phy.dev, qusb_phy_extcon_cable); if (IS_ERR(qphy->usb_extcon)) { dev_err(qphy->phy.dev, "failed to allocate extcon device\n"); return PTR_ERR(qphy->usb_extcon); } ret = devm_extcon_dev_register(qphy->phy.dev, qphy->usb_extcon); if (ret) { dev_err(qphy->phy.dev, "failed to register extcon device\n"); return ret; } extcon_set_property_capability(qphy->usb_extcon, EXTCON_USB, EXTCON_PROP_USB_TYPEC_POLARITY); extcon_set_property_capability(qphy->usb_extcon, EXTCON_USB, EXTCON_PROP_USB_SS); extcon_set_property_capability(qphy->usb_extcon, EXTCON_USB_HOST, EXTCON_PROP_USB_TYPEC_POLARITY); extcon_set_property_capability(qphy->usb_extcon, EXTCON_USB_HOST, EXTCON_PROP_USB_SS); return 0; } static int qusb_phy_probe(struct platform_device *pdev) { struct qusb_phy *qphy; struct device *dev = &pdev->dev; struct resource *res; int ret = 0, size = 0; const char *phy_type; bool hold_phy_reset; u32 temp; qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL); if (!qphy) return -ENOMEM; qphy->phy.dev = dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qusb_phy_base"); qphy->base = devm_ioremap_resource(dev, res); if (IS_ERR(qphy->base)) return PTR_ERR(qphy->base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tune2_efuse_addr"); if (res) { qphy->tune2_efuse_reg = devm_ioremap(dev, res->start, resource_size(res)); if (!IS_ERR_OR_NULL(qphy->tune2_efuse_reg)) { ret = of_property_read_u32(dev->of_node, "qcom,tune2-efuse-bit-pos", &qphy->tune2_efuse_bit_pos); if (!ret) { ret = of_property_read_u32(dev->of_node, "qcom,tune2-efuse-num-bits", &qphy->tune2_efuse_num_of_bits); } of_property_read_u32(dev->of_node, "qcom,tune2-efuse-correction", &qphy->tune2_efuse_correction); if (ret) { dev_err(dev, "DT Value for tune2 efuse is invalid.\n"); return -EINVAL; } } } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "eud_enable_reg"); if (res) { qphy->eud_enable_reg = devm_ioremap_resource(dev, res); if (IS_ERR(qphy->eud_enable_reg)) { dev_err(dev, "err getting eud_enable_reg address\n"); return PTR_ERR(qphy->eud_enable_reg); } } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ref_clk_addr"); if (res) { qphy->ref_clk_base = devm_ioremap(dev, res->start, resource_size(res)); if (IS_ERR(qphy->ref_clk_base)) { dev_dbg(dev, "ref_clk_address is not available.\n"); return PTR_ERR(qphy->ref_clk_base); } ret = of_property_read_string(dev->of_node, "qcom,phy-clk-scheme", &phy_type); if (ret) { dev_err(dev, "error need qsub_phy_clk_scheme.\n"); return ret; } if (!strcasecmp(phy_type, "cml")) { qphy->is_se_clk = false; } else if (!strcasecmp(phy_type, "cmos")) { qphy->is_se_clk = true; } else { dev_err(dev, "erro invalid qusb_phy_clk_scheme\n"); return -EINVAL; } } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tcsr_clamp_dig_n_1p8"); if (res) { qphy->tcsr_clamp_dig_n = devm_ioremap(dev, res->start, resource_size(res)); if (IS_ERR(qphy->tcsr_clamp_dig_n)) { dev_err(dev, "err reading tcsr_clamp_dig_n\n"); qphy->tcsr_clamp_dig_n = NULL; } } qphy->scm_lvl_shifter = of_property_read_bool(dev->of_node, "qcom,secure-level-shifter"); ret = of_property_read_u32(dev->of_node, "qcom,usb-hs-ac-bitmask", &qphy->usb_hs_ac_bitmask); if (!ret) { ret = of_property_read_u32(dev->of_node, "qcom,usb-hs-ac-value", &qphy->usb_hs_ac_value); if (ret) { dev_err(dev, "%s usb_hs_ac_value not passed\n", __func__); return ret; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tcsr_conn_box_spare_0"); if (!res) { dev_err(dev, "%s tcsr_conn_box_spare_0 not passed\n", __func__); return -ENOENT; } qphy->tcsr_conn_box_spare = devm_ioremap(dev, res->start, resource_size(res)); if (IS_ERR(qphy->tcsr_conn_box_spare)) { dev_err(dev, "err reading tcsr_conn_box_spare\n"); return PTR_ERR(qphy->tcsr_conn_box_spare); } } qphy->ref_clk_src = devm_clk_get(dev, "ref_clk_src"); if (IS_ERR(qphy->ref_clk_src)) { qphy->ref_clk_src = NULL; dev_dbg(dev, "clk get failed for ref_clk_src\n"); } /* ref_clk is needed only for DIFF_CLK case, hence make it optional. */ if (of_property_match_string(pdev->dev.of_node, "clock-names", "ref_clk") >= 0) { qphy->ref_clk = devm_clk_get(dev, "ref_clk"); if (IS_ERR(qphy->ref_clk)) { ret = PTR_ERR(qphy->ref_clk); if (ret != -EPROBE_DEFER) dev_dbg(dev, "clk get failed for ref_clk\n"); return ret; } clk_set_rate(qphy->ref_clk, 19200000); } qphy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb_clk"); if (IS_ERR(qphy->cfg_ahb_clk)) return PTR_ERR(qphy->cfg_ahb_clk); qphy->phy_reset = devm_reset_control_get(dev, "phy_reset"); if (IS_ERR(qphy->phy_reset)) return PTR_ERR(qphy->phy_reset); if (of_property_match_string(dev->of_node, "clock-names", "iface_clk") >= 0) { qphy->iface_clk = devm_clk_get(dev, "iface_clk"); if (IS_ERR(qphy->iface_clk)) { ret = PTR_ERR(qphy->iface_clk); qphy->iface_clk = NULL; if (ret == -EPROBE_DEFER) return ret; dev_err(dev, "couldn't get iface_clk(%d)\n", ret); } } if (of_property_match_string(dev->of_node, "clock-names", "core_clk") >= 0) { qphy->core_clk = devm_clk_get(dev, "core_clk"); if (IS_ERR(qphy->core_clk)) { ret = PTR_ERR(qphy->core_clk); qphy->core_clk = NULL; if (ret == -EPROBE_DEFER) return ret; dev_err(dev, "couldn't get core_clk(%d)\n", ret); } } qphy->gdsc = devm_regulator_get(dev, "USB3_GDSC"); if (IS_ERR(qphy->gdsc)) qphy->gdsc = NULL; size = 0; of_get_property(dev->of_node, "qcom,qusb-phy-init-seq", &size); if (size) { qphy->qusb_phy_init_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->qusb_phy_init_seq) { qphy->init_seq_len = (size / sizeof(*qphy->qusb_phy_init_seq)); if (qphy->init_seq_len % 2) { dev_err(dev, "invalid init_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,qusb-phy-init-seq", qphy->qusb_phy_init_seq, qphy->init_seq_len); } else { dev_err(dev, "error allocating memory for phy_init_seq\n"); } } qphy->ulpi_mode = false; ret = of_property_read_string(dev->of_node, "phy_type", &phy_type); if (!ret) { if (!strcasecmp(phy_type, "ulpi")) qphy->ulpi_mode = true; } else { dev_err(dev, "error reading phy_type property\n"); return ret; } hold_phy_reset = of_property_read_bool(dev->of_node, "qcom,hold-reset"); /* use default major revision as 2 */ qphy->major_rev = 2; ret = of_property_read_u32(dev->of_node, "qcom,major-rev", &qphy->major_rev); ret = of_property_read_u32_array(dev->of_node, "qcom,vdd-voltage-level", (u32 *) qphy->vdd_levels, ARRAY_SIZE(qphy->vdd_levels)); if (ret) { dev_err(dev, "error reading qcom,vdd-voltage-level property\n"); return ret; } qphy->vdd = devm_regulator_get(dev, "vdd"); if (IS_ERR(qphy->vdd)) { dev_err(dev, "unable to get vdd supply\n"); return PTR_ERR(qphy->vdd); } qphy->vdda33 = devm_regulator_get(dev, "vdda33"); if (IS_ERR(qphy->vdda33)) { dev_err(dev, "unable to get vdda33 supply\n"); return PTR_ERR(qphy->vdda33); } qphy->vdda18 = devm_regulator_get(dev, "vdda18"); if (IS_ERR(qphy->vdda18)) { dev_err(dev, "unable to get vdda18 supply\n"); return PTR_ERR(qphy->vdda18); } mutex_init(&qphy->phy_lock); platform_set_drvdata(pdev, qphy); qphy->phy.label = "msm-qusb-phy"; qphy->phy.init = qusb_phy_init; qphy->phy.set_suspend = qusb_phy_set_suspend; qphy->phy.shutdown = qusb_phy_shutdown; qphy->phy.type = USB_PHY_TYPE_USB2; qphy->phy.notify_connect = qusb_phy_notify_connect; qphy->phy.notify_disconnect = qusb_phy_notify_disconnect; qphy->phy.charger_detect = qusb_phy_drive_dp_pulse; /* * On some platforms multiple QUSB PHYs are available. If QUSB PHY is * not used, there is leakage current seen with QUSB PHY related voltage * rail. Hence keep QUSB PHY into reset state explicitly here. */ if (hold_phy_reset) { ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(dev, "%s:phy_reset assert failed\n", __func__); } if (of_property_read_bool(dev->of_node, "extcon")) { INIT_DELAYED_WORK(&qphy->port_det_w, qusb_phy_port_state_work); ret = qusb_phy_extcon_register(qphy); if (ret) return ret; } ret = usb_add_phy_dev(&qphy->phy); if (ret) return ret; ret = qusb_phy_regulator_init(qphy); if (ret) usb_remove_phy(&qphy->phy); /* de-assert clamp dig n to reduce leakage on 1p8 upon boot up */ if (qphy->tcsr_clamp_dig_n) writel_relaxed(0x0, qphy->tcsr_clamp_dig_n); /* * Write the usb_hs_ac_value to usb_hs_ac_bitmask of tcsr_conn_box_spare * reg to enable AC/DC coupling */ if (qphy->tcsr_conn_box_spare) { temp = readl_relaxed(qphy->tcsr_conn_box_spare) & ~qphy->usb_hs_ac_bitmask; writel_relaxed(temp | qphy->usb_hs_ac_value, qphy->tcsr_conn_box_spare); } qphy->suspended = true; if (of_property_read_bool(dev->of_node, "extcon")) { qphy->id_state = true; qphy->vbus_active = false; if (extcon_get_state(qphy->phy.edev, EXTCON_USB_HOST)) { qusb_phy_id_notifier(&qphy->phy.id_nb, 1, qphy->phy.edev); } else if (extcon_get_state(qphy->phy.edev, EXTCON_USB)) { qusb_phy_vbus_notifier(&qphy->phy.vbus_nb, 1, qphy->phy.edev); } } qusb_phy_create_debugfs(qphy); return ret; } static int qusb_phy_remove(struct platform_device *pdev) { struct qusb_phy *qphy = platform_get_drvdata(pdev); debugfs_remove_recursive(qphy->root); usb_remove_phy(&qphy->phy); qphy->cable_connected = false; qusb_phy_set_suspend(&qphy->phy, true); return 0; } static const struct of_device_id qusb_phy_id_table[] = { { .compatible = "qcom,qusb2phy", }, { }, }; MODULE_DEVICE_TABLE(of, qusb_phy_id_table); static struct platform_driver qusb_phy_driver = { .probe = qusb_phy_probe, .remove = qusb_phy_remove, .driver = { .name = "msm-qusb-phy", .of_match_table = of_match_ptr(qusb_phy_id_table), }, }; module_platform_driver(qusb_phy_driver); MODULE_DESCRIPTION("MSM QUSB2 PHY driver"); MODULE_LICENSE("GPL");